
On Theory for BART

Veronika Ročková and Enakshi Saha
University of Chicago

Abstract

Ensemble learning is a statistical paradigm
built on the premise that many weak learn-
ers can perform exceptionally well when de-
ployed collectively. The BART method of
Chipman et al. (2010) is a prominent exam-
ple of Bayesian ensemble learning, where each
learner is a tree. Due to its impressive perfor-
mance, BART has received a lot of attention
from practitioners. Despite its wide popu-
larity, however, theoretical studies of BART
have begun emerging only very recently. Lay-
ing down foundation for the theoretical anal-
ysis of Bayesian forests, Rockova and van der
Pas (2017) showed optimal posterior concen-
tration under conditionally uniform tree pri-
ors. These priors deviate from the actual pri-
ors implemented in BART. Here, we study
the exact BART prior and propose a simple
modification so that it also enjoys optimal-
ity properties. To this end, we dive into the
branching processes theory. We obtain tail
bounds for the distribution of total progeny
under heterogeneous Galton-Watson (GW)
processes using their connection to random
walks. We conclude with a result stating op-
timal rate of convergence for BART.

1 Bayesian Machine Learning

Bayesian Machine Learning and Bayesian Non-
parametrics share the same objective: increasing flex-
ibility necessary to address very complex problems us-
ing a Bayesian approach with minimal subjective in-
put. While the two fields can be, to some extent, re-
garded as synonymous, their emphasis is quite differ-
ent. Bayesian non-parametrics has subsumed a theo-
retical field focused on studying frequentist properties
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of posterior objects in inifinite-dimensional parameter
spaces. Bayesian machine learning, on the other hand,
has been primarily concerned with developing scalable
tools for computing such posterior objects. In this
work, we bridge these two fields by providing theo-
retical insights into one of the workhorses of Bayesian
machine learning, the BART method.

Bayesian Additive Regression Trees (BART) are one
of the more widely used Bayesian prediction tools
and their popularity continues to grow. Compared
to its competitors (e.g. Gaussian processes, random
forests or neural networks) BART requires consider-
ably less tuning, while maintaining robust and rela-
tively scalable performance (BART R package of Mc-
Culloch (2017), bartMachine R package of Bleich
et al. [2014], top down particle filtering of Lakshmi-
narayanan et al. [2013]). BART has been successfully
deployed in many prediction tasks, often outperform-
ing its competitors (see predictive comparisons on 42
data sets in Chipman et al. [2010]). More recently, its
flexibility and stellar prediction has been capitalized
on in causal inference tasks for heterogeneous/average
treatment effect estimation (Hill [2011], Hahn et al.
[2017] and references therein). BART has also served
as a springboard for various incarnations and exten-
sions including: Monotone BART (Chipman et al.
[2016]), Heteroscedastic BART (Pratola et al. [2017]),
treed Gaussian processes (Gramacy and Lee [2008])
and dynamic trees (Taddy et al. [2011]), to list a few.
Related non-parametric constructions based on recur-
sive partitioning have proliferated in the Bayesian ma-
chine learning community for modeling relational data
(Mondrian process of Roy and Teh [2008], Mondrian
forests (Lakshminarayanan et al. [2014]). In short,
BART continues to have a decided impact on the field
of Bayesian non-parametrics/machine learning.

Despite its widespread popularity, however, the theory
has not caught up with its applications. First theoret-
ical results were obtained only very recently. As a pre-
cursor to these developments, Coram and Lalley [2006]
obtained a consistency result for Bayesian histograms
in binary regression with a single predictor. van der
Pas and Rockova [2017] provided a posterior concen-
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tration result for Bayesian regression histograms in
Gaussian non-parametric regression, also with one pre-
dictor. Rockova and van der Pas [2017] (further re-
ferred to as RP17) then extended their study to trees
and forests in a high-dimensional setup where p > n
and where variable selection uncertainty is present.
They obtained the first theoretical results for Bayesian
CART, showing optimal posterior concentration (up
to a log factor) around a ν-Hölder continuous regres-
sion function (i.e. Hölder smooth with smoothness
0 < ν ≤ 1). Going further, they also show optimal
performance for Bayesian forests, both in additive and
non-additive regression. Linero and Yang [2017] ob-
tained similar results for Bayesian ensembles, but for
fractional posteriors (raised to a power). The proof of
RP17, on the other hand, relies on a careful construc-
tion of sieves and applies to regular posteriors. Build-
ing on RP17, Linero and Yang [2017] subsequently ob-
tained also results for actual posteriors. In addition,
Linero and Yang [2017] do not study step functions
(the essence of Bayesian CART and BART) but ag-
gregated smooth kernels, allowing for ν > 1. Liu et al.
[2018] obtained model selection consistency results (for
variable and regularity selection) for Bayesian forests.

Albeit related, the tree priors studied in RP17 are not
the actual priors deployed in BART. Here, we develop
new tools for the analysis of the actual BART prior
and obtain parallel results to those in RP17. To begin,
we dive into branching process theory to characterize
aspects of the distribution on total progeny under het-
erogeneous Galton-Watson processes. Revisiting sev-
eral useful facts about Galton-Watson processes, in-
cluding their connection to random walks, we derive a
new prior tail bound for the tree size under the BART
prior. With our proving strategy, the actual prior of
Chipman et al. [2010] does not appear to penalize large
trees aggressively enough. We suggest a very simple
modification of the prior by altering the splitting prob-
ability. With this minor change, the prior is shown to
induce the right amount of regularization and optimal
speed of posterior convergence.

The paper is structured as follows. Section 2 revis-
its trees and forests in the context of non-parametric
regression and discusses the BART prior. Section 3
reviews the notion of posterior concentration. Section
4 discusses Galton Watson processes and their connec-
tion to Bayesian CART. Section 5 is concerned with
tail bounds on total progeny. Section 6 and 7 describe
prior and concentration properties of BART. Section
7 wraps up with a discussion.

2 The Appeal of Trees/Forests

The data setup under consideration consists of Yi ∈
R, a set of one-dimensional outputs, and xi =
(xi1, . . . , xip)

′ ∈ [0, 1]p, a set of high dimensional in-
puts for 1 ≤ i ≤ n. Our statistical framework is non-
parametric regression, which characterizes the input-
output relationship through

Yi = f0(xi) + εi, εi
iid∼ N (0, 1), (1)

where f0 : [0, 1]p → R is an unknown regression
function. A regression tree can be used to recon-
struct f0 via a mapping fT ,β : [0, 1]p → R so that
fT ,β(x) ≈ f0(x) for x /∈ {xi}ni=1. Each such mapping
is essentially a step function

fT ,β(x) =

K∑
k=1

βkI(x ∈ Ωk) (2)

underpinned by a tree-shaped partition T = {Ωk}Kk=1

and a vector of step heights β = (β1, . . . , βK)′. The
vector β represents quantitative guesses of the average
outcome inside each cell. Each partition T consists of
rectangles obtained by recursively applying a splitting
rule (an axis-parallel bisection of the predictor space).
We focus on binary tree partitions, where each internal
node (box) is split into two children (formal definition
below).

Definition 2.1. (A Binary Tree Partition) A binary
tree partition T = {Ωk}Kk=1 consists of K rectangular
cells Ωk obtained with K−1 successive recursive binary
splits of the form {xj ≤ c} vs {xj > c} for some j ∈
{1, . . . , p}, where the splitting value c is chosen from
observed values {xij}ni=1.

Partitioning is intended to increase within-node homo-
geneity of outcomes. In the traditional CART method
(Breiman et al. [1984]), the tree is obtained by “greedy
growing” (i.e. sequential optimization of some impu-
rity criterion) until homogeneity cannot be substan-
tially improved. The tree growing process is often fol-
lowed by “optimal pruning” to increase generalizabil-
ity. Prediction is then determined by terminal nodes
of the pruned tree and takes the form either of a class
level in classification problems, or the average of the
response variable in least squares regression problems
(Breiman et al. [1984]).

In tree ensemble learning, each constituent is designed
to be a weak learner, addressing a slightly different
aspect of the prediction problem. These trees are in-
tended to be shallow and are woven into a forest map-
ping

fE,B(x) =

T∑
t=1

fTt,βt
(x), (3)
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where each fTt,βt
(x) is of the form (2), E =

{T1, . . . , TT } is an ensemble of trees and B =
{β1, . . . ,βT }′ is a collection of jump sizes for the T
trees. Random forests obtain each tree learner from a
bootstrapped version of the data. Here, we consider a
Bayesian variant, the BART method of Chipman et al.
[2010], which relies on the posterior distribution over
fE,B to reconstruct the unknown regression function
f0.

2.1 Bayesian Trees and Forests

Bayesian CART was introduced as a Bayesian alter-
native to CART, where regularization/stabilization is
obtained with a prior rather than with pruning (Chip-
man et al. [1998], Denison et al. [1998]). The prior
distribution is assigned over a class of step functions

F = {fE,B(x) of the form (3) for some E and B}

in a hierarchical manner.

The BART prior by Chipman et al. [2010] assumes
that the number of trees T is fixed. The authors rec-
ommend a default choice T = 200 which was seen
to provide good results. Next, the tree components
(Tt,βt) are a-priori independent of each other in the
sense that

π(E ,B) =

T∏
t=1

π(Tt)π(βt | Tt), (4)

where π(Tt) is the prior probability of a partition Tt
and π(βt | Tt) is the prior distribution over the jump
sizes.

2.1.1 Prior on Partitions π(T )

In BART and Bayesian CART of Chipman et al.
[1998], the prior over trees is specified implicitly as
a tree generating stochastic process, described as fol-
lows:

1. Start with a single leave (a root node) [0, 1]p.

2. Split a terminal node, say Ωt, with a probability

psplit(Ωt) =
α

(1 + d(Ωt))γ
(5)

for some α ∈ (0, 1) and γ ≥ 0, where d(Ωt) is the
depth of the node Ωt in the tree architecture.

3. If the node Ωt splits, assign a splitting rule and
create left and right children nodes. The splitting
rule consists of picking a split variable j uniformly
from available directions {1, . . . , p} and picking a
split point c uniformly from available data values

x1j , . . . , xnj . Non-uniform priors can also be used
to favor splitting values that are thought to be
more important. For example, splitting values can
be given more weight towards the center and less
weight towards the edges.

2.1.2 Prior on Step Heights π(β | T )

Given a tree partition Tt with Kt steps, we consider
iid Gaussian jumps

π(βt | Tt) =

Kt∏
k=1

φ(βtj ; 0, 1/T ),

where φ(x; 0, σ2) is a Gaussian density with mean 0
and variance σ2. Chipman et al. [2010] recommend
first shifting and rescaling Yi’s so that the observed
transformed values range from -0.5 to 0.5. Then they
assign a conjugate normal prior βtj ∼ N(0, σ2), where

σ = 0.5/k
√
T for some suitable value of k. This is to

ensure that the prior assigns substantial probability
to the range of the Yi’s.

The BART prior also involves an inverse chi-squared
distribution on residual variance in (1). While the case
of random variance can be incorporated in our analysis
(de Jonge and van Zanten [2013]), we will for simplicity
assume that the residual variance is fixed and equal to
one.

Existing theoretical work for Bayesian forests (RP17)
is available for a different prior on tree partitions T .
Their analysis assumes a hierarchical prior consisting
of (a) a prior on the size of a tree K and (b) a uniform
prior over trees of size K. This prior is equalitarian in
the sense that trees with the same number of leaves are
a-priori equally likely regardless of their topology. The
prior on the number of leaves K is a very important
ingredient for regularization. We will study aspects of
its distribution under the actual BART prior in later
sections.

3 Bayesian Non-parametrics Lense

One way of assessing the quality of a Bayesian pro-
cedure is by studying the learning rate of its poste-
rior, i.e. the speed at which the posterior distribution
shrinks around the truth as n→∞. These statements
are ultimately framed in a frequentist way, describing
the typical behavior of the posterior under the true

generative model P(n)
f0

. Posterior concentration rate
results have been valuable for the proposal and cal-
ibration of priors. In infinite-dimensional parameter
spaces, such as the one considered here, seemingly in-
nocuous priors can lead to inconsistencies (Cox [1993],
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Diaconis and Freedman [1986]) and far more care has
to be exercised to come up with well-behaved priors.

The Bayesian approach requires placing a prior mea-
sure Π(·) on F , the parameter space consisting of qual-

itative guesses of f0. Given observed data Y (n) =
(Y1, . . . , Yn)′, inference about f0 is then carried out
via the posterior distribution

Π(A | Y (n)) =

∫
A

∏n
i=1 Πf (Yi | xi)dΠ(f)∫ ∏n
i=1 Πf (Yi | xi)dΠ(f)

∀A ∈ B

where B is a σ-field on F and where Πf (Yi | xi) is the
likelihood function for the output Yi under f .

In Bayesian non-parametrics, one of the usual goals
is determining how fast the posterior probability mea-
sure concentrates around f0 as n → ∞. This speed
can be assessed by inspecting the size of the smallest
‖ · ‖n-neighborhoods around f0 that contain most of
the posterior probability (Ghosal and van Der Vaart
[2007]), where ‖f‖2n = 1

n

∑n
i=1 f(xi)

2. For a diameter
ε > 0 and some M > 0, we denote with

Aε,M = {fE,B ∈ F : ‖fE,B − f0‖n ≤M ε}

the Mε-neighborhood centered around f0. We say
that the posterior distribution concentrates at speed
εn → 0 such that n ε2

n →∞ when

Π(Acεn,Mn
| Y (n))→ 0 in P(n)

f0
-probability as n→∞

(6)
for any Mn → ∞, where Ac stands for the comple-
ment of the set A. Posterior consistency statements
are a bit weaker, where εn in (6) is replaced with a
fixed neighborhood ε > 0. We will position our results
using εn = n−ν/(2ν+p) log1/2 n, the near-minimax rate
for estimating a p-dimensional ν-smooth function. We
will also assume that f0 is Hölder continuous, i.e. ν-
Hölder smooth with 0 < ν ≤ 1. The limitation ν ≤ 1
is an unavoidable consequence of using step functions
to approximate smooth f0 and can be avoided with
smooth kernel methods (Linero and Yang [2017]).

The statement (6) can be proved by verifying the fol-
lowing three conditions (suitably adapted from Theo-
rem 4 of Ghosal and van Der Vaart [2007]):

sup
ε>εn

logN
(
ε
36 ; Aε,1 ∩ Fn; ‖.‖n

)
≤ n ε2

n (7)

Π(Aεn,1) ≥ e−dn ε
2
n (8)

Π(F\Fn) = o( e−(d+2)n ε2n) (9)

for some d > 2. In (7), N(ε; Ω; d) is the ε-covering
number of a set Ω for a semimetric d, i.e. the minimal
number of d-balls of radius ε needed to cover a set Ω.
A few remarks are in place. The condition (9) ensures

that the prior zooms in on smaller, and thus more
manageable, sets of models Fn by assigning only a
small probability outside these sets. The condition (7)
is known as “the entropy condition” and controls the
combinatorial richness of the approximating sets Fn.
Finally, condition (8) requires that the prior charges
an εn neighborhood of the true function. The results
of type (6) quantify not only the typical distance be-
tween a point estimator (posterior mean/median) and
the truth, but also the typical spread of the posterior
around the truth. These results are typically the first
step towards further uncertainty quantification state-
ments.

4 The Galton-Watson Process Prior

The Galton-Watson (GW) process provides a math-
ematical representation of an evolving population of
individuals who reproduce and die subject to laws of
chance. Binary tree partitions T under the prior (5)
can be thought of as realizations of such a branch-
ing process. Below, we review some terminology of
branching processes and link them to Bayesian CART.

We denote with Zt the population size at time t (i.e.
the number of nodes in the tth layer of the tree). The
process starts at time t = 0 with a single individual, i.e.
Z0 = 1. At time t, each member is split independently
of one another into a random number of offsprings.
Let Yti denote the number of offsprings produced by
the ith individual of the tth generation and let gt(s)
be the associated probability generating function. A
binary tree is obtained when each node has either zero
or two offsprings, as characterized by

gt(s) = s0P(Yt1 = 0) + s2P(Yt1 = 2), 0 ≤ s ≤ 1.
(10)

Homogeneous GW process is obtained when all Yti’s
are iid. A heterogeneous GW process is a general-
ization where the offspring distribution is allowed to
vary according to the generations, i.e. the variables
Yti are independent but non-identical. The Bayesian
CART prior of Chipman et al. [1998] can be framed
as a heterogeneous GW process, where the probability
of splitting a node (generating offsprings) depends on
the depth t of the node in the tree. In particular, using
(5) one obtains for 0 < α < 1 and γ > 0

P(Yt1 = 2) = 1− P(Yt1 = 0) =
α

(1 + t)γ
. (11)

The population size at time t satisfies Zt =
∑Zt−1

i=1 Yti
and its expectation can be written as

EZt = E[E(Zt | Zt−1)] = (2α)t[(t+ 1)!]−γ .

Since EZ1 < 1 under (11), the process is subcritical
and thereby it dies out with probability one. This
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means that the random sequence {Zt} consists of zeros
for all but a finite number of t’s. The overall number of
nodes in the tree (all ancestors in the family pedigree)

X =

∞∑
t=0

Zt (12)

is thus finite with probability one. The number of
leaves (bottom nodes) K can be related to X through

K = (X + 1)/2 (13)

and satisfies
Tex + 1 ≤ K ≤ 2Tex , (14)

where Tex = min{t : Zt = 0} is the time of extinction.
In (14), we have used the fact that Tex−1 is the depth
of the tree, where the lower bound is obtained with
asymmetric trees with only one node split at each level
and the upper bound is obtained with symmetric full
binary trees (all nodes are split at each level).

Regularization is an essential remedy against overfit-
ting and Bayesian procedures have a natural way of
doing so through a prior. In the context of trees, the
key regularization element is the prior on the number
of bottom leaves K, which is completely characterized
by the distribution of total progeny X via (13). Us-
ing this connection, in the next section we study the
tail bounds of the distribution π(K) implied by the
Galton-Watson process.

5 Bayesian Tree Regularization

If we knew ν, the optimal (rate-minimax) choice of the
number of tree leaves would be K � Kν = np/(2ν+p)

(RP17). When ν is unknown, one can do almost as well
(sacrificing only a log factor in the convergence rate)
using a suitable prior π(K). As noted by Coram and
Lalley [2006], the tail behavior of π(K) is critical for
controlling the vulnerability/resilience to overfitting.
The anticipation is that with smooth f0, more rapid
posterior concentration takes place when π(K) has a
heavier tail. However, too heavy tails make it easier
to overfit when the true function is less smooth. To
achieve an equilibrium, Denison et al. [1998] suggest
the Poisson distribution (constrained to N\{0}), which
satisfies

P(K > k) . e−CK k log k for some CK > 0. (15)

Under this prior, one can show that P(K > CKν |
Y (n)) → 0 in P(n)

f0
probability (RP17). The posterior

thus does not overshoot the oracle Kν too much.

In the BART prior, the distribution π(K) is implicitly
defined through the GW process rather than directly
through (15). In order to see whether BART induces

a sufficient amount of regularization, we first need to
obtain a tail bound of π(K) under the GW process
and show that it decays fast enough. One seemingly
simple remedy would be to set γ = 0 (which coincides
with the homogeneous GW case) and α = c/n with
some c > 0. Standard branching process theory then
implies Π(K > k) . e−CK k logn. This prior is more
aggressive than (15). Moreover, letting the split prob-
ability psplit(Ωk) decay with sample size is counterin-
tuitive. By choosing α = c, on the other hand, one
obtains Π(K > k) . e−CK k which is not aggressive
enough.

While the homogeneous GW processes have been stud-
ied quite extensively, the literature on tail bounds for
heterogeneous GW processes (for when γ 6= 0) has
been relatively deserted. We first review one interest-
ing approach in the next section and then come up
with a new bound in Section 5.2.

5.1 Tail Bounds à la Agresti

Agresti [1975] obtained bounds for the extinction
time distribution of branching processes with indepen-
dent non-identically distributed environmental ran-
dom variables Yti.

Theorem 5.1. [Agresti, 1975] Consider the heteroge-
neous Galton-Watson branching process with offspring
p.g.f.’s {gj(s); j ≥ 0} satisfying g

′′

j (1) <∞ for j ≥ 0.

Denote Pt =
∏t−1
j=0 g

′
j(1). Then

P(Tex > t) ≤

P−1
t +

1

2

t−1∑
j=0

(g
′′

j (0)/g′j(1)Pj+1)

−1

.

(16)

Using this result, we can obtain a tail bound on the
extinction time under the Bayesian CART prior.

Corollary 5.1. For the heterogeneous Galton-Watson
branching process with offspring p.g.f.’s (10) with (11)
we have

P(Tex > t) < C0

(
tγ

2α eγ

)−t
(17)

for a positive constant C0 that depends on α and γ.

Proof. We have g0(s) = s and for j ≥ 1

gj(s) = 1− α(1 + j)−γ + s2α(1 + j)−γ ,

g
′

j(s) = 2sα(1 + j)−γ ,

g
′′

j (s) = 2α(1 + j)−γ .

Thus we have g′0(1) = 1 and g
′

j(1) = g
′′

j (0) = 2α(1 +
j)−γ for j ≥ 1. Then we can write

P−1
t =

∏t−1
i=0(1 + i)γ

(2α)t
=

(t!)γ

(2α)t
(18)
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and

t−1∑
j=0

(g
′′

j (0)/g′j(1)Pj+1) =

t−1∑
j=0

1

Pj+1
=

t∑
j=1

(j)!γ

(2α)j
>

(t!)γ

(2α)t
.

Using (18) and the fact that t! > (t/ e)t e, we
can upper-bound the right hand side of (16) with
C0[tγ/( eγ2α)]−t.

Remark 5.1. A simpler bound on the extinction time
can be obtained using Markov’s inequality as follows:
P(Tex > t) = P(Zt ≥ 1) ≤ EZt ≤ (2α)t[(t+ 1)!]−γ .

Using the upper bound in (14) we immediately con-
clude that

P(K > k) < P(Tex > log2 k) ≤ C0

(
logγ2 k

2α eγ

)− log2 k

.

This decay, however, is not fast enough as we would
ideally like to show (15). We try a different approach
in the next section.

5.2 Trees as Random Walks

There is a curious connection between branching pro-
cesses and random walks (see e.g. Dwass [1969]). Sup-
pose that a binary tree T is revealed in the following
node-by-node exploration process: one exhausts all
nodes in generation d before revealing nodes in gen-
eration d+ 1. Namely, nodes are implicitly numbered
(and explored) according to their priority and this is
done in a top/down manner according to their layer
and a left-to-right manner within each layer (i.e. Ω0

is the root node and, if split, Ω1 and Ω2 are the two
children (left and right) etc.)

Nodes that are waiting to be explored can be organized
in a queue Q. We say that a node is active at time t
if it resides in a queue. Starting with one active node
at t = 0 (the root node), at each time t we deactivate
(remove from Q) the node with the highest priority
(lowest index) and add its children to Q. Letting St
be the number of active nodes at time t, one finds that
{St} satisfies

St = St−1 − 1 + Yt, t ≥ 1,

and S0 = 1, where Yt are sampled from the offspring
distribution. For the homogeneous GW process, St is
an actual random walk where Yt are iid with a proba-
bility generating function (10). For the heterogeneous
GW process, St is not strictly a random walk in the
sense that Y ′t s are not iid. Nevertheless, using this
construction one can see that the total population X
equals the first time the queue is empty:

X = min{t ≥ 0 : St = 0}.

Linking Galton-Watson trees to random walk excur-
sions in this way, one can obtain a useful tail bound of
the distribution of the population size X. While per-
haps not surprising, we believe that this bound is new,
as we could not find any equivalent in the literature.

Lemma 5.1. Denote by X the total population size
(12) arising from the heterogeneous Galton-Watson
process. Then we have for any c > 0

P(X > k) ≤ e−k c+( e2c−1)µ, (19)

where µ =
∑k
i=1 pi and pi = psplit(Ωi), where nodes

Ωi are ordered in a top-down left-to-right fashion.

Proof. For k > 0, we can write

P(X > k) ≤ P(Sk > 0) = P

(
k∑
i=1

Yi > k − 1

)
,

where X is the number of all nodes (internal and ex-
ternal) in the tree and Yi has a two-point distribution
characterized by P(Yi = 2) = 1 − P(Yi = 0) = pi.
Using the Chernoff bound, one deduces that for any
c > 0

P

(
k∑
i=1

Yi > k − 1

)
≤ e−k c E ec

∑k
i=1 Yi

= e−k c
k∏
i=1

[pi e2c + 1− pi] ≤ e−k c+( e2c−1)µ

where µ =
∑k
i=1 pi.

The goal throughout this section has been to under-
stand whether the Bayesian CART prior of Chipman
et al. [1998] yields (15) for some CK > 0. The prior
assumes pi = α/(1 + d(Ωi))

γ . Choosing c = (log k)/2
in (19), the right hand side will be smaller than
e−a k log k, for some suitable 0 < a < 1/2, as long as
µ ≤ (1/2− a) log k. We note that

µ =

k∑
i=1

pi <

dlog2 ke∑
d=1

α

(1 + d)γ
2d.

Because the split probability pi decreases only poly-
nomially in depth of Ωi, this is not enough to ensure
µ < (1/2−a) log(k). The optimal decay, however, will
be guaranteed if we instead choose

psplit(Ω) ∝ αd(Ω) for some 0 < α < 1/2. (20)

To conclude, from our considerations it is not clear
that the Bayesian CART prior of Chipman et al. [1998]
has the optimal tail-bound decay. The following Corol-
lary certifies that the optimal tail behavior can be ob-
tained with a suitable modification of psplit(Ω).
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Figure 1: The k-d trees in two dimensions at various
resolution levels.

Corollary 5.2. Under the Bayesian CART prior of
Chipman et al. [1998] with (20), we obtain (15).

Proof. Follows from the considerations above and from
(13).

6 Prior Concentration for BART

One of the prerequisites for optimal posterior concen-
tration (6) is optimal prior concentration (Condition
(8)). This condition ensures that there is enough prior
support around the truth. It can be verified by con-
structing one approximating tree and by showing that
it has enough prior mass. RP17 use the k-d approx-
imating tree (Remark 3.1), which is a balanced full
binary tree which partitions [0, 1]p into nearly iden-
tical rectangles (in sufficiently regular designs). This
tree can be regarded as the most regular partition that
can be obtained by splitting at observed values and
has been studied rigorously in the literature (see e.g.
Verma et al. [2009]). A formal definition of the k-d
tree is below and a few two-dimensional examples1 (at
various resolution levels) are in Figure 1.

Definition 6.1. (k-d tree partition) The k-d tree par-
tition with p × s layers is constructed by cycling s
times over coordinate directions {1, . . . , p}. At each
tree level, all nodes are split along the same axis. For
a given direction j ∈ {1, . . . , p}, each internal node
will be split at a median of the point set (along the
jth axis). Each split thus roughly halves the number of
points inside the cell.

After s rounds of splits on each variable, all K ter-
minal nodes have at least bn/Kc observations, where

1
Source: https://salzis.wordpress.com/2014/06/28/

K = 2s p. The k-d tree partitions are thus balanced
in light of Definition 2.4 of Rockova and van der Pas
[2017] (i.e. have roughly the same number of observa-
tions inside). The k-d tree construction is instrumental
in establishing optimal prior/posterior concentration.
Lemma 3.2 of RP17 shows that there exists a step
function supported by a k-d partition that safely ap-
proximates f0 with an error smaller than a constant
multiple of the minimax rate. The approximating k-
d tree partition, denoted with T̂ , has K̂ steps where
K̂ � nε2

n/ log n when p . log1/2 n (as shown in Sec-
tion 8.3 of RP17 and detailed in the proof of Theorem
7.1).

In order to complete the proof of posterior concentra-
tion for the Bayesian CART under the Galton-Watson
process prior, we need to show that π(T̂ ) ≥ e−c1nε

2
n

for some c1 > 0. This is verified in the next lemma.

Lemma 6.1. Denote with T̂ the k-d tree partition
described above. Assume the heterogeneous Galton-
Watson process tree prior with psplit(Ωk) ∝ αd(Ωk) for

some suitable 1/n ≤ α < 1/2. Assume p . log1/2 n.
Then we have for some suitable c1 > 0

π(T̂ ) ≥ e−c1 n ε
2
n .

Proof. By construction, the k-d tree T̂ has K̂ = 2p×s

leaves and p × s layers for some s ∈ N where p is
the number of predictors. In addition, the k-d tree is
complete and balanced (i.e. every layer d, including
the last one, has the maximal number 2d of nodes).

Since there are K̂−1 internal nodes and at least 1/(p n)
splitting rules for each internal node, we have

π(T̂ ) ≥ (1− αs p)K̂

(p n)K̂−1

log2 K̂−1∏
d=0

α2d

≥ (1− αs p)K̂

(p n)K̂−1
αK̂−1

≥ [α(1− α)]K̂
(

1

p n

)K̂−1

> e−K̂ log(2n)−(K̂−1) log(p n).

Since p . log1/2 n and K̂ � n ε2
n/ log n we can lower-

bound the above with e−c1 nε
2
n for some c1 > 0.

For the actual BART method (similarly as in Theorem
5.1 of RP17), one needs to find an approximating tree
ensemble and show that it has enough prior support.
The approximating ensemble can be found in Lemma
10.1 of RP17 and consists of Ê = {T̂1, . . . , T̂T } tree

partitions obtained by chopping of branches of T̂ . The
number of trees T is fixed and the trees Tt will not
overlap much when 1 ≤ T ≤ K̂/2. The default BART
choice T = 200 safely satisfies this as long as p > 9.
The little trees T̂t have K̂t leaves and satisfy log2 K̂ +



On Theory for BART

1 ≤ K̂t ≤ K̂ (depending on the choice of T ). Using
Lemma 6.1 and the fact that the trees are independent
a-priori (from (4)) and that T is fixed, we then obtain

π(Ê) ≥ e−
∑T

t=1[K̂t log 2n+(K̂t−1) log(p n)]

> e−TK̂ log 2n−T (K̂−1) log(p n) > e−c2 nε
2
n

for some c2 > 0. The BART prior thus concen-
trates enough mass around the truth. Condition (8)
also requires verification that the prior on jump sizes
concentrates around the forest sitting on Ê . This fol-
lows directly from Section 9.2 of RP17. We detail the
steps in the proof of Theorem 7.1.

7 Posterior Concentration for BART

We now have all the ingredients needed to state the
posterior concentration result for BART. The result is
different from Theorem 5.1 of RP17 because here we
(a) assume that T is fixed, (b) assume the branching
process prior on T and (c) we do not have subset se-
lection uncertainty. We will treat the design as fixed
and regular according to Definition 3.3 of RP17.

Definition 7.1. Denote by T̂ = {Ω̂k}k=1 the k-d tree
with K = 2s×p bottom nodes. We say that a dataset
{xi}ni=1 is regular if

max
1≤k≤K

diam(Ω̂k) < M

K∑
k=1

µ(Ω̂k)diam(Ω̂k) (21)

for all s ∈ N and for some M > 0, where

diam
(

Ω̂k

)
= max
x,y∈Ω̂k∩{xi}nj=1

‖x− y‖2.

The design regularity assumption translates as follows:
the data points inside the cells of a k-d tree (Figure
1) have similar diameters (i.e. maximal interpoint dis-
tances inside the cell). The k-d tree is the most regular
partition one can obtain by splitting at data points.
If the cell diameters of the k-d tree are similar, the
dataset is without outliers and/or isolated clouds of
points. This is a mild and reasonable requirement (see
RP17 for more discussion). Moreover, this assump-
tion allows for correlated x’s and holds trivially for
fixed designs on a regular grid.

Theorem 7.1. (Posterior Concentration for BART)
Assume that f0 is ν-Hölder continuous with 0 < ν ≤
1 where ‖f0‖∞ . log1/2 n. Assume a regular design

{xi}ni=1 where p . log1/2 n. Assume the BART prior
with T fixed and with psplit(Ωt) = αd(Ωt) for 1/n ≤
α < 1/2. With εn = n−α/(2α+p) log1/2 n we have

Π
(
fE,B ∈ F : ‖f0 − fE,B‖n > Mn εn | Y (n)

)
→ 0

for any Mn →∞ in P(n)
f0

-probability, as n, p→∞.

Proof. Appendix.

Theorem 7.1 has very important implications. It pro-
vides a frequentist theoretical justification for BART
claiming that the posterior is wrapped around the
truth and its learning rate is near-optimal. As a by-
product, one also obtains a statement which supports
the empirical observation that BART is resilient to
overfitting.

Corollary 7.1. Under the assumptions of Theorem
7.1 we have

Π

(
T⋃
t=1

{Kt > C np/(2ν+p)} | Y (n)

)
→ 0

in P(n)
f0

-probability, as n, p → ∞, for a suitable con-
stant C > 0.

Proof. The proof follows from the proof of Theorem
7.1 and Lemma 1 of Ghosal and van Der Vaart [2007].

In other words, the posterior distribution rewards en-
sembles that consist of small trees whose size does not
overshoot the optimal number of steps Kν = np/(2ν+p)

by much. In this way, the posterior is fully adaptive
to unknown smoothness, not overfitting in the sense of
split overuse.

8 Discussion

In this work, we propose a variant of the BART prior
by modifying the split probability. This new prior (a)
is shown to yield optimal posterior concentration (in
the ‖·‖n sense) , (b) can be just as easily implemented
and (c) might enhance the performance of BART in
practice.

We have built on Rockova and van der Pas [2017] to
show optimal posterior convergence rate of the BART
method. Similar results have been obtained for other
Bayesian non-parametric constructions such as Polya
trees (Castillo [2017]), Gaussian processes (van der
Vaart and van Zanten [2008], Castillo [2008]) and deep
ReLU neural networks [Polson and Rockova, 2018]. Up
to now, the increasing popularity of BART has relied
on its practical performance across a wide variety of
problems. The goal of this and future theoretical de-
velopments is to establish BART as a rigorous sta-
tistical tool with solid theoretical guarantees. Simi-
lar guarantees have been obtained for variants of the
traditional forests/trees by multiple authors including
Gordon and Olshen [1980, 1984], Donoho [1997], Biau
et al. [2008], Scornet et al. [2015], Wager and Guenther
[2015].
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