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Abstract

This paper studies the problem of identifying
any k distinct arms among the top ρ fraction
(e.g., top 5%) of arms from a finite or infinite
set with a probably approximately correct
(PAC) tolerance ε. We consider two cases:
(i) when the threshold of the top arms’ ex-
pected rewards is known and (ii) when it is
unknown. We prove lower bounds for the four
variants (finite or infinite arms, and known or
unknown threshold), and propose algorithms
for each. Two of these algorithms are shown
to be sample complexity optimal (up to con-
stant factors) and the other two are optimal
up to a log factor. Results in this paper pro-
vide up to ρn/k reductions compared with
the “k-exploration” algorithms that focus on
finding the (PAC) best k arms out of n arms.
We also numerically show improvements over
the state-of-the-art.

1 INTRODUCTION

Background. Multi-armed bandit (MAB) prob-
lems (Berry and Fristedt, 1985) have been studied
for decades, and well abstract the problems of deci-
sion making with uncertainty. It has been widely ap-
plied to many areas, e.g., online advertising (Li et al.,
2010), clinical trials (Berry and Eick, 1995), network-
ing (Bubeck and Cesa-Bianchi, 2012; Buccapatnam
et al., 2017), and pairwise ranking (Agarwal et al.,
2017). In this paper, we focus on stochastic multi-
armed bandit. In this setting, each arm of the bandit
is assumed to hold a distribution. Whenever the deci-
sion maker samples this arm, an independent instance
of this distribution is returned. The decision maker
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adaptively chooses some arms to sample in order to
achieve some specific goals. So far, the majority of
works in this area has been focused on minimizing the
regret (deviation from optimum), (e.g., (Auer et al.,
2002; Auer and Ortner, 2010; Garivier and Cappé,
2011; Bubeck and Cesa-Bianchi, 2012; Agrawal and
Goyal, 2012; Liu et al., 2018)) that addresses the trade-
off between the exploration and exploitation of arms
to minimize the regret.

Instead of regret minimization, this paper focuses on
pure exploration problems, which aim either (i) to
identify one or multiple arms satisfying specific condi-
tions (e.g., with the highest expected rewards) and try
to minimize the number of samples taken (e.g., (Man-
nor and Tsitsiklis, 2004; Kalyanakrishnan and Stone,
2010; Kalyanakrishnan et al., 2012; Cao et al., 2015;
Agarwal et al., 2017; Kaufmann and Kalyanakrishnan,
2013; Goschin et al., 2013; Chaudhuri and Kalyanakr-
ishnan, 2017; Aziz et al., 2018)), or (ii) to identify one
or multiple best possible arms according to a given cri-
teria within a fixed number of samples (e.g., (Audib-
ert and Bubeck, 2010; Bubeck et al., 2011; Carpentier
and Valko, 2015)). In some applications such as prod-
uct testing (Kohavi et al., 2009; Audibert and Bubeck,
2010; Scott, 2010), before the products are launched,
rewards are insignificant, and it is more interesting to
explore the best products with the least cost, which
suggests the pure exploration setting. This paper fo-
cuses on (i) above.

We investigate the problem of identifying any k arms
that are in the top ρ fraction of the expected rewards
of the arm set. This is in contrast to most works in
the pure exploration paradigm that focus on the prob-
lem of identifying k best arms of a given arm set. We
name the former as the “quantile exploration” (QE)
problem, and the latter as the “k-exploration” (KE)
problem, respectively. The motivations of studying
the QE problem are as follows: First, in many appli-
cations, it is not necessary to identify the best arms,
since it is acceptable to find “good enough” arms.
For instance, a company wants to hire 100 employees
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from more than 10,000 applicants. It may be costly
to find the best 100 applicants, and may be accept-
able to identify 100 within a certain top percentage
(e.g., 5%); Second, theoretical analysis (Kalyanakrish-
nan et al., 2012; Mannor and Tsitsiklis, 2004) shows
that the lower bound on the sample complexity (aka,
number of samples taken) of the KE problem depends
on n. When the number of arms is extremely large or
possibly infinite (e.g., the problem of finding a “good”
size from [10mm, 12mm] for a new model of devices), it
is infeasible to find the best arms, but may be feasible
to find arms within a certain top quantile; Third, by
adopting the QE setting, we replace the sample com-
plexity’s dependence on n of the KE problem with k/ρ
(Chaudhuri and Kalyanakrishnan, 2017), which can be
much smaller, and can greatly reduce the number of
samples needed to find “good” arms.

This paper adopts the probably approximately cor-
rect (PAC) setting, where an ε bounded error is tol-
erated. This setting can avoid the cases where arms
are too close—making the number of samples needed
extremely large. The PAC setting has been adopted
by numerous previous works (Mannor and Tsitsiklis,
2004; Kalyanakrishnan et al., 2012; Kalyanakrishnan
and Stone, 2010; Cao et al., 2015; Goschin et al., 2013;
Chaudhuri and Kalyanakrishnan, 2017; Aziz et al.,
2018; Kaufmann and Kalyanakrishnan, 2013).

Model and Notations: Let S be the set of arms. It
can be finite or infinite. When S is finite, let n be its
size, and the top ρ fraction arms are simply the top
bρnc arms. If S is infinite, we assume that the arms’
expected rewards follow some unknown prior identi-
fied by an unknown cumulative distribution function
(CDF) F . F is not necessarily continuous. In this pa-
per, we assume the rewards of the arms are of the same
finite support, and normalize them into [0, 1]. For an
arm a, we use Rta to denote the reward of its t-th sam-
ple. (Rta, t ∈ Z+) are identical and independent. We
also assume that the samples are independent across
time and arms. For any arm a, let µa be its expected
reward, i.e., µa := ER1

a. To formulate the problem,
for any ρ ∈ (0, 1), we define the inverse of F as

F−1(p) := sup{x : F(x) ≤ p}. (1)

The inverse F−1 has the following two properties (2)
and (3), where X ∼ F means that X is a random
variable following the distribution defined by F .

F(F−1(p)) ≥ p, (2)

PX∼F{X ≥ F−1(p)} ≥ 1− p. (3)

To see (2), by contradiction, suppose F(F−1(p)) < p.
Since F(x) is right continuous, there exists a number
x1 such that x1 > F−1(p) and F(x1) < p. This implies

that x1 is in {x : F(x) ≤ p}, and thus contradicting
(1). Define G(x) := PX∼F{X ≥ x}. Similar to (2),
the left continuity of G implies (3).

In the finite-armed case, an arm a is said to be (ε,m)-
optimal if µa + ε ≥ λ[m], where λ[m] is defined as the
m-th largest expected reward among all arms in S. In
other words, the expected reward of an (ε,m)-optimal
arm plus ε is no less than λ[m]. The QE problem is to
find k distinct (ε,m)-optimal arms of S. We consider
both cases where λ[n] is known and unknown.

Given a set S of size n, k ∈ Z+ and ε, δ ∈ (0, 1
2 ), we

define the two finite-armed QE problems Q-FK (Quan-
tile, Finite-armed, λ[m] Known) and Q-FU (Quantile,
Finite-armed, λ[m] Unknown) as follows:

Problem 1 (Q-FK). With known λ[m], we want to
find k distinct (ε,m)-optimal arms with at most δ error
probability, and use as few samples as possible.

Problem 2 (Q-FU). Without knowing λ[m], we want
to find k distinct (ε,m)-optimal arms with at most δ
error probability, and use as few samples as possible.

In the infinite-armed case, an arm is said to be [ε, ρ]-
optimal if its expected reward is no less than F−1(1−
ρ) − ε. Here, we use brackets to avoid ambiguity. To
simplify notation, we define λρ := F−1(1 − ρ). An
[ε, ρ]-optimal arm is within the top ρ fraction of S with
an at most ε error. We consider both cases where λρ is
known and unknown. Note that in both cases, we have
no knowledge on F except that λρ is possibly known.

Given a set S of infinite number of arms, k ∈ Z+, and
ρ, δ, ε ∈ (0, 1/2), we define the two infinite-armed QE
problems Q-IK (Quantile, Infinite-armed, λρ Known)
and Q-IU (Quantile, Infinite-armed, λρ Unknown).

Problem 3 (Q-IK). Knowing λρ, we want to find
k distinct [ε, ρ]-optimal arms with error probability no
more than δ, and use as few samples as possible.

Problem 4 (Q-IU). Without knowing λρ, we want to
find k distinct [ε, ρ]-optimal arms with error probability
no more than δ, and use as few samples as possible.

2 RELATED WORKS

To our best knowledge, Goschin et al. (2013) was the
first one who has focused on the QE problems. They
derived the tight lower bound Ω( 1

ε2 ( 1
ρ + log 1

δ ))1 for
the Q-IK problem with k = 1. They also provided
a Q-IK algorithm for k = 1, with sample complexity
O( 1

ρε2 log 1
δ ), higher than the lower bound roughly by

a log 1
δ factor. In contrast, our Q-IK algorithm works

for all k-values and matches the lower bound.

1All log, unless explicitly noted, are natural log.



Wenbo Ren, Jia Liu, Ness B. Shroff

Table 1: Comparison of Previous Works and Ours. All Bounds Are for the Worst Instances.

PROBLEM WORK SAMPLE COMPLEXITY

Q-IK
Goschin et al. (2013)

O
(

1
ρε2 log 1

δ

)
for k = 1

Ω
(

1
ε2

(
1
ρ + log 1

δ

))
for k = 1

This Paper Θ
(
k
ε2

(
1
ρ + log k

δ

))
for k ∈ Z+

Q-FK
Goschin et al. (2013) O

(
m
nε2 log 1

δ

)
for k = 1

This Paper
O
(

1
ε2

(
n log m+1

m+1−k + k log k
δ

))
for k ≤ m ≤ n/2

Ω
(
k
ε2

(
n
m + log k

δ

))
for k ≤ m ≤ n/2

Q-IU
Chaudhuri et al. (2017) O

(
1
ρε2 log2 1

δ

)
for k = 1

and Aziz et al. (2018) Ω
(

1
ρε2 log 1

δ

)
for k = 1

This Paper
O
(

1
ε2

(
1
ρ log2 1

δ + k
(

1
ρ + log k

δ

)))
for k ∈ Z+

Ω
(

1
ε2

(
1
ρ log 1

δ + k
(

1
ρ + log k

δ

)))
for k ∈ Z+

Q-FU

Chaudhuri et al. (2017)
O
(
n
mε2 log2 1

δ

)
for k = 1

Ω
(
n
mε2 log 1

δ

)
for k = 1

Aziz et al. (2018) O
(
n
mε2 log2 1

δ

)
for k = 1

This Paper
O
(

1
ε2

(
n
m log2 1

δ + n log m+2
m+2−2k + k log k

δ

))
for 2k < m ≤ n/2

Ω
(

1
ε2

(
n
m log 1

δ + k
(
n
m + log k

δ

)))
for k ≤ m ≤ n/2

Chaudhuri and Kalyanakrishnan (2017) studied the Q-
IU and Q-FU problems with k = 1. They derived the
lower bounds for k = 1. In this paper, we general-
ize their lower bounds to cases where k > 1. They
also proposed algorithms for these two problems with
k = 1, and the upper bounds (O( 1

ρε2 log2 1
δ ) for Q-IK,

O( n
mε2 log2 1

δ ) for Q-FK) are the same as ours. For
k > 1, by simply repeating their algorithms k times
and setting error probability δ

k for each repetition, one
can solve the two problems with sample complexity
O( k

ρε2 log2 k
δ ) and O( n

mkε2 log2 k
δ ), respectively. This

paper proposes new algorithms for all k-values with
log k

δ reductions over the sample complexity.

Aziz et al. (2018) studied the Q-IU problem. They pro-
posed a Q-IK algorithm which is higher than the lower
bound proved in this paper by a log 1

ρδ factor in the
worst case. Under some “good” priors, its theoretical
sample complexity can be lower than ours. However,
numerical results in this paper show that our algorithm
still obtains improvement under “good” priors.

Although the KE problem is not the focus of this
paper, we provide a quick overview for comparative
perspective. An early attempt on the KE problem
was done by Even-Dar et al. (2002), which proposed
an algorithm called Median-Elimination that finds an
(ε, 1)-optimal arm with probability at least 1−δ by us-
ing at most O( nε2 log 1

δ ) samples. Mannor and Tsitsik-
lis (2004); Kalyanakrishnan et al. (2012); Kalyanakr-
ishnan and Stone (2010); Agarwal et al. (2017); Cao
et al. (2015); Jamieson et al. (2014); Chen et al.

(2016); Kaufmann and Kalyanakrishnan (2013) stud-
ied the KE problem in different settings. Halving
algorithm proposed by Kalyanakrishnan and Stone
(2010) finds k distinct (ε, k)-optimal arms with prob-
ability at least 1 − δ by using O( nε2 log k

δ ) samples.
Kalyanakrishnan and Stone (2010); Kalyanakrishnan
et al. (2012); Jamieson et al. (2014); Chaudhuri and
Kalyanakrishnan (2017); Aziz et al. (2018); Kaufmann
and Kalyanakrishnan (2013) used confidence bounds
to establish algorithms that can exploit the large gaps
between the arms. In practice, these algorithms are
promising, while in theory, their sample complexities
may be higher than the lower bound by log factors.

3 LOWER BOUND ANALYSIS

We first establish the Q-FK lower bound.

Theorem 1 (Lower bound for Q-FK). Given k ≤
m ≤ n/2, ε ∈ (0, 1

4 ), and δ ∈ (0, e−8/40), there is a
set such that to find k distinct (ε,m)-optimal arms of
it with error probability at most δ, any algorithm must
take Ω( kε2 ( nm + log k

δ )) samples in expectation.

Proof Sketch. Mannor and Tsitsiklis (2004, Theo-
rem 13) showed that for the worst instance, find-
ing an (ε, 1)-optimal arm with confidence 1 − δ needs
Ω( 1

ε2 ( nm + log 1
δ )) samples in expectation. We show

that any Q-FK algorithm for k = 1 can be trans-
formed to find (ε, 1)-optimal arms, and derive the de-
sired lower bound for k = 1. Then, we construct a
series of Q-IK problems with k = 1 that match the
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lower bound proved above. We show that solving any
k of these problems with at most δ total error proba-
bility needs at least Ω( kε2 ( nm + log k

δ )) samples in ex-
pectation. Any algorithm that solves the Q-FK prob-
lem with parameter k can be transformed to solve the
above problems. The desired lower bound follows. �

By Theorem 1, we establish the Q-IK lower bound.

Theorem 2 (Lower bound for Q-IK). Given k, ρ ∈
(0, 1

2 ], ε ∈ (0, 1
4 ), and δ ∈ (0, e−8/40), there is an infi-

nite set such that to find k distinct [ε, ρ]-optimal arms
of it with error probability at most δ, any algorithm
must take Ω( kε2 ( 1

ρ + log k
δ )) samples in expectation.

Proof. By contradiction, suppose there is an algorithm
A that solves all instances of the Q-IK problem by us-
ing o( kε2 ( 1

ρ + log k
δ )) samples in expectation. Choos-

ing m ≥ k(k − 1)/δ and n ≥ 2m, we construct an
n-sized set C that meets the lower bound of the Q-
FK problem. By drawing arms from C with replace-
ment, we can apply A to it with ρ = m

n . Now, we use
A to find k possibly duplicated (ε,m)-optimal arms
of C with error probability δ/2. The probability that
there is no duplication in these k found arms is at least∏k
i=1

m+1−i
m ≥ 1−

∑k
i=1

i−1
m ≥ 1− δ

2 . Thus, with prob-
ability at least 1− δ, A finds k distinct (ε,m)-optimal
arms of C by o( kε2 ( nm + log k

δ )) samples in expectation,
contradicting Theorem 1. The proof is complete. �

The lower bound for the Q-FU problem directly fol-
lows from Theorem 3.3 of (Chaudhuri and Kalyanakr-
ishnan, 2017) and Theorem 1. Theorem 3.3 (Chaud-
huri and Kalyanakrishnan, 2017) gives an Ω( n

mε2 log 1
δ )

lower bounds for k = 1. Corollary 3 applies for all k.

Corollary 3 (Lower bound for Q-FU). Given k ≤
m ≤ n/2, ε ∈ (0, 1/

√
32), and δ ∈ (0, e−8/40), there is

a set such that to find k distinct (ε,m)-optimal arms
with probability at least 1− δ, any algorithm must take
Ω( 1

ε2 (nkm + k log k
δ + n

m log 1
δ )) samples in expectation.

The lower bound for the Q-FU problem directly follows
from Corollary 3.4 of (Chaudhuri and Kalyanakrish-
nan, 2017) and Theorem 2. Corollary 3.4 of Chaud-
huri and Kalyanakrishnan (2017) gives an Ω( 1

ρε2 log 1
δ )

lower bound for k = 1. Corollary 4 applies for all k.

Corollary 4 (Lower bound for Q-IU). Given k, ρ ∈
(0, 1

2 ], ε ∈ (0, 1/
√

32), and δ ∈ (0, e−8/40), there is
an infinite set such that to find k distinct [ε, ρ]-optimal
arms with probability at least 1−δ, any algorithm must
take Ω( 1

ε2 (kρ+k log k
δ+ 1

ρ log 1
δ )) samples in expectation.

4 ALGORITHMS FOR THE Q-IK
PROBLEM

In this section, we present two Q-IK algorithms: AL-
Q-IK and CB-AL-Q-IK. “AL” stands for “algorithm”

and “CB” stands for “confidence bounds”.

A worst case order-optimal algorithm. We first
introduce AL-Q-IK. It calls the function “Median-
Elimination” (Even-Dar et al., 2002), which finds an
(ε, 1)-optimal arm with probability at least 1 − δ by

using O( |A|ε2 log 1
δ ) samples. AL-Q-IK is similar to

Iterative Uniform Rejection (IUR) (Goschin et al.,
2013). At each repetition, IUR draws an arm from
S, performs Θ( 1

ε2 log 1
δ ) samples on it, and returns it

if the empirical mean is large enough. It solves the
Q-IK problem with k = 1, and its sample complex-
ity is O( 1

ε2ρ log 1
δρ ). This is higher than the lower

bound roughly by a 1
ρ log 1

ρ factor (compared with the

Ω( 1
ε2 log 1

δ ) term). The 1
ρ log 1

ρ factor is due to the fact

that the random arm drawn from S is [ε, ρ]-optimal
with probability ρ (in the worst case). Inspired by
their work, we add Lines 2 and 3 to ensure that at is
[ε1, ρ]-optimal with probability at least 1

2 . By doing
this, we replace the 1

ρ log 1
ρ factor by a constant while

adding O( 1
ρε2 ) samples for each repetition. Repeti-

tions continue until k arms are found, and the number
of repetitions is no more than 4k in expectation. The
choice of n2 guarantees that for each arm added to
Ans, it is [ε, ρ]-optimal with probability at least 1− δ

k .
We state its theoretical performance in Theorem 5.

Algorithm 1 AL-Q-IK(S, k, ρ, ε, δ, λ)

Input: S, k, ρ, ε, δ, and λ ≤ F−1(1− ρ);
Initialize: Choose ε1, ε2 > 0 with ε1 + 2ε2 = ε;

t← 0; Ans← ∅; n1 ← d 1
ρ log 3e; n2 ← d 1

2ε22
log k

δ e;
. ε1, ε2 = Ω(ε), Ans stores the chosen arms;

1: repeat t← t+ 1;
2: Draw n1 arms from S, and form set At;
3: arm at ←Median-Elimination(At, ε1,

1
4 );

4: Sample at for n2 times;
5: µ̂t ← the empirical mean;
6: if µ̂t ≥ λρ − ε1 − ε2 then
7: Ans← Ans ∪ {at};
8: end if
9: until |Ans| ≥ k

10: return Ans;

Theorem 5 (Theoretical performance of AL-Q-IK).
With probability at least 1− δ, AL-Q-IK returns k dis-
tinct arms having expected rewards no less than λ− ε.
The expected sample complexity is O( kε2 ( 1

ρ + log k
δ )).

Proof Sketch. Correctness: Here, we note that λρ ≥ λ.
At each repetition, n1 arms are drawn from S to
guarantee that with probability at least 2/3, the set
At contains an arm of the top ρ fraction. Then in
Line 3, Median-Elimination(At, ε1,

1
4 ) is called to get

an at, which is [ε1, ρ]-optimal with probability at least
2
3 (1 − 1

4 ) = 1
2 . At Line 5, by Hoeffding’s Inequality,
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we can prove that if at is [ε1, ρ]-optimal, µ̂t is greater
than λ− ε1− ε2 with probability at least 1− δ

k , and if
µat ≤ λ− ε, µ̂t is less than λ− ε1− ε2 with probability
at least 1 − δ

k . By some computation, we show that
given at is added to Ans, µat ≥ λ− ε with probability
at least 1− δ

k . Thus, with probability at least 1−δ, all
arms in Ans having expected rewards ≥ λ − ε. Sam-
ple Complexity: For each t, at is [ε1, ρ]-optimal with
probability at least 1

2 , and if at is [ε1, ρ]-optimal, then

with probability at least 1− δ
k , it will be added to Ans.

Thus, in the t-th repetition, with probability at least
(1 − δ

k ) · 1
2 ≥

1
4 , one arm is added to Ans. Thus, the

algorithm returns after average 4k repetitions. In each
repetition, Line 3 takes O(n1

ε2 log 4) = O( 1
ρε2 ) samples,

and Line 4 takes n2 = O(ε−2 log(k/δ)) samples, prov-
ing the sample complexity. �

Remark: The expected sample complexity of Algo-
rithm 1 matches the lower bound proved in Theorem 2.
Even for k = 1, this result is better than the previous
works O( 1

ρε2 log 1
δ ) (Goschin et al., 2013).

Alternative Version Using Confidence Bounds
AL-Q-IK is order-optimal for the worst instances, and
provides theoretical insights on the Q-IK problem, but
in practice, it does not exploit the large gaps between
the arms’ expected rewards. In this part, we use
confidence bounds to establish an algorithm that is
not order-optimal for the worst instance but has bet-
ter practical performance for most instances. Many
previous works (Kalyanakrishnan and Stone, 2010;
Kalyanakrishnan et al., 2012; Jamieson et al., 2014;
Chaudhuri and Kalyanakrishnan, 2017; Aziz et al.,
2018) have shown that this type of confidence-bound-
based (CBB) algorithms can dramatically reduce the
actual number of samples taken in practice. Given
an arbitrary arm a with expected reward µa, we let
X̂N (a) be its empirical mean after N samples. A
function u(·) (l(·)) is said to be an upper (lower) δ-
confidence bound if it satisfies

P{u(X̂N (a), N, δ) ≥ µa} ≥ 1− δ, (4)

P{l(X̂N (a), N, δ) ≤ µa} ≥ 1− δ. (5)

There are many choices of confidence bounds, e.g., the
confidence bounds using Hoeffding’s Inequality can be

u(X̂N (a), N, δ) = X̂N (a) +
√

log δ−1/(2N), (6)

l(X̂N (a), N, δ) = X̂N (a)−
√

log δ−1/(2N). (7)

In this paper, we propose a general algorithm that
works for all confidence bounds satisfying (4) and (5).
We first introduce PACMaxing (Algorithm 2), an algo-
rithm to find one (ε,m)-optimal arm. The idea follows
KL-LUCB (Kaufmann and Kalyanakrishnan, 2013),
except that it is designed for all confidence bounds and
has a budget to bound the number of samples taken.

Adding budget prevents the number of samples from
blowing up to infinity, and helps establish Algorithm 3.

In PACMaxing, we let U t(a) := u(µ̂t(a), N t(a), δN
t(a))

and Lt(a) := l(µ̂t(a), N t(a), δN
t(a)). For every arm a,

PACMaxing guarantees that during the execution of
the algorithm, with probability at least 1 − δ

n , its ex-
pected reward is always between the lower and up-
per confidence bounds, and thus, is correct with prob-
ability at least 1 − δ (see Lemma 6). Lemma 6’s
proof is similar to that of KL-LUCB (Kaufmann and
Kalyanakrishnan, 2013), and is provided in supple-
mentary materials.

Algorithm 2 PACMaxing(A, ε, δ, budegt)

Input: A an n-sized set of arms; δ, ε ∈ (0, 1);

1: ∀s, δs := δ
k1nsγ

, where γ > 1 and k1 ≥ 2(1 + 1
γ−1 );

2: t← 0 (number of sample taken);
3: B(t)←∞ (stopping index);
4: Sample every arm of A once; t← n;
5: N t(a)← 1, ∀a ∈ A;(number of times a is sampled)
6: Let µ̂t(a) be the empirical mean of a;
7: at ← arg maxa µ̂

t(a);
8: bt ← arg maxa6=at U

t(a);
9: while B(t) > ε ∧ t ≤ budget do

10: Sample at and bt once; t← t+ 2;
11: Update µ̂t(a), µ̂t(b), N t(a), N t(b);
12: Update at and bt as Lines 7 and 8;
13: B(t)← U t(bt)− Lt(at);
14: end while
15: if B(t) ≤ ε then return at

16: else return a random arm
17: end if

Lemma 6 (Correctness of PACMaxing). Given suf-
ficiently large budget, PACMaxing returns an (ε, 1)-
optimal arm with probability at least 1− δ.

Lemma 6 does not provide any insight about PAC-
Maxing’s sample complexity because it depends on the
confidence bounds we choose. For Hoeffding bounds
defined by (6) and (7), we give the sample complex-
ity of PACMaxing in Lemma 7. Its proof is relegated
to supplementary materials due to space limitation.
Here, we define ∆b := 1

2 max{ε,maxa∈A µa − µb} for
all arms b.

Lemma 7 (Sample complexity of PACMaxing). Using
confidence bounds (6) and (7), and for budget no less

than 3n + max{ 8n
ε2 log k1n

δ , 8(1+e−1)γn
ε2 log 4(1+e−1)γ

ε2 },
with probability at least 1 − δ, PACMaxing returns a
correct result after O(

∑
a∈A

1
∆2
a

log n
δ∆a

) samples.

Using PACMaxing, we establish the CBB version of
AL-Q-IK, presented in Algorithm 3. In the algorithm,
we let g0 and g1 be the corresponding budget lower
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bounds as in Lemma 7. CB-AL-Q-IK is almost the
same as AL-Q-IK, except that it replaces Median-
Elimination and the sampling of at by PACMaxing.

Algorithm 3 CB-AL-Q-IK(S, k, ρ, ε, δ, λ)

Input: S, k, ρ, ε, δ, and λ ≤ F−1(1− ρ);
Initialize: Choose ε1, ε2 > 0 with ε1 + 2ε2 = ε;

t← 0; Ans← ∅; n1 ← d 1
ρ log 3e;

. ε1, ε2 = Ω(ε), Ans stores the chosen arms;

1: repeat t← t+ 1;
2: Draw n1 arms from S, and form set At;
3: arm at ←PACMaxing(At, ε1, 1/4, g0);
4: c is an arm with constant rewards λ− ε1 − ε2;
5: bt ←PACMaxing({at, c}, ε2, δ/k, g1);
6: if bt = at then
7: Ans← Ans ∪ {at};
8: end if
9: until |Ans| ≥ k

10: return Ans;

Theorem 8 states the theoretical performance of CB-
AL-Q-IK. Its worst case sample complexity is higher
than the lower bound and that of AL-Q-IK roughly
by a log 1

ρε factor. However, its empirical performance

could be better (See Section 7 for numerical evidences).

Theorem 8 (Theoretical performance of
CB-AL-Q-IK). With probability at least 1 − δ,
CB-AL-Q-IK returns k distinct arms having expected
rewards no less than λ − ε. When using confidence
bounds (6) and (7), it terminates after at most
O( kε2 ( 1

ρ log 1
ρε + log k

δε )) samples in expectation.

Proof. The correctness follows from directly using the
same steps as in the proof of Theorem 5. In each rep-
etition, by Lemma 7, the sample complexity of Line 3
is at most O(n1

ε2 log n1

ρε ) = O( 1
ρε2 log 1

ρε ), and that of

Line 5 is at most O( 1
ε2 log k

δε ). The “at most” comes
from the choice of budget in Lemma 7. The algorithm
returns after at most 4k repetitions in expectation.
The desired sample complexity follows. �

5 ALGORITHMS FOR THE Q-IU
PROBLEM

Chaudhuri and Kalyanakrishnan (2017) proposed an
O( 1

ρε2 log2 1
δ ) sample complexity algorithm for k = 1.

Performing it for k times with δ/k error probability
for each can solve the problem for all k-values. How-
ever, this method will yield unnecessary dependency
on log2 k. If we can first estimate the value of λρ, we
can use (CB-)AL-Q-IK to solve this problem and re-
place the quadratic log dependency by log k. We first
use LambdaEstimation (LE) to get a “good” estima-
tion of λρ, and then use AL-Q-IK to solve the Q-IU

problem. We note that this idea may perform poorly
for small k-values as evaluating λρ can take more sam-
ples than finding several [ε, ρ]-optimal arms.

We first present the algorithm LE for estimating λρ
in Algorithm 4. LE calls Halving (Kalyanakrishnan
and Stone, 2010), which finds k distinct (ε, k)-optimal
arms of an n-sized set with probability at least 1 − δ
by taking O( nε2 log k

δ ) samples. Halving2 is modified
from Halving that finds PAC worst arms (defined by
adding a minus to all rewards of the arms).

Algorithm 4 LambdaEstimation(S, ρ, ε, δ) (LE)

Input: S an infinite set of arms; ρ, δ, ε ∈ (0, 1/2);

1: Choose ε1, ε2, ε3 = Ω(ε) with ε1 + ε2 + 2ε3 = ε;
2: n3 ← d 32

ρ log 5
δ e; n4 ← d 1

2ε23
log 10

δ e; m ← b1 +
3
4ρn3c;

3: Draw n3 arms from S, and form A1;
4: A2 ← Halving(A1,m, ε1,

δ
5 );

5: â← Halving2(A2, 1, ε2,
δ
5 );

6: Sample â for n4 times, µ̂0 ←the empirical mean;
7: return λ̂← µ̂0 − ε2 − ε3;

In LE, we ensure that with probability at least 1− 2
5δ,

the m-th most rewarding arm of A1 is in M := {a ∈ S :
λρ ≤ µa ≤ λρ/2}. After calling Halving and Halving2,
we get â, whose expected reward is in [λρ−ε1, λρ/2+ε2]

with probability at least 1− 4δ
5 . Finally, â is sampled

for n4 times, and its empirical mean is in [λρ − ε1 −
ε3, λρ/2 + ε2 + ε3] with probability at least 1−δ. Thus,

the returned value λ̂ is in [λρ−ε, λρ/2] with probability
at least 1−δ. Detailed proof of Lemma 9 can be found
in supplementary materials.

Lemma 9 (Theoretical performance of LE). After at

most O( 1
ρε2 log2 1

δ ) samples, LE returns λ̂ that is in

[λρ − ε, λρ/2] with probability at least 1− δ.

Now, we use LE to establish the Q-IU algorithm AL-
Q-IU. Theorem 10 states its theoretical performance.

Algorithm 5 AL-Q-IU(S, k, ρ, ε, δ)
Input: S infinite; k ∈ Z+; ρ, δ, ε ∈ (0, 1/2);

1: λ̂← LE(S, ρ, 0.2ε, δ2 );

2: return AL-Q-IK(S, k, ρ2 , 0.8ε,
δ
2 , λ̂);

Theorem 10 (Theoretical performance of AL-Q-IU).
With probability at least 1 − δ, AL-Q-IU returns k
distinct [ε, ρ]-optimal arms. With probability at least
1− δ

2 , it terminates after O( 1
ε2 ( 1

ρ log2 1
δ +k( 1

ρ+log k
δ )))

samples in expectation.

Proof. With probability at least 1 − δ
2 , λ̂ is in [λρ −

ε
2 , λρ/2]. When λ̂ is in [λρ − ε

2 , λρ/2], by Theorem 5,

Line 2 takes O( kε2 ( 1
ρ + log 1

δ )) samples in expectation,
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and, with probability at least 1− δ
2 , all returned arms

are [ε, ρ]-optimal. The correctness of AL-Q-IU follows.
The desired sample complexity follows by summing up
O( kε2 ( 1

ρ + log 1
δ )) and O( 1

ε2 log2 1
δ ) (Lemma 9). �

Remark: By Corollary 4, AL-Q-IU is sample com-
plexity optimal up to a log 1

δ factor. When log 1
δ =

O(k), i.e., δ ≥ e−ck for some constant c > 0, AL-Q-IU
is sample complexity optimal up to a constant factor.

6 FINITE-ARMED ALGORITHMS

In this section, we let S be a finite-sized set of arms.
By drawing arms from it with replacement, these arms
can be viewed as drawn from an infinite-sized set. We
use T (S) to denote the corresponding infinite-sized set,
and call it the infinite extension of S.

Q-FK. When k = 1, obviously, calling AL-Q-
IK(T (S), 1, mn , ε, δ, λρ) can solve the Q-FK problem.
When k > 1, we can solve the Q-FK problem by
repeatedly calling AL-Q-IK(T (S), 1, ρt, ε, δ/k, λρ) and
updating S by deleting the chosen arm, where ρt =
m+1−t
n+1−t . We present the algorithm AL-Q-FK (Algo-
rithm for Q-FK) in Algorithm 6, and state the theo-
retical performance in Theorem 11. The proof is rele-
gated to supplementary materials.

Algorithm 6 AL-Q-FK(S,m, k, ε, δ, λ)

Require: S n-sized, k ≤ m ≤ n/2, λ ≤ λ[m];
Initialize: Ans← ∅; . stores the chosen arms;

1: repeat

2: S ′ ← T (S −Ans); ρ← m−|Ans|
n−|Ans| ;

3: at ←AL-Q-IK(S ′, 1, ρ, ε, δ/k, λ);
4: Ans← Ans ∪ {at};
5: until |Ans| ≥ k
6: return Ans;

Theorem 11 (Theoretical performance of AL-Q-FK).
With probability at least 1−δ, AL-Q-FK returns k dis-
tinct arms having mean rewards at least λ−ε. Its takes
O( 1

ε2 (n log m+1
m+1−k + k log k

δ )) samples in expectation.

Remark: If k ≤ cm for some constant c < 1,
log m+1

m+1−k ≤
k

m+1−k = O( km ), and thus, the expected

sample complexity becomes O( kε2 ( km+log k
δ )), meeting

the lower bound (Theorem 1). When k is arbitrarily
close to m, the Q-FK problem (almost) reduces to the
KE problem. The tightest upper bound for the KE
problem (with the knowledge of λ[k]) is O( nε2 log k

δ )
(Kalyanakrishnan et al., 2012) to our best knowledge.
When k is arbitrary close to m, as O( 1

ε2 (n log m+1
m+1−k +

k log k
δ )) = O( 1

ε2 (n log k + k log k
δ )), AL-Q-FK is still

better than the literature asymptotically.

Q-FU. AL-Q-FU (Algorithm for solving the Q-FU

problem) is presented in Algorithm 7. Its idea fol-
lows AL-Q-IU and AL-Q-FK. We only consider the
case k < m

2 . For k ≥ m
2 , it is better to use KE al-

gorithms instead. Corollary 12 states its theoretical
performance, which directly follows from Theorems 10
and 11.

Algorithm 7 AL-Q-FU(S,m, k, ε, δ)
Require: S n-sized; 2k < m ≤ n/2;

1: λ̂←LE(T (S), mn ,
ε
2 ,

δ
2 );

2: return AL-Q-FU(S, bm2 c, k,
ε
2 ,

δ
2 );

Corollary 12 (Theoretical Performance of
AL-Q-FU). With probability at least 1 − δ, AL-
Q-FU returns k distinct (ε,m)-optimal arms.
With probability at least 1 − δ

2 , the expected
number of samples AL-Q-FU takes is at most
O( 1

ε2 ( nm log2 1
δ + n log m+2

m+2−2k + k log k
δ )).

Remark: By Corollary 3, when k ≤ cm for some
constant c ∈ (0, 1

2 ), AL-Q-FU is sample complexity
optimal up to a log 1

δ factor. If log 1
δ = O(k) also holds,

i.e., δ ≥ e−ck for some constant c > 0, then AL-Q-FU
is sample complexity optimal in order sense.

7 NUMERICAL RESULTS

In this section, we illustrate the improvements of our
algorithms by running numerical experiments. We
present the comparisons of CBB algorithms. The re-
sults of the non-CBB algorithms are presented in sup-
plementary materials. Additional numerical results for
the finite cases are also presented in supplementary
materials. We first compare CB-AL-Q-IK with the
literature, and then illustrate the comparison of CB-
AL-Q-IU with previous works.

In the simulations, we adopt Bernoulli rewards for all
the arms. For fair comparisons, for all CBB-algorithms
or versions, we use the KL-Divergence based confi-
dence bounds given by Aziz et al. (2018) with γ = 2.
Every point in every figure is averaged over 100 in-
dependent trials. Previous works only considered the
case where k = 1. In the implementations, for k > 1,
we repeat them for k times with δ

k error probability
for each repetition.

First, we compare CBB algorithms for the Q-IK prob-
lem: CB-AL-Q-IK (choose ε1 = 0.75ε) and (α, ε)-KL-
LUCB (Aziz et al., 2018) (we name it KL-LUCB in
this section). KL-LUCB is almost equivalent to P2

(Chaudhuri and Kalyanakrishnan, 2017) with a large
enough batch size. The only difference is that they
choose different confidence bounds. Here, we note
that KL-LUCB does not require the knowledge of λρ.
However, we want to show that our algorithm along



Exploring k out of Top ρ Fraction of Arms in Stochastic Bandits

with this information can significantly reduce the ac-
tual number of samples needed. The priors F are all
Uniform([0,1]). The results are summarized in Fig-
ure 1 (a)-(d).
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(c) Vary ρ, k = 1, ε = 0.05,
and δ = 0.001.
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(d) Vary ε, k = 1, ρ = 0.001,
and δ = 0.001.

Figure 1: Comparison of CB-AL-Q-IK and KL-LUCB.

It can be seen from Figure 1 that CB-AL-Q-IK per-
forms better than KL-LUCB except two or three
points where ρ is large. According to (a), the number
of samples CB-AL-Q-IK takes increases slightly slower
than KL-LUCB, consistent with the theory that CB-
AL-Q-IK depends on k log k while KL-LUCB depends
on k log2 k. According to (b), we can see that KL-
LUCB’s number of samples increases obviously with
1
δ , while that of CB-AL-Q-IK is almost independent
of δ. The reason is that CB-AL-Q-IK depends on
( 1
ρ log 1

ρ + log 1
δ ) term, and when ρ is small enough,

log 1
δ can be dominated by 1

ρ log 1
ρ . According to (c),

CB-AL-Q-IK takes less samples than KL-LUCB for
ρ < 0.005, and the gap increases with 1

ρ . According

to (d), CB-AL-Q-IK performs better than KL-LUCB
under the given ε values.

Second, we compare CB-AL-Q-IU and (α, ε)-KL-
LUCB. CB-AL-Q-IU is the CBB version of AL-Q-IU
by replacing its subroutines by CBB ones. It is de-
signed for large k-values and may not perform well
under small k-values, even if it is always in order-
sense better or equivalent compared to KL-LUCB.
The reason is that its subroutine LE has a large con-
stant factor. However, since the sample complex-
ities of these two algorithms both depend at least
linearly on k while that of LE is independent of k,
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Figure 2: Comparison
of CB-AL-Q-IU and KL-
LUCB under prior Fh.
ρ = 0.05, ε = 0.1, and
δ = 0.01.

when k is large, the in-
fluence of (CB-)LE (the
CBB version of LE) van-
ishes, and the improve-
ment of (CB-)AL-Q-IK
emerge. The results
are summarized in Fig-
ure 2. In the imple-
mentations, we choose
ε1 = 0.75ε and ε2 = 0.1ε
for algorithm LE, and
choose ε1 = 0.75ε for
CB-AL-Q-IK. In Fig-
ure 2, the algorithms are
tested under a “hard in-
stance” Fh, where ρ fraction of the arms has expected
reward 1

2 + 0.55ε and the others have 1
2 − 0.55ε. The

results are consistent with the theory, and suggest
that CB-AL-Q-IK can use much less samples than KL-
LUCB does when k is sufficiently large.

We admit that AL-Q-IU may not be practical as it
takes 108 samples even for k = 1, but it also has sev-
eral contributions: (i) It gives a hint for solving the
Q-IU problem. If we can improve LE, we can get a
practical algorithm for the Q-IU problem that works
much better than the literature for large k-values. (ii)
We can see from Figure 2 that KL-LUCB increases
faster as k increases. It is consistent with the theory
that KL-LUCB depends on k log2 k while (CB-)AL-Q-
IU depends on k log k. When k is large enough, (CB)-
AL-Q-IU can perform better. (iii) In order sense, the
performance of (CB-)AL-Q-IU is better than the liter-
ature. Thus, our work gives better theoretical insights
about the Q-IU problem.

8 CONCLUSION

In this paper, we studied the problems of finding k
top ρ fraction arms with an ε bounded error from a
finite or infinite arm set. We considered both cases
where the thresholds (i.e., λρ and λ[m]) are priorly
known and unknown. We derived lower bounds on the
sample complexity for all four settings, and proposed
algorithms for them. For the Q-IK and Q-FK prob-
lems, our algorithms match the lower bounds. For the
Q-IU and Q-FU problems, our algorithms are sample
complexity optimal up to a log factor. Our simulations
also confirm these improvements numerically.
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Supplementary Materials

9 PROOF OF THEOREM 1

Proof. For k = 1. We first prove the lower bound for
k = 1.

Claim 1 (Lower bound for Q-FK with k = 1). There
is a priorly known n-sized set such that after randomly
reordering, to find an (ε,m)-optimal arm, any algo-
rithm must use Ω( 1

ε2 ( nm + log 1
δ )) samples in expecta-

tion.

Proof. Let parameters n, m, ε, and δ be given. For
these parameters, by contradiction, suppose there is
an algorithm A1 that solves every Q-FK instance with
average sample complexity o( 1

ε2 ( nm + log 1
δ )). To this

end, we first introduce the following problem P1.

Problem P1: Given bn/mc coins, where a toss of coin
i has an unknown probability pi to produce a head,
and produce a tail otherwise. We name pi the “head
probability” of coin i. Let pmax be the largest one
among all pi’s. Knowing the value of pmax, we want
to find a coin whose head probability is no less than
pmax − ε, and the error probability is no more than δ.

Mannor and Tsitsiklis (2004, Theorem 13) proved that
the worst case sample complexity lower bound of P1 is
Ω( 1

ε2 ( nm+log 1
δ )). Particularly, this lower bound can be

met by the bn/mc-sized set { 1
2 +ε, 1

2−ε,
1
2−ε, ...,

1
2−ε}.

Here, we will show that we can construct an algorithm
from A1 that solves P1 with average sample complex-
ity o( 1

ε2 ( nm + log 1
δ )), implying a contradiction.

Let C1 be the set of the coins in P1. Before solving P1

by using A1, we need to do several operations over C1.
We first define the “duplication” of a coin. For each
coin i, we “duplicate” it for m−1 times and construct
m−1 “duplicated” coins such that whenever one wants
to toss a duplication of coin i, coin i will be tossed but
the result is regarded as that of the duplication. Thus,
we guarantee that all the duplications of coin i have
the same head probability as coin i.

With these duplications, we construct a new set C2
of coins with size n. C2 consists of all the coins of
C1, all the duplications of all coins in set C1, and
(n−mbn/mc) negligible coins (negligible coins are with
head probability zero). Obviously, C2 consists of n
coins. In P1, for each head probability pi, there are
m coins with head probability pi in C2. The negligible
coins are used to make the size of C2 be n.

Then, we perform A1 on the set C2. It returns an
(ε,m)-optimal coin (coins can be regarded as arms
with Bernoulli(pi) rewards) of C2 with probability at
least 1 − δ, and uses o( 1

ε2 ( 1
ρ + log 1

δ )) samples in ex-

pectation. We use cr to denote the returned coin. Let
coin i∗ be one of the coins whose head probability are
pmax (i.e., one of the most biased coins of C1). Since
coin i∗ is duplicated for m−1 times, there are at least
m coins in C2 having head probability pmax. This im-
plies that if cr is an (ε,m)-optimal coin of C2, then its
head probability is at least pmax− ε. If cr is a negligi-
ble coin (i.e., with head probability zero), we return a
random coin of C1 as the solution of P1. If cr is coin
i or one of its duplications, we return coin i as the so-
lution of P1. Noting that the negligible coins are not
(ε,m)-optimal, so if cr is an (ε,m)-optimal coin of C2,
there is a corresponding coin in C1 having the same
probability as cr. Thus, if A1 finds an (ε,m)-coin of
C2, it finds a coin of C1 whose head probability is at
least pmax−ε, which gives a correct solution to P1. To
conclude, A1 solves P1 with average sample complex-
ity o( 1

ε2 ( nm + log 1
δ )), contradicting Theorem 13 (Man-

nor and Tsitsiklis, 2004). We note that we can choose
C1 = { 1

2 + ε, 1
2 − ε, ...,

1
2 − ε} by (Mannor and Tsitsik-

lis, 2004, Theorem 13), and thus, C2 is priorly known.
This completes the proof of Claim 1.

For k > 1. Now, we consider the case where k > 1.
From now on, we only consider the case where m > 2k.
For m ≤ 2k, since the Q-IK problem does not become
harder as m increases, if the desired lower bound holds
for m > 2k, it also holds for m ≤ 2k.

Let C3 be a priorly known b n2k c-sized set such that af-
ter randomly reordering it, no algorithm can find one
(ε, bm2k c)-optimal arm of it with probability 1 − δ by
o( 1
ε2 ( nm + log 1

δ )) samples in expectation, i.e., C3 meets
the lower bound given in Claim 1. Claim 1 guarantees
that this set must exist. Choose a large enough posi-
tive integer L. By randomly reordering the indexes of
arms in C3, we can construct L sets that also meet the
lower bound stated in Claim 1. We refer to these sets
as hard sets. Now, we define problem P2 by these L
hard sets.

Problem P2: Given the above L hard sets, we want to
find k distinct arms such that each of them is (ε, bm2k c)-
optimal for a different hard set, and the error proba-
bility is no more than δ in total.

Claim 2 (Lower bound for P2). To solve P2, at least
Ω( kε2 ( nm + log k

δ )) samples are needed in expectation.

Proof. Let these L hard instances be indexed by
1, 2, ..., L. For each set i, by the definition of hard sets,
to find an (ε, bm2k c)-optimal arm from it with probabil-
ity 1−δi, at least Ω( 1

ε2 ( nm+log 1
δ i

)) samples are needed
in expectation. For an algorithm that solves P2, it re-
turns k arms, each of which belongs to a different hard
set. Without loss of generality, we say these k returned
arms belong to hard sets 1, 2, ..., k. Let δi denote the
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probability that the returned arm for hard set i is not
(ε, bm2k c)-optimal. Obviously, to solve P2 with proba-

bility 1 − δ, we need
∏k
i=1 (1− δi) ≥ 1 − δ. Further,

since these sets are generated by randomly reordering
a priorly known set C3, the samples of one set provide
no information for the others. Thus, to solve P2, the
expected sample complexity is at least

Ω

(
min

{
k∑
i=1

1

ε2
log

1

δi
:

k∏
i=1

(1− δi) ≥ 1− δ

})
. (8)

We note that the function f(x) = log(1/x) is con-

vex, and thus,
∑k
i=1

1
ε2 log 1

δi
is convex over domain

specified by the constraint
∏k
i=1 (1− δi) ≥ 1 − δ.

Also, this constraint on (δi, i ∈ [k]) is symmetric. By
the property of convex functions, to get the minimal,
we need to set δ1 = δ2 = · · · = δk. Thus, given∏k
i=1 (1− δi) ≥ 1− δ, we have

k∑
i=1

1

ε2
log

1

δi
= Ω

(
k log

k

δ

)
. (9)

Applying Eq. (9) to Eq. (8), we can get the desired
lower bound. This completes the proof of Claim 2.

Claim 3. If there exists an algorithm A2 that can use
o( kε2 ( nm + log k

δ1
)) samples in expectation to find k dis-

tinct (ε,m)-optimal arms of any n-sized set with prob-
ability 1− δ1 for δ1 ∈ (0, δ], then we can construct an-
other algorithm A3 that solves P2 by o( kε2 ( nm + log k

δ ))
samples in expectation.

Proof. We use A2 to construct a new algorithm A3,
which works as follows:

Step 1): Pick 2k arbitrary hard sets of coins (indexed
by 1, 2, ..., 2k), and form a new set C4 (we note that
coins in different sets are always considered to be dif-
ferent). Let T = d2 log 2k

δ e.

Step 2): Performs algorithm A2 on C4 with error prob-
ability δ

2T , and A2 returns k arms. We refer to these
returned arms as found arms.

Step 3): For each found arm, tag the hard set it be-
longs to.

Step 4): If at least k hard sets have been tagged, return
one found arm for each of the first k tagged hard set.
Otherwise, go to Step 2.

We will prove that A3 solves P2 with expected sample
complexity o( kε2 ( nm + log k

δ )).

First we prove the correctness of A3. We note that for
each hard set i, the probability that an arbitrary found
arm belongs to it is 1

2k . After T calls of A2, there are

Tk found arms, and thus, the probability that hard
set i is not tagged is at most(

1− 1

2k

)Tk
≤
(

1− 1

2k

)2k log 2k
δ

≤ δ

2k
. (10)

Thus, with probability at least 1− δ2 , hard sets 1, 2, ..., k
are tagged after T calls of A2. When a hard set is
tagged, at least one arm of it has been found by some
call of A2. Also, each call is erred with probability at
most δ

2T . So, with probability at least 1− δ
2 , the first T

calls of A2 all return correct results. Therefore, we can
conclude that with probability at least 1− δ, the con-
structed algorithm A3 solves P2 with error probability
at most δ.

Next, we prove the sample complexity of A3. The
calls of A2 return a series of arms, say a1, a2, a3, ....
Define a map s such that s(aj) is the hard set that
aj belongs to. For i ∈ [k], define τi := inf{j :
|{s(a1), s(a2), ..., s(aj)}| ≥ i}, i.e., τi is the number
of arms returned when i hard sets have been tagged.
Also, let τ0 = 0.

To calculate Eτi, we observe that when there are (i−1)
tagged hard sets, the probability that a new hard set
will be tagged after one more found arm is 1 − i−1

2k .
Thus, by the property of geometric distributions, we
have

E(τi − τi−1) =
2k

2k + 1− k
, (11)

which implies

Eτk =

k∑
i=1

E(τi − τi−1) =

k∑
i=1

2k

2k + 1− k
≤ 2k. (12)

Each call of A2 returns k arms, and thus, after O(1)
expected number of calls of A2, A3 returns. Each
call of A2 is with error probability δ

2T (recall T =

d2 log 2k
δ e). So by the definition of A2, each call con-

ducts o( kε2 ( nm + log 2kT
δ )) = o( kε2 ( nm + log k

δ )) samples.
This completes the proof of the sample complexity.

The constructed algorithm A3 solves P2 with expected
sample complexity o( kε2 ( nm + log k

δ )). This completes
the proof of Claim 3.

If the A2 assumed in Claim 3 exists, it will lead to a
contradiction to Claim 2. This completes the proof of
Theorem 1. �.
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Proof. Let k ∈ Z+, ρ, ε, δ ∈ (0, 1
2 ), λ ≤ λρ be given.

For p, x ∈ (0, 1), we define Up := {a ∈ S : µa ≥ λp},
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Ex := {a ∈ S : µa ≥ λ− x}, and Fx := S −Ex = {a ∈
S : µa < λ− x}.

By (2), an arm randomly drawn from S is in Uρ with
probability at least p. In the t-th repetition, by the
choice of n1 in AL-Q-IK, we have

P{|At ∩ Uρ| = 0} ≤ (1− ρ)n1

= en1 log(1−ρ) ≤ e−n1ρ ≤ 1

3
. (13)

Given the condition |At ∩ Uρ| > 0, since at is the re-
turned value of Median-Elimination(At, ε1,

1
4 ), by The-

orem 4 (Even-Dar et al., 2002), at is with probability
at least 3

4 in Eε1 . Thus, we can conclude that

P{at ∈ Eε1} ≥ (1− 1

3
)
3

4
=

1

2
. (14)

In Line 4, we sample at for n2 times, and its empirical
mean is µ̂t. Define Et := the event that at is included
in the returned value Ans. Since Et happens if and
only if µ̂t ≥ λ− ε1 − ε2, by Hoeffding’s Inequality and
n2 = d 1

2ε22
log k

δ e, it holds that

P
{
E{t | at ∈ Eε1

}
≤ exp

{
−2n2

(
ε22
)}
≤ δ

k
, (15)

P {Et | at ∈ Fε} ≤ exp
{
−2n2

(
ε22
)}
≤ δ

k
. (16)

Since {at ∈ Eε1} ∩ {µ̂t ≥ λ − ε1 − ε2} ⊂ Et, by (14)
and (15), we have

P{Et} ≥
1

2
(1− δ

k
) ≥ 1

4
. (17)

Besides, by (14), (15), and (16), we have

P {at ∈ Eε | Et}
P {at ∈ Fε | Et}

≥ P {at ∈ Eε1 | Et}
P {at ∈ Fε | Et}

=
P {at ∈ Eε1}P {Et | at ∈ Eε1}
P {at ∈ Fε}P {Et | at ∈ Fε}

≥
1
2 · (1−

δ
k )

1
2 ·

δ
k

=
k

δ
− 1. (18)

Since P{at ∈ Eε | Et} + P{at ∈ Fε | Et} = 1, we can
conclude that

P {at ∈ Eε | Et} ≥ 1− δ

k
. (19)

This shows that when an arm at is added to Ans, with
probability at least 1− δ

k , at is in Eε. Thus, we have

P{∀at ∈ Ans, at ∈ Eε} ≥ 1− δ. (20)

Thus, the returned arms of AL-Q-IK all have expected
rewards no less than λ−ε with probability at least 1−δ.
This completes the proof of correctness.

It remains to derive the sample complexity. In
each repetition, the algorithm calls Median-
Elimination(At, ε1,

1
4 ) for once, and samples at

for n2 times. Each call of Median-Elimination takes
at most O(n1

ε2 ) = O( 1
ρε2 ) samples (Even-Dar et al.,

2002), and n2 = O( 1
ε2 log k

δ ). Thus, each repetition

takes O( 1
ε2 ( 1

ρ + log k
δ )) samples. By (17), in each rep-

etition, with probability at least 1
4 , one arm is added

to Ans, and the algorithm terminates after k arms are
added to Ans. Obviously, after at most 4k repetitions
in expectation, the algorithm returns. Thus, the
expected sample complexity is O( kε2 ( 1

ρ + log k
δ )). This

completes the proof. �
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Proof. Let ar be the returned arm. For any arm a in
S, define

ENa :={∃t,N t(a) = N,µa<L
t(a) ∨ µa>U t(a)}, (21)

i.e., the event that when N t(a) = N , µa is not
within the interval [Lt(a), U t(a)]. Define the bad event
Eout :=

⋃
a,N ENa . By (4) and (5), we have that

P
{
ENa
}
≤ 2δN . (22)

Thus, by k1 ≥ 2
∑
t t
γ and the union bound, we have

that

P{Eout} ≤
∑
a,N

P
{
ENa
}
≤ n

∞∑
N=1

2δN ≤ δ. (23)

Since budget is large enough, the algorithm returns at
Line 15. Let t0 be the index of the iteration when the
algorithm returns. By the return condition of Line 15,
we have that for all a 6= ar, U

t0(a) ≤ Lt0(ar) + ε. By
the definition of Eout, when it does not happen, for all
arms a, µa ∈ [Lt(a), U t(a)] for all t, implying that

µa ≤ U t0(a) ≤ Lt0(ar) + ε ≤ µar + ε. (24)

Thus, the returned arm ar is (ε, 1)-optimal with prob-
ability at least 1− δ. �
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Proof. In the proof, we assume that Eout does not
happen. This event is defined in the proof of Lemma 6,
and does not happen with probability at least 1− δ.

Let τ be the number of samples taken till termination.
Define the set T := {n + 2i : i ∈ N, n + 2i < τ}. T is
the set of t such that at and bt are computed. For each
arm a, define Xa :=

∑
t∈T 1bt=a, the number of times

that bt is a. Define µ∗ := maxa∈A µa, ∆′a := µ∗ − µa,
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and ∆a := 1
2 max{ε,∆′a}. Now, we are going to bound

Xa.

Let a be an arbitrary arm in A. Assume that at some
time t ∈ T ,

N t(a)≥ 1

∆2
a

max

{
log

k1n

δ
, (γ+

γ

e
) log

(γ+ γ
e )

∆2
a

}
, (25)

and we will show that either bt does not equal to a or
the algorithm returns before the next sample.

Let x = γ
∆2
a

(x > 4 as ∆a ≤ 1
2 and γ > 1). Since

N t(a) ≥ (1 + e−1)x log((1 + e−1)x) > 4, we have that

N t(a)

logN t(a)

(i)
>

(1 + e−1)x log((1 + e−1)x)

log((1 + e−1)x) + log log((1 + e−1)x)

=
(1 + e−1)x

1 + log log((1+e−1)x)
log((1+e−1)x)

(ii)

≥ x, (26)

where (i) is because y
log y is increasing for y ≥ e, and

(ii) is because log y
y ≤ 1

e . It implies that

1

2
N t(a) >

γ

2∆2
a

logN t(a). (27)

Also, by (25) we have that

1

2
N t(a) ≥ 1

2∆2
a

log
k1n

δ
. (28)

Thus, adding (27) and (28), we have that

N t(a) >
1

2∆2
a

log
k1n(N t(a))γ

δ
. (29)

It follows that√
1

2N t(a)
log

k1n(N t(a))γ

δ
< ∆a. (30)

Recall that in the algorithm, for arm a, we de-
fine U t(a) := u(µ̂t(a), N t(a), δN

t(a)) and Lt(a) :=

l(µ̂t(a), N t(a), δN
t(a)) as ((6) and (7)). By the choice

of δN
t(a) = δ

k1n(Nt(a))γ in PACMaxing, and the choice

of confidence bounds, we have that

U t(a)− µ̂t(a) = µ̂t(a)− Lt(a) < ∆a, (31)

U t(a)− Lt(a) < 2∆a. (32)

Now, for this a, we will show that either the algorithm
returns before the next sample or bt 6= a.

First we consider the case where ∆a = ε
2 . In this

case, we assume bt = a, and show that the algorithm
will return before the next sample. Recall that we
assume Eout does not happen. This means for any t
and arm b ∈ A, µb is in [Lt(b), U t(b)]. Since bt = a and

bt := arg maxb∈A U
t(b), for all arms b 6= a, U t(a) ≥

U t(b). By (32), Lt(a) ≥ U t(a) − ε ≥ U t(b) − ε. This
means that the algorithm returns arm a before the
next sample as we already have B(t) ≤ ε.

Next, we consider the case where ∆a =
∆′a
2 . Let a∗

be the most rewarding arm of A (i.e., the arm with
the largest mean reward). As ∆′a∗ = 0 < ε, a is not
a∗. Since Eout does not happen, by the definition of
Eout and (32), we have that U t(a) < Lt(a) + ∆′a ≤
µa + ∆′a ≤ µ∗ ≤ U t(a∗), implying bt 6= a.

Thus, we can conclude that when Eout does not hap-
pen,

Xa≤1+
1

∆2
a

max

{
log

k1n

δ
, (γ+

γ

e
) log

(γ+ γ
e )

∆2
a

}
. (33)

Except the first n samples, there is one bt sampled out
of every two consecutive samples. Thus, with proba-
bility at least 1−δ, the number of samples taken before
termination is at most

n+ 2
∑
a∈A

Xa

≤3n+
∑
a∈A

2

∆2
a

max

{
log

k1n

δ
, (γ+

γ

e
) log

(γ+ γ
e )

∆2
a

}
. (34)

The desired sample complexity follows.

Since ∆a ≤ ε
2 , the budget value stated in this lemma

is no less than that in (34). This completes the proof.
�
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Proof. The first step is to prove that with probability
at least 1− 2δ

5 , the m-th most rewarding arm of A1 is
in M := {a ∈ S : λρ ≤ µa ≤ λρ/2}. Here, we recall

that m := b1+ 3
4ρn3c as defined in LambdaEstimation.

To do it, we need to introduce an inequality directly
derived from Chernoff Bound. Let X1, X2, ..., Xt be t
independent Bernoulli random variables, and for all i,
EXi ≥ p. Define S :=

∑t
i=1X

i. Let B(t, p) denote
a Binomial random variable with parameters t and p.
For any b ≤ tp, we have P{S ≤ b} ≤ P{B(t, p) ≤ b},
and thus, by Chernoff Bound,

P{S ≤ b} ≤ exp

{
− t

2p

(
p− b

t

)2
}
. (35)

In this paper, we use a ∼ S to denote that a is ran-
domly drawn from S. By (2) and (3), we have

Pa∼S{a ∈ S1} ≤
ρ

2
, (36)

Pa∼S{a ∈ S2} ≥ ρ. (37)
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By the works of Arratia and Gordon (1989), we have
that for x > tp,

P {B(t, p) ≥ x} ≤ exp
{
−tDKL

(x
t
|| p
)}

, (38)

where DKL(p||q) := p log p
q + (1− p) log 1−p

1−q .

Define two sets

S1 := {a ∈ A1 : µa > λρ/2}, (39)

S2 := {a ∈ A1 : µa ≥ λρ}. (40)

By Inequalities (36) and (38), we have

P
{
|S1| ≥

3

4
ρn3

}
≤ exp

{
−n3DKL

(
3

4
ρ || 1

2
ρ

)}
= exp

{
−n3

[
3

4
ρ log

3

2
−
(

1− 3

4
ρ

)
log

(
1+

ρ
4

1− 3ρ
4

)]}

≤ exp

{
−n3ρ

[
3

4
log

3

2
− 1

4

]}
≤ δ

5
, (41)

Also, by (35) and (37), it holds that

P
{
|S2| ≤

3

4
ρn3

}
≤ exp

{
−n3

2ρ

(
1

4
ρ

)2
}
≤ δ

5
. (42)

The above two statement (41) and (42) implies that
with probability at least 1− 2δ

5 , |S1| < 3
4ρn3 and |S2| >

3
4ρn3. Recalling that m = b1 + 3

4ρn3c, the m-th most
rewarding arm of A1 is in M with probability at least
1− 2δ

5 .

The second step is to prove that µâ is in [λρ−ε1, λρ/2+

ε2] with probability at least 1 − 4δ
5 . The call of

Halving(A1,m, ε1,
δ
5 ) returns an m-sized set of arms

A2, and with probability at least 1 − δ
5 , every arm a

in it has µa ≥ λ′[m] − ε1 (Kalyanakrishnan and Stone,

2010), where λ′[m] is the mean reward of the m-th most
rewarding arm of A1. We note that with probability
at least 1− 2δ

5 , the m-th most rewarding arm of A1 is
in M , implying λ′[m] ≥ λρ. Thus, we have

P
{
A2 ⊂ Eε1

∣∣∣∣|S1| <
3

4
ρn3 < |S2|

}
≥ 1− δ

5
(43)

Besides, by (41) and |A2| = m ≥ 3
4ρn3, at least one

arm aw of A2 is in M given that |S1| < 3
4ρn3. The

call of Halving2(A3, 1, ε2,
δ
5 ) returns an arm â of A2

having µâ ≤ µaw + ε2 ≤ λρ/2 + ε2 with probability at

least 1 − δ
5 (Kalyanakrishnan and Stone, 2010) given

that |S1| < 3
4ρn3, i.e.,

P
{
µâ ≤ λρ/2 + ε2

∣∣∣∣|S1| <
3

4
ρn3

}
≥ 1− δ

5
. (44)

It follows from â ∈ A2, the definition of Eε1 , (41), (42),
(43), and (44) that

P
{
µâ ∈

[
λρ − ε1, λρ/2 + ε2

]}
≥ 1− 4δ

5
. (45)

The third step is to prove that λ̂ is in [λρ − ε, λρ/2]
with probability at least 1− δ. Since â is sampled for
n4 times, by (45) and Hoeffding’s Inequality, we have

P
{
λ̂ /∈

[
λρ − ε, λ ρ

2

]}
=P
{
µ̂ /∈

[
λρ − ε1 − ε3, λ ρ

2
+ ε2 + ε3

]}
≤P
{
µâ /∈

[
λρ − ε1, λ ρ

2
+ ε2

]}
+ P {|µ̂− µâ| ≥ ε3}

≤4δ

5
+ 2 exp

{
−2n4ε

2
3

}
≤ 4δ

5
+
δ

5
≤ δ. (46)

This completes the proof of correctness.

It remains to prove the sample complexity. Line 4
uses O(n3

ε2 log m
δ ) = O( 1

ρε2 log2 1
δ ) samples (Kalyanakr-

ishnan and Stone, 2010), Line 5 uses O(mε2 log 1
δ ) =

O( 1
ε2 log2 1

δ ) samples, and Line 6 uses n4 = O( 1
ε2 log 1

δ )
samples. The desired results follows by summing these
three upper bounds up. �
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Proof. Each call of AL-Q-IK is wrong with probability
at most δ

k . The correctness follows.

By Theorem 5, the t-th repetition uses O( 1
ε2 ( n+1−t

m+1−t +

log k
δ )) samples in expectation. For all x ∈ (0, 1], we

have log(1+x)
x ≥ log 2. It implies

log
m+ 2− t
m+ 1− t

= log

(
1 +

1

m+ 1− t

)
≥ log 2

m+ 1− t
, (47)

and thus,

k∑
t=1

{
1

ε2

(
n+ 1− t
m+ 1− t

+ log
k

δ

)}

≤ n

ε2 log 2

k∑
t=1

log
m+ 2− t
m+ 1− t

+
k

ε2
log

k

δ

≤ n

ε2 log 2
log

m+ 1

m+ 1− k
+
k

ε2
log

k

δ
. (48)

The desired sample complexity follows. �

15 ADDITIONAL NUMERICAL
RESULTS

First, we compare the pure exploration algorithms
in the finite cases to demonstrate that by adopting
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the QE setting, the number of samples taken can be
greatly reduced compared with the KE setting. Other
comparisons on the finite-armed algorithms are omit-
ted as their performance is similar to their infinite-
armed versions, especially when n is large. Also, when
k = 1, their performance are almost the same.
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KL-LUCB
KL-MEKB

Figure 3: Comparison of
the finite-armed pure ex-
ploration algorithms. n =
1000, k = 1, ε = 0.05, and
δ = 0.001.

The algorithms com-
pared include CB-AL-
Q-FK (CBB version of
AL-Q-FK by replac-
ing the subroutines
with CBB ones, and
in CB-AL-Q-IK, we
choose ε1 = 0.75ε),
KL-LUCB for the fi-
nite case (Kaufmann
and Kalyanakrishnan,
2013), and MEKB
(Mannor and Tsitsiklis,
2004). Here, we modify
MEKB to the CBB
version KL-MEKB.
All the algorithms use the same confidence bounds
given by Kaufmann and Kalyanakrishnan (2013)
with γ = 2. The results are summarized in Figure 3.
KL-LUCB and MEKB were designed to find one
(ε, 1)-optimal arm from a finite set. MEKB has the
prior knowledge of λ[1], and can be regarded as the
m = 1 version of AL-Q-FK. There are totally 1000
arms. For each arm, its rewards follow the Bernoulli
distribution, and its expected reward is generated by
taking an independent instance of the Uniform([0,1])
distribution. All algorithms are tested on the same
dataset. Every point is averaged over 100 independent
trials.

Here, we note that the KE algorithms KL-LUCB and
MEKB were designed to find an (ε, 1)-optimal arm, so
their performance are independent of m.

According to Figure 3, the two algorithms CB-AL-Q-
FK and KL-MEKB that have knowledge of λ[m] or λ[1]

perform better than KL-LUCB, the one without the
knowledge, consistent with the theory. When m = 1,
the performance of CB-AL-Q-IK and KL-MEKB are
close. However, when m > 1, CB-AL-Q-IK takes less
samples, and the gaps increases as m. The reason lies
in that (CB-)AL-Q-IK’s sample complexity depends
on n

m while (KL-)MEKB’s depends on n. Thus, the
numerical results indicate that by adopting the QE
setting, one can find ”good” enough arms by much
less samples.

Next, we compare non-CBB algorithms: AL-Q-IK
(Choosing ε1 = 0.8ε), PACBanditReduction (Goschin
et al., 2013), and P1 (Chaudhuri and Kalyanakrishnan,
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(a) Vary k, ρ = 0.05,ε = 0.1,
and δ = 0.01.

105

1/

106

107

108

nu
m

be
r 

of
 s

am
pl

es

AL-Q-IK
PACBanditReduction
P

1

(b) Vary δ, k = 1, ρ = 0.05,
and ε = 0.1.
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(c) Vary ρ, k = 1, ε = 0.1,
and δ = 0.01.

20 40 60 80 100

1/

105

1010

nu
m

be
r 

of
 s

am
pl

es

AL-Q-IK
PACBanditReduction
P

1

(d) Vary ε, k = 1, ρ = 0.05,
and δ = 0.01.

Figure 4: Comparison of Non-CBB Algorithms.

2017). Here, again, we note that P1 does not require
the knowledge of λρ, but we want to illustrate how
our algorithm along with this knowledge can improve
the efficiency. The results are summarized in Figure 4
(a)-(d). In the simulations, the prior F is always Uni-
form([0,1]), and every point of every figure is averaged
over 100 independent trials.

The theoretical sample complexities of these three al-
gorithms are: AL-Q-IK, O( kε2 ( 1

ρ + log k
δ )); PACBan-

ditReduction, O( k
ρε2 log k

δ ); P1, O( k
ρε2 log2 k

δ ). The nu-
merical results confirm that AL-Q-IK performs better
than the other two significantly. Figure 4 (b) shows
that AL-Q-IK’s sample complexity increases slowly
with 1

δ , consistent with the theory and numerical re-
sults on CB-AL-Q-IK.

According to Figure 1 (c) and Figure 4 (c), the CB-
AL-Q-IK’s number of samples increases super-linearly
with 1

ρ while that of AL-Q-IK increases linearly, con-
sistent with the theory that the former depends on
1
ρ log 1

ρ while the latter depends on 1
ρ . When 1

ρ is large
enough, asymptotically AL-Q-IK will outperform CB-
AL-Q-IK. However, in practice, under such small ρ
values, the sample complexity of both algorithms will
be extremely large.


