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1 Convexity result for NCE lower bound

For non-negative real numbers a, b and u, the function

f(u) = log(a+ bu−1) (S1)

is convex. We see this by differentiating f twice:

f ′(u) = − b

au2 + bu
f ′′(u) =

b(2au+ b)

(au2 + bu)2
, (S2)

and observing that f ′′(u) ≥ 0 since a, b and u are non-negative.

2 Proof of Lemma 1

Key to this proof is the following factorisation

φθ(x, z) = φθ(x)pθ(z | x), (S3)

where the conditional distribution is normalised and the factorisation holds because the unnor-
malised distributions on either side of the equation have the same partition function

∫ ∫
φθ(x, z) dz dx =

∫
φθ(x) dx. (S4)

With this factorisation at hand, we now consider the difference between the NCE objective: JNCE(θ)
in (4) and the VNCE objective: JVNCE(θ, q) in (13). Each objective consists of two terms: the
first is an expectation with respect to the data, the second an expectation with respect to the noise
distribution py. The second terms of JNCE and JVNCE are identical, so their difference equals the
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difference between their first terms

JNCE(θ)− JVNCE(θ, q)

= Ex log

(
φθ(x)

φθ(x) + νpy(x)

)
− ExEz∼q(z | x) log

(
φθ(x, z)

φθ(x, z) + νpy(x)q(z | x)

)
(S5)

= ExEz∼q(z | x)

[
log

(
φθ(x)

φθ(x) + νpy(x)

)
+ log

(
1 +

νpy(x)q(z | x)

φθ(x)pθ(z | x)

)]
(S6)

= ExEz∼q(z | x)

log

(
φθ(x)

φθ(x) + νpy(x)
+

φθ(x)

φθ(x) + νpy(x)

νpy(x)

φθ(x)

q(z | x)

pθ(z | x)

) (S7)

= ExEz∼q(z | x)

log

(
φθ(x)

φθ(x) + νpy(x)
+

νpy(x)

φθ(x) + νpy(x)

q(z | x)

pθ(z | x)

) (S8)

= ExEz∼q(z | x)

log

 φθ(x)

φθ(x) + νpy(x)
+

(
1− φθ(x)

φθ(x) + νpy(x)

)
q(z | x)

pθ(z | x)


 (S9)

= ExEz∼q(z | x)

[
log

(
κx + (1− κx)

q(z | x)

pθ(z | x)

)]
(S10)

= Ex

[
Dfx(pθ(z | x) ‖ q(z | x))

]
, (S11)

where fx(u) = log(κx + (1 − κx)u−1). To ensure that that Dfx is a valid f-divergence, we need
to prove that f is convex and fx(1) = 0. The latter is trivial, since fx(1) = log(κx + (1− κx)) =
log(1) = 0, and convexity follows directly from Supplementary Materials 1.

We now prove that this f-divergence can be expressed as the difference of two KL-divergences as in
(17) in the main text. To do this, we pull q/p outside of the log in (S10),

Dfx(pθ(z | x) ‖ q(z | x))

= Ez∼q(z | x)

[
log

q(z | x)

pθ(z | x)

]
+ Ez∼q(z | x)

[
log

(
κx
pθ(z | x)

q(z | x)
+ (1− κx)

)]
(S12)

= Ez∼q(z | x)

[
log

q(z | x)

pθ(z | x)

]
− Ez∼q(z | x)

[
log

(
q(z | x)

κxpθ(z | x) + (1− κx)q(z | x)

)]
(S13)

= DKL(q(z | x) ‖ pθ(z | x))−DKL(q(z | x) ‖ mθ(z,x)). (S14)

where mθ(z,x) = κxpθ(z | x) + (1− κx)q(z | x).

3 Proof of Theorem 1

We first show that
JNCE(θ) = JVNCE(θ, q) ⇔ q(z | x) = pθ(z | x). (S15)

We could obtain this result directly from the lower bound in Section 3.1 in the main text. However,
for brevity, we make use of the Lemma 1, where we obtained the equality

JNCE(θ)− JVNCE(θ, q) = Ex

[
Dfx(pθ(z | x) ‖ q(z | x))

]
. (S16)

The f-divergence on the right-hand side is non-negative and equal to zero if and only if the two
posteriors coincide. Hence, JNCE(θ) = JVNCE(θ, q) if and only if q(z | x) = pθ(z | x).

We now show that

Dfx(pθ(z | x) ‖ q(z | x)) → DKL(q(z | x) ‖ pθ(z | x)) (S17)
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as κx = φθ(x)/(φθ(x) + νpy(x)) → 0. Again, this follows quickly from Lemma 1. Specifically,
in (S10), we obtained

JNCE(θ)− JVNCE(θ, q) = Ez∼q(z | x)

[
log

(
κx + (1− κx)

q(z | x)

pθ(z | x)

)]
. (S18)

As κx → 0, we obtain the standard KL-divergence.

4 Proof of Theorem 2

Our goal is to show that
max
θ

JNCE(θ) = max
θ

max
q
JVNCE(θ, q). (S19)

We know from Theorem 1 that:
pθ(z | x) = arg max

q
JVNCE(θ, q), (S20)

and that, plugging this optimal q into JVNCE makes the variational lower bound tight,
JVNCE(θ, pθ(z | x)) = JNCE(θ). (S21)

Hence,
max
θ

max
q
JVNCE(θ, q) = max

θ
JVNCE(θ, pθ(z | x)) = max

θ
JNCE(θ). (S22)

5 Proof of Corollary 1

Let k ∈ N. After the E-step of optimisation, we have qk(z | x) = p(z | x;θk) and so, by Lemma 1,
JNCE(θk)− JVNCE(θk, qk) = Ex

[
Dfx(p(z | x;θk) ‖ p(z | x;θk))

]
= 0, (S23)

implying that JVNCE(θk, qk) = JNCE(θk). Now, in the M-step of optimisation, we have
θk+1 = arg max

θ
JVNCE(θ, qk) =⇒ JVNCE(θk+1, qk) ≥ JVNCE(θk, qk) , (S24)

finally, by using Lemma 1 again, we see that JNCE(θk+1) ≥ JVNCE(θk+1, qk). Putting everything
together,

JNCE(θk+1) ≥ JVNCE(θk+1, qk) ≥ JVNCE(θk, qk) = JNCE(θk) . (S25)

6 Optimal proposal distribution in the second term of the VNCE objective

We know from Theorem 1 that the optimal variational distribution is the true posterior, q(z | y) =
p(z | y;θ). Thus, we simply need to show that the true posterior is the optimal proposal distribution
for the importance sampling (IS) estimate in the second term of the VNCE objective.

As shown in Supplementary Materials 2, the following factorisation holds
φθ(y, z) = φθ(y)pθ(z | y). (S26)

Using this factorisation of φ, we get

φ(y;θ) = Ez∼q(z | y)

[
φ(y, z;θ)

q(z | y)

]
(S27)

= φ(y;θ)Ez∼q(z | y)

[
p(z | y;θ)

q(z | y)

]
. (S28)

Hence, the variance of a Monte Carlo estimate of the expectation in (S27) will equal the variance of
a Monte Carlo estimate of the expectation in (S28). When q(z|y) = p(z|y;θ), the latter expectation
equals one, yielding a zero-variance—and thus optimal—Monte Carlo estimate.

We have therefore shown that the use of IS is optimal when we have access to p(z | y;θ). More
generally, it will still be sensible when we have access to a parameterised approximate posterior
q(z | y;α), which is close to the true posterior. However, one potential issue that could arise in
practice is that q is only close to the true posterior when conditioning on data x, but not when
conditioning on noise samples y. This is because we only optimise the parameters of q with respect
to the first term of the VNCE objective, in which we only condition on data x. In our experiments,
we did not observe such an issue. However, we expect that if z is high-dimensional and the noise
distribution is sufficiently different from the data distribution, then this could become an issue.
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7 Experimental settings for toy approximate inference problem

In Section 4.1 we approximated a posterior p(z | x) with a variational distribution q(z | x;α) =
N (z; µ(x;α),Σ(x;α)), where Σ is a diagonal covariance matrix, and µ and Σ are parametrised
by a single 2-layer feed-forward neural network with weights α.

The output layer of the neural network has 4 dimensions, containing the concatenated vectors µ and
log(diag(Σ)). The input to the network is a 2 dimensional vector x of observed data. In each hidden
layer there are 100 hidden units, generated by an affine mapping composed with a tanh non-linearity
applied to the previous layer. The weights of the network are initialised from U(−0.05, 0.05) and
optimised with stochastic gradient ascent in minibatches of 100 and learning rate of 0.0001 for a
total of 50 epochs.

8 Experimental settings for toy parameter estimation (Figure 4)

Figure 4 shows the accuracy of VNCE for parameter estimation using a population analysis over
multiple sample sizes, comparing to NCE and MLE. To produce it, we generated 500 distinct
ground-truth values for the standard deviation parameter in the unnormalised MoG, sampling uni-
formly from the interval [2, 6]. For each of the 500 sampled values of θ∗, we estimate θ using all
three estimation methods and with a range of sample sizes. Every run was initialised from five ran-
dom values and the best result out of the five was kept in order to avoid local optima which exist
since both the likelihood and NCE objective functions are bi-modal.

9 Estimation of noise distribution for undirected graphical model
experiments

Assume the observed data are organised in a matrixX with each column containing all observations
of a single variable. We want to fit a univariate truncated Gaussian to each column. To do so, we
could estimate the means µi and variances σ2

i of the pre-truncated Gaussians using the following
equations (Burkardt, 2014), where xi denotes a column of X with empirical mean µ̄i and variance
σ̄2
i :

µ̄i = µi +
ψ(α)

1− Φ(α)
σi, σ̄2

i =

[
1 +

αψ(α)

1− Φ(α)
−
(

ψ(α)

1− Φ(α)

)2
]
σ2
i , (S29)

where ψ is the pdf of a standard normal and Φ is its cdf. These pairs on non-linear simultaneous
equations can then be solved with a variety of methods, such as Newton-Krylov (Knoll and Keyes,
2004). However, whenever α = −µi

σi
� 0, computing the fractions αψ(α)

1−Φ(α) , ψ(α)
1−Φ(α) becomes

numerically unstable. In a short note available on GitHub, Fernandez-de-cossio Diaz (2018) explains
how to fix this using the more numerically stable scaled complementary error function erfcx(x) =
exp(x2) erf(x), where erf(x) is the error function. Introducing the notation

F1(x) =
1

erfcx(x)
, F2(x) =

x

erfcx(x)
, (S30)

we can then re-express the required fractions in a numerically stable form,

αψ(α)

1− Φ(α)
=

2√
π
F2(

α√
2

),
ψ(α)

1− Φ(α)
=

2√
π
F2(

α√
2

)− 2

π

[
F1(

α√
2

)

]2

. (S31)

10 Experimental settings for the undirected graphical model experiments

For VNCE and NCE we set ν = 10, and optimise with the BFGS optimisation method of Python’s
scipy.optimize.minimize, capping the number of iterations at 80. In the case of VNCE, we
use variational-EM, alternating every 5 iterations, and approximating expectations with respect to
the variational distribution with 5 samples per datapoint. Derivatives with respect to the variational
parameters are computed using the reparametrisation trick (Kingma and Welling, 2013; Rezende
et al., 2014), using a standard normal as the base distribution.
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For MC-MLE, we apply stochastic gradient ascent for 80 epochs with minibatches of 100 datapoints.
The Monte-Carlo expectations with respect to the posterior distribution and joint distribution use 5
samples per datapoint. These samples are obtained with the tmvtnorm Gibbs sampler, using the
Gibbs sampler from the tmvtnorm package in R with a burnin period of 100 samples and thinning
factor of 10.

For VNCE and NCE, we do not enforce positive semi-definiteness of the matrix K in (28), in line
with Lin et al. (2016). For MCMLE, we do enforce it, since tmvtnorm requires it.

References
Burkardt, J. (2014). The truncated normal distribution. Department of Scientific Computing Website,

Florida State University.

Fernandez-de-cossio Diaz, J. (2018). Moments of the univariate truncated normal distribution.

Kingma, D. P. and Welling, M. (2013). Stochastic gradient VB and the variational auto-encoder.
The 2nd International Conference on Learning Representations.

Knoll, D. A. and Keyes, D. E. (2004). Jacobian-free Newton–Krylov methods: a survey of ap-
proaches and applications. Journal of Computational Physics, 193(2):357–397.

Lin, L., Drton, M., and Shojaie, A. (2016). Estimation of high-dimensional graphical models using
regularized score matching. Electronic journal of statistics, 10(1):806.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approxi-
mate inference in deep generative models. Proceedings of the 31st International Conference on
Machine Learning.

5


