A Family of Exact Goodness-of-Fit Tests for High-Dimensional Discrete Distributions

A Appendix: Proofs

A.1 Uniformity of rank

Throughout this appendix, let 7 be a non-empty finite
or countably infinite set, let < be a total order on T (of
any order type), and let p and q each be a probability
distribution on 7. For n € N, let [n] denote the set
{0,1,2,...,n—1}.

Given a positive integer m, define the following random
variables:

Xo~q (13)

Uy ~ Uniform(0, 1) (14)

X1, Xo, .o, Xon ~p (15)
Uy, Us, ..., Up ~4 Uniform(0, 1) (16)
(17)

Our first main result is the following, which establishes
necessary and sufficient conditions for uniformity of
the rank statistic.

Theorem A.1 (Theorem 3.1 in the main text). We
have p=q if and only if for allm > 1, the rank statistic
R is uniformly distributed on [m +1]:={0,1,...,m}.

Before proving Theorem A.1, we state and prove several
lemmas. We begin by showing that an i.i.d. sequence
yields a uniform rank distribution.

Lemma A.2. Let Ty, Ty, ..., T, be an i.i.d. sequence
of random variables. If Pr{T; = T;} = 0 for all distinct
1 and j, then the rank statistics S; := Z;n:o I[T; < T;]
for 0 <i <m are each uniformly distributed on [m+1].

Proof. Since Ty, T1,...,Ty is ii.d., it is a finitely
exchangeable sequence, and so the rank statistics
So, -+, Sm are identically (but not independently) dis-
tributed.

Fix an arbitrary k € [m + 1]. Then Pr{S;, =k} =
Pr{S; =k} for all 4,5 € [m + 1]. By hypothesis,
Pr{T; =T;} = 0 for distinct ¢ and j. Therefore
the rank statistics are almost surely distinct, and the
events {S; = j} (for 0 < ¢ < m) are mutually exclu-
sive and exhaustive. Since these events partition the
outcome space, their probabilities sum to 1, and so
Pr{S;=k}=1/(m+1) for all i € [m + 1].

Because k was arbitrary, .S; is uniformly distributed on
[m + 1] for all i € [m + 1]. O

We will also use the following result about convergence
of discrete uniform variables to a continuous uniform
random variable.

Lemma A.3. Let (Vi,)m>1 be a sequence of discrete
random variables such that V,, is uniformly distributed
on {0,1/m,2/m, ..., 1}, and let U be a continuous ran-
dom variable uniformly distributed on the interval [0, 1].
Then (Vi)m>1 converges in distribution to U, i.e.,

lim Pr{V,, <u} =Pr{U < u} =u. (18)

m— 00
for allu € [0,1].

Furthermore, the convergence (18) is uniform in u.

Proof. Let € > 0. The distribution function F,, of V,,
is given by

u € [0,1/m)

2/(m+1) u € [1/m,2/m)
F(u) = q(a+1)/(m+1) wé€la/m,(a+1)/m)

m/(m+1) u€[(m-—1)/m,1)

1 u =1

Observe that for 0 < a < m, the value F,(u) lies
in the interval [a/m, (a + 1)/m) since we have that
(a/m) < (a+1)/(m+1) < (a+1)/m. Since u is also
in this interval, |F,(u) —u| < (e + 1)/m —a/m =
1/m < e whenever m > 1/e, for all u. O

The following intermediate value lemma for step func-
tions on the rationals is straightforward. It makes use
of sums defined over subsets of the rationals, which are
well-defined, as we discuss in the next remark.

Lemma A.4. Letp: (QNJ0,1]) — [0,1] be a function
satisfying p(0) = 0 and Z%QO[OJ] p(x) = 1. Then for
each 6 € (0,1), there is some w € QN [0, 1] such that

Yo op@<s< Y p@)

zeQN(0,w) z€QN(0,w]

Remark A.5. The infinite sums in Lemma A.4 taken
over a subset of the rationals can be formally de-
fined as follows: Consider an arbitrary enumeration
{q1,92, -, Gn, ...} of QN 0, 1], and define the summa-
tion over the integer-valued index n > 1. Since the
series consists of positive terms, it converges absolutely,
and so all rearrangements of the enumeration converge
to the same sum (see, e.g., [27, Theorem 3.55]).

One can show that the Cauchy criterion holds in this
setting. Namely, suppose that a sum ), _ __ p(x) of
non-negative terms converges. Then for all € > 0 there
is some rational b € (a, c) such that 7, _ ., p(z) <e.

We now prove both directions of Theorem A.1.
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Proof of Theorem A.1. Because T is countable, by a
standard back-and-forth argument the total order
(T, =) is isomorphic to (B, <) for some subset B C
QnN(0,1). Without loss of generality, we may therefore
take T to be QNI0, 1] and assume that p(0) = p(1) = 0.

Consider the unit square [0, 1]? equipped with the dic-
tionary order <lg. This is a total order with the least
upper bound property. For each i € [m + 1], define
T; == (X;, U;), which takes values in [0, 1]?, and observe
that the rank R in Eq. (6) of Theorem A.1 is equivalent
to the rank Y.  I[T; <4 To] of T taken according to
the dictionary order.

(Necessity) Suppose p = q. Then Ty,...,Tn
are independent and identically distributed. Since
Uy, ...,U,, are continuous random variables, we have
Pr{T;, =T;} =0 for all ¢ # j. Apply Lemma A.2.

(Sufficiency) Suppose that for all m > 0, we
have that the rank R is uniformly distributed on
{0,1,2,...,m}. We begin the proof by first construct-
ing a distribution function F, on the unit square and
then establishing several of its properties. First let
p: [0,1] = [0,1] be the “left-closed right-open” cumu-
lative distribution function of p, defined by

> ply)
yEQﬂ[O@)

for « € [0, 1]. Define p’ to be the probability measure
on [0,1] that is equal to p on subsets of Q N [0,1] and
is null elsewhere, and define the distribution function

F,:[0,1]*> = [0,1] on S by
Fo(,0) = () + up'(2)
for (z,u) € [0,1]2. To establish that F, is a valid

distribution function, we show that its range is [0, 1]; it
is monotonically non-decreasing in each of its variables;
and it is right-continuous in each of its variables.

It is immediate that F,(0,0) = 0 and Fp(1,1) = 1.
Furthermore, To establish that Fj is monotonically
non-decreasing, put z < y and u < v and observe that

Fy(x,u) = p(z) + up'(z)
)+p'(x)

p(z
p(z
ZzeQﬁ[O,y) p (Z)

and

We now establish right-continuity. For fixed x, Fp(x, u)
is a linear function of u and so continuity is imme-
diate. For fixed u, we have shown that Fj(z,u) is
non-decreasing so it is sufficient to show that for any =
and for any € > 0 there exists ’ > x such that

€> F(x’ u) — F(x,u)

p(a) + up'(2’) — p(x) — up(x)
= f’(x ) +up'(2') = P(x) — up(x)
= P(y),

yeQN[z,z’]

which is immediate from the Cauchy criterion.

Finally, we note that Lemma A.4 and the continuity of
F} in u together imply that F}, obtains all intermediate
values, i.e., for any 0 € [0, 1] there is some (z,u) such
that F(x,u) = 4.

Next define the inverse Fi;*: [0,1] — [0,1]* by

Fﬁl(s) =

P inf {(z,u) | Fp(z,u) =s} (19

for s € [0,1], where the infimum is taken with the
respect to the dictionary order <iq. The set in Eq (19)
is non-empty since F}, obtains all values in [0, 1]. More-
over, F;;'(s) € [0,1]* since <iq has the least upper
bound property. (This “generalized” inverse is used
since Fp, is one-to-one only under the stronger assump-
tion that p(x) > 0 for all x € QN (0,1).) Analogously
define Fy in terms of q.

Now define the rank function

m
T(a()a{a'17" am} Zﬂal < 0/0
=0

and note that R = r(Typ, {T1,...,Tm}). By the hypoth-
esis, 7(To,{Th,...,Tm})/m is uniformly distributed

on {0,1/m,2/m,...,1} for all m > 0. Applying
Lemma A.3 gives
lim P s To, {7 T, <
lim Pr Er( 0, {T1,...,Tn}) <s
= PI’{UO < S}
=s. (20)

for s € [0, 1].

For any t € [0,1] and m > 1, the random variable
FI’)” (t) = 7(t,{T1,...,T;n})/m is the empirical distri-
bution of Fp,. Therefore, by the Glivenko—Cantelli
theorem for empirical distribution functions on k-
dimensional Euclidean space [9, Corollary of Theo-
rem 4], the sequence of random variables (ﬁ'r’,”(t))mzl
converges a.s. to the real number F},(¢) uniformly in ¢,
Hence the sequence (Zs—'gl(To))mE converges a.s. to the
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random variable F,(Tp), so that for any s € [0,1],

m—r0o0

1
lim Pr {mf(To, {T,...,Tn}) < 5}

= lim Pr {F;”(To) < s} (21)
= Pr{Fs(Tp) < s} (22)
= Pr{Ty <a F;'(s)} (23)
= Fy(F5'(s))- (24)

The interchange of the limit and the probability in
Eq. (22) follows from the bounded convergence theorem,
since FJ'(Ty) — Fp(Tp) a.s. and for all m > 1 we have

|Fm(Tp)| < 1 as.
Combining Eq. (20) and Eq. (24), we see that

Fy(F'(s)) = s = Fy'l(s) = Fq '(s),

for s € [0,1]. Since 0 < Fp(x,u) <1, for each (z,u) €
[0,1]? we have

Fg'(Fp(z,u) = Fy'(Fp(,u))
= Fy ' (Fy(z,u))
= (z,u)

It follows that Fp(z,u) = Fg(z,u) for all (x,u) € [0,1]%
Fixing v = 0, we obtain

p(x) = Fp(x,0) = Fq(z,0) = q(x) (25)
for x € [0, 1].

Assume, towards a contradiction, that p # q. Let a
be any rational such that p(a) # q(a), and suppose
without loss of generality that q(a) < p(a). By the
Cauchy criterion (Remark A.4), there exists some b > a
such that

S (@) < pla) - q(a).

a<z<b

Then we have

q(b) = ala) +4q(a) +

> a)

z€QN(a,b)
~ pla)ta@+ Y
z€QN(a,b)
< p(a) +q(a) + (pla) — q(a))
~ p(a) + pla)
< B(),

q(z)

and so p # q, contradicting Eq. (25). O

The following corollary is an immediate consequence.

Corollary A.6 (Corollary 3.3 in the main text). If
P # q, then there is some m such that R is not uni-
formly distributed on [m + 1].

The next theorem strengthens Corollary A.6 by showing
that R is non-uniform for all but finitely many m.

Theorem A.7 (Theorem 3.4 in the main text). If
P # q, then there is some M > 1 such that for all
m > M, the rank R is not uniformly distributed on
[m + 1].

Before proving Theorem A.7, we show the following
lemma.

Lemma A.8. Suppose Z1,...,Zm41 is a finitely ex-
changeable sequence of Bernoulli random variables. If

m
i=1

is not uniformly distributed on [m + 1], then

m—+1

Sm+1 = Z Z;
i=1

is not uniformly distributed on [m + 2].

Proof. By finite exchangeability, there is some r € [0, 1]
such that the distribution of every Z; is Bernoulli(r).
There are two cases.

Case 1: r #1/2. For any ¢ > 1, we have
¢ ¢

E[S)=E|> Z| =) E[Z]=tr#r/2=E[Ul],
i=1 i=1

and so Sy is not uniformly distributed on [¢ 4+ 1]. In
particular, this holds for ¢ equal to either m or m + 1,
and so both the hypothesis and conclusion are true.

Case 2: r = 1/2. We prove the contrapositive. Sup-
pose that Sp,4+1 is uniformly distributed on [m+1].

Assume S, 41 is uniform and fix k € [m + 1]. By total
probability, we have

Pr{S, =k} =Pr{S,, =k and Z,,;, =0}

26
+Pr{S,=Fkand Z,,41 =1}. (26)

We consider the two events on the right-hand side of
Eq. (26) separately.

First, the event {S,, = k} N {Z,,+1 = 0} is the union
over all (’z) assignments of (Z1,...,Z,,) that have
exactly k ones and Z,,11 = 0. All such assignments
are disjoint events. Define the event

A={Zy==2,=1

and Zk+1 == m+1 = O}

m =



Saad, Freer, Ackerman, and Mansinghka

By finite exchangeability, each assignment has proba-
bility Pr{A}, and so

m

Pr{S,, =k and Z,,41 =0} = (k) Pr{A}. (27)

Now, observe that the event {S,,+1 = k} is the union
of all (m,jl) assignments of (Z1,..., Z,+1) that have
exactly k ones. All the assignments are disjoint events
and each has probability Pr{A}, and so

m+1

Pr{Sm+1k}( . >Pr{A}

(28)

Second, the event {S,, = k} N {Z,,+1 = 1} is the union
over all (72) assignments of (Z1,...,Z,,) that have
exactly k ones and also Z,,,41 = 1. All such assignments

are disjoint events. Define the event

and Zgy1 == Zpy =0}

Again by finite exchangeability, each assignment has
probability Pr{B}, and so

Pr{Sy, =k and Zy41 =1} = (7:) Pr{B}. (29)

Likewise, observe that the event {S,,11 = k + 1} is the
union of all (Z‘Ill) assignments of (Z1,..., Zy,41) that
have exactly k41 ones. All the assignments are disjoint

events and each has probability Pr {B}, and so

Pr{Sp41=k+1} = (Z:f) Pr{B} 0
30

We now take Eq. (26), divide by 1/(m+2), and replace
terms using Eqgs. (27), (28), (29), and (30):

Pr{S,, =k}
1/(m + 2)
_ Pr{S,, =kand Z,,;1 =0}
B 1/(m+2)
Pr{S,, =k and Z,, 41 =1}
1/(m + 2)
_ (ppr{ay - (p)Pr{B}
("ihPr{a} - (UH)Pr{B)
m! El(m+1—Fk)!
T K(m—k)! (m+1)!
N m! (k+ 1! m+1—(k+1))!

kl(m — k)! (m+1)!

k+1
m—+1

m+1—k
m—+1
m—+ 2
m+1
1/(m+1)

T 1/(m+2)

and so we conclude that Pr{S,, =k} =1/(m+1). O
We are now ready to prove Theorem A.7.

Proof of Theorem A.7. Suppose p # q. By Corol-
lary A.6, there is some M > 1 such that the rank
statistic R = Zi]\ilﬂ[Ti < To] for m = M is non-
uniform over [M + 1]. Observe that the rank statistic
for m = M + 1 is given by "M [T} < Ty).

Now, each indicator Z; := I[T; < Tp] is a Bernoulli
random variable, and they are identically distributed
since (T1,...,Tam+1) is an iid. sequence. Fur-
thermore the sequence (Z1,...,Zp41) is finitely ex-
changeable since the Z; are conditionally indepen-
dent given Ty. Then the sequence of indicators
(]I [Tl < To] ,]I [TQ =< TQ] e ,H [TM+1 < To]) satisfy the
hypothesis of Lemma A.8, and so the rank statistic for
M +1 is non-uniform. By induction, the rank statistic
is non-uniform for all m > M. O

In fact, unless p and q satisfy an adversarial symmetry
relationship under the selected ordering <, the rank is
non-uniform for any choice of m > 1. Let < denote
the lexicographic order on 7 X [0,1] induced by (T, <)
and ([0,1], <).

Corollary A.9 (Corollary 3.5 in the main text). Sup-
pose Pr{(X,U1) < (Y,Up)} #1/2 forY ~q, X ~ p,
and Uy, Uy ~'"9 Uniform(0,1). Then for all m > 1, the
rank R is not uniformly distributed on [m + 1].

Proof. If Pr{(X,U1) < (Y,Up)} # 1/2 then R is non-
uniform for m = 1. The conclusion follows by Theo-
rem A.7. O

A.2 An ordering that witnesses p # q for
m=1

We now describe an ordering < for which, when m =1,
we have Pr{R =0} > 1/2.

Define
A={zeT|[q(z) > p)}

to be the set of all elements of T that have a greater
probability according to q than according to p, and
let A¢ denote its complement. Let hy o be the signed
measure given by the difference hy, o(z) == q(z) — p(z)
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between q and p; for the rest of this subsection, we
denote this simply by h. Let < be any total order on
T satisfying

e if h(z) > h(z’) then z < 2’; and

e if h(z) < h(z') then z > 2’

The linear ordering < may be defined arbitrarily for
all pairs  and z’ which satisfy h(z) = h(z’). As
an immediate consequence, © < x’ whenever x € A
and 2/ € A°. Intuitively, the ordering is designed
to ensure that elements x € A are “small”, and are
ordered by decreasing value of q(x) — p(z) (with ties
broken arbitrarily); elements x € A¢ are “large” and
are ordered by increasing value of p(x) — q(z) (again,
with ties broken arbitrarily). The smallest element in
T maximizes q(z) — p(z) and the largest element in T
maximizes p(z) — q(z).

We first establish some easy lemmas.

Lemma A.10. A =0 if and only if p = q.

Proof. Immediate. O
Lemma A.11.

> la@) —p@)] = > [p(x) —a(@)].

r€A r€AC

Proof. We have

z€A zEA®
=Y a(@) - Y p@) =0,
z€T z€T
as desired. O

Given a probability distribution r, define its cumulative
distribution function ¥ by ¥(z) =, _, r(y).

Lemma A.12. q(z) > p(x) for allz € T.

Proof. Let T, :={yeT |y <z} Ifx € Athen T, C
A, and so

IS

since all terms in the sum are positive.

Otherwise, y € A for all y < x, and so A C T,. Let
At ={y e A°|y < z}. Then

q(z) — p()

=> laly) —p)]

= y%:q[Q(y) -py)l+ ez;c [a(y) — p(y)]
= y; [a(y) — p(y)] —y ; p(y) —a(y)]
> yz la(y) — p(v)] - yzz[p(y) —a(y)]
) geA peae
establishing the lemma. O

We now analyze Pr {R = 0} in the case where m = 1.
In this case, we may drop some subscripts and write
Y in place of X7, so that our setting reduces to the
following random variables:

Xpo~p

Yqo~q
0 if Xp > Yq,
Rpql Xp, Yg~<1 it Xp <Yy,
Bernoulli(1/2) if X, =Yy,

(We have indicated p and q in the subscripts, for use
in the next subsection.)

In other words, the procedure samples X, ~ p and
Y4 ~ q independently. Given these values, it then sets
Rp o to be 0 if X, = Yy, to be 1 if X, <Yy, and the
outcome of an independent fair coin flip otherwise.

For the rest of this subsection, we will refer to these
random variables simply as X, Y, and R, though later
on we will need them for several choices of distributions
p and q (and accordingly will retain the subscripts).

We now prove the following theorem.

Theorem A.13 (Theorem 3.6 in the main text). If
P # q, then for m = 1 and the ordering < defined
above, we have Pr{R =0} > 1/2.

Proof. From total probability and independence of X
and Y, we have

Pr{R =0}
— Z Pr{R=0|X=x,Y=y}Pr{Y =y} Pr{X =z}
z,ye€T

Y Pr{R=0|X=2,Y=y}q(y)p(z)
z,ye€T

Z Pr{R=0|X=z,Y=z}q(z)p(x)
€T

+ Y Pr{R=0|X=z,Y=y}q(y)p(z)
y<zeT
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+ Y Pr{R=0|X=zY=y}q(y)p(z)

r<yeT
1
=32 a@p@) +1 Y ap()
zeT y<z€T

+0 > a)p)

r<yeT

= % Z p(z)q(z) + Z q(z)p(z)

zeT zeT

An identical argument establishes that
1 ~
Pr(A=1) = 3 3 p@)ale) + 3 pleals)

Since Pr{R=0} + Pr{R = 1} = 1, it suffices to estab-
lish that Pr{R =0} > Pr{R = 1}. We have

Pr{R=0} -Pr{R=1}
=Y al@)p(@) - Y blz)a(w)

zeT z€T
> pl@)p(x) — > p(r)q(x)
z€T €T
=>'p q(z)]
z€T
= Y p@)p@) —a(@)] - Y p()lax) - p(=)]
reA°C €A
> x; (max B(y))[p(z) - a(=)]
SR (@)
€A
= g(gg p(v))[a(z) — p(x)]
SR o)
TEA
= Z r;leai(p —p(2))[a(z) — p(z)]
TEA
>0

The first inequality follows from Lemma A.12; the
second inequality follows from monotonicity of p; the
second-to-last equality follows from Lemma A.11; and
the final inequality follows from the fact that all terms
in the sum are positive. O]

A.3 A tighter bound in terms of L. (p,q)

We have just exhibited an ordering such that when
p # q and m =1, we have Pr{R =0} > 1/2. We are
now interested in obtaining a tighter lower bound on
this probability in terms of the Lo, distance between
p and q.

In this subsection and the following one, we assume
that 7 is finite. We first note the following immediate
lemma.

Lemma A.14. Let B,C C T. For all p,q and all
0 > 0 there is an € > 0 such that for all distributions
p’ on T with sup,cr |p(x) — p'(z)| <€, we have
|Pr(Rpq=0|Xp € B, Yq€C)
—Pr(Rpq=0|Xp € B, Yq€CO)| <§

Definition A.15. We say that p is e-discrete (with
respect to q) if for all a,b € T we have

|hp.q(a) — hpq(b)] > e

From Lemma A.14 we immediately obtain the follow-
ing.
Lemma A.16. For all p,q and all 6 > 0 there is an

€ > 0 and an e-discrete distribution pe on T such that
for all B,C C T,

|Pr(Rpq=0|Xp € B, Yq€C)
—Pr(Rp, q=0|Xp €B, YqeC)| <6

The next lemma will be crucial for proving our bound.

Lemma A.17. Let pg and py be probability measures
on T, and let < be a total order on T such that if
hp, q(z) > hp, q(2') then © < 2’ and if hp, o(z) <
hy, o(2') then x > z'. Suppose that if hp, p, (z) > 0
and hp, o, (y) <0, then x <y. Then Pr(Rp, q =0) >
Pr(Rp,,q = 0).

Proof. Note that

Pr(Rp1q=0|Y =)

= Z pi(z) + P1 Y)
x>y
1
= Po(x) + hpy p, (2) + 5 [Po(y) + Bpy.p, ()]
x>y
1
=Pr(Rp,q =0|Yq=y) + Z hp,p, () + §hpo,p1 (y)
x>y
1
=Pr(Rp,,q=0|Yq =y) Z hp,p, (2) — hpo,pl (y)s
<1y
where  the last equality  holds  because

> we7 po.p: () = 0. But by our assumption, we know
that >, o, hp,p, (2) + 1hp, p, (y) is non-negative and
s0 Pr(Rp,q = 0|Yq = y) < Pr(Rp,,q = 0]Yq = y),
from which the result follows. O

We will now provide a lower bound on Pr(Rp, = 0).
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Proposition A.18.

11
Pr(Rpq = 0)>2+ maxhy, o(z)%.  (31)

2 xzeT

Proof. Recall that A == {z € T | q(z) > p(x)}. First
note that by Lemma A.14, we may assume without
loss of generality that |A| = |T \ A, by adding ele-
ments of mass arbitrarily close to 0. Let k = |A|.
Further, by Lemma A.16 we may assume without
loss of generality that p,q are an e-discrete pair (for
some fixed but small €) with |T| € < Loo(p,q). Let
(zg,...,z{_,) be the collection A listed in <-increasing
order. Let (zq,...,2,_,) be the collection 7 \ A listed
in <-increasing order.

Let p* be any probability measure such that

p(z) - e(t) (x = a7 5e(0) > 0),
P (x)={qla) ~ (k—0)-c (x=a/:0<l<k-1),
p() (x = a7).

Note that for all z,y € T, we have y < x if and only if
hp« () < hp- o(y).

Now, for every £ < k — 1 we have hp o(z) > ¢ € (as
P, q are an e-discrete pair), and so we can always find
such a p*. In particular the following are immediate.

(a) <y if and only if hy- o(z) > hp« q(y),

(b) hpg(z5) = hp- g(z7),
(c) if hp g« (z) > 0 and hp p+(y) <0 then x < y, and

(d) (p,q*) is an e-discrete pair.

Note that Pr(Rpq = 0) > Pr(Rp-q = 0),
Lemma A.17 and (c). For simplicity, let Ag := {z 3‘}
A1 = {x?}lgigk_l and D = T\A

We now condition on the value of Yy, in order to cal-
culate Pr(Rp+- q = 0).

Case 1: Yy = ;. We have

- S
Pr(Rpq=01Yq=2;)= D p*(x;)+ 5p"(x;).

i<U<k

Case 2: Y, € A;. We have

1
Pr(Rp« q=0|Yq€ A1)=p"(D) + ip*(Al) + fo(e),

where fj is a function satisfying lim._q fo(€) = 0.

Case 3: Y, € Ag. We have

Pr(Rp- q=0|Yq € Ag) =p* (A1) + p"(D) + 5p"(Ao).

1

2

We may calculate these terms as follows:
p*(D) = a(D) +hp q(aq) + (k(k —1)/2)e,
P (A1) = q(A1) — (k(k —1)/2)e,
P*(Ao) = q(Ao) — hpg(zq).

Putting all of this together, we obtain

Pr(Rp-q = 0)

=Y At et ) + g Y ale e

i<k i<l<k i<k

+q(A)p* (D) + La(A0)p (A1) + a(4) fole)

2
+a(A0)p* (41) + a(A0)p" (D) + a(A0)p" (4o)
¢) = hpq(z,)]

=> Y alz;)al

i<k i<l<k

5 Y ate e

i<k

) — hpe q(z;)]

+a(ADa(D) + hpq(a)] + sa(A)a(41)

+a(4o)a(Ar) + a(Ao)[a(D) + hp g(zq)]
+ Ja(Ao)a(A) — by, q<xo N+ (o)

=2 > alal) +5 Zq(w‘

i<k i<l<k i<k

+a(A)a(D) + SalAna(Ay) +a(Aoa(A)

+a(An)a(D) + sa(A0)a(Ao)

pIPIX

i<k i<l<k

,,Zq

i<k

+ a(Ao)hp () — éqmo) paled) + f1(6)

=3 Y a@at) + 5 Yt

i<k i<l<k i<k

+a(A)a(D) + JalAnalA) +a(Aoa(A)

+a(An)a(D) + sa(A0)a(4o)

IPIL

i<k i<l<k

_,Zq

i<k

+ %Q(Ao)hp a(zg) + fi(e),

a(z; )hp- q(z,)

z;) +q(A1)hp o(z])

q(z; Jhp o(z,)

z; ) +q(Ar) p,q(x(J)r)
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where f is a function satisfying lim._, f1(€) = 0.
We also have

1
5 =Pr(Rqq=0)

2
=33 ate)ate) + 5 Y ate at)

i<k i<l<k i<k

Fa(ADa(D) + ga(A)a(4)

+a(A0)a(A) + a(Ao)a(D) + sa(Ao)a(Ao).

Putting these two equations together, we obtain

1
Pr(Rp.q=0) ~ 3

= PT(RP*,q =0) - PT(quq =0)

==>" > a@; )hpe q(z;)

i<k i<l<k
1 _ _
) Z q(z; )hpeq(z;) + Q(Al)hp,q(xg)
i<k

+ S a(A)hp q () + (0

Q(AO)hp,q(xa_) + fi(e),

as hp- g(z;) <0 for all £ < k and hy g(zg) <0

But we know that
a(4o) = alzg) = p*(zg) + hpq(rg) > hpg(z7).
Therefore, as hy, () is the maximal value of hy, 4,
by taking the limit as € — 0 we obtain
1 1
Pr(Rpeq =0) = 5 + 5 max hp q(2)?,

as desired. O

Finally, we arrive at the following theorem.

Theorem A.19. Given probability measure p,q on T
there is a linear ordering T of T such that if Xy and
Yy are sampled independently from p and q respectively
then

11
Pr(Xq CYp) > 5 + 5 Loo(p @), (32)

Proof. Note that

Ly(p,q) = max{glea%( hp, (), Iznea,,’f hgp(z)}.

If Loo(p,q) = maxgze7 hp o(x), then the theorem fol-
lows from Proposition A.18 using the ordering z C y if
and only if hy, ¢(z) > hp (y).

If, however, Loo(p,q) = maxze7 hqp(z), then the
theorem follows from Proposition A.18 by interchanging
p and q, i.e., by using the ordering x C y if and only
if hgp(z) > hqp(y). O

A.4 Sample complexity

We now show how to amplify this result by repeated
trials to obtain a bound on the sample complexity of
the main algorithm for determining whether p = q.

Let C be the linear ordering defined in Theorem A.19.

Theorem A.20 (Theorem 3.7 in the main text).
Given significance level a = 2®(—c) for ¢ > 0, the
proposed test with ordering C and m = 1 achieves
power 3 > 1 — ®(—c) using

n~4c? /Lo (p,q)* (33)

samples from q, where ® is the cumulative distribution
function of a standard normal.

Proof. Assume without loss of generality that the
order C from Theorem A.19 is such that L, =
max,e7(q(z) — p(z)). Let (Y1,...,Y,) ~ q be the
n samples from q. With m = 1, the testing procedure
generates n samples (X1,..., X,,) ~4 p, and 2n uni-
form random variables (U} , ..., UY U, ..., UX) ~iid
Uniform(0,1) to break ties. Let <1 denote the lexi-
cographic order on 7 x [0,1] induced by (7, <) and
([0,1],<). Define W; == I[(Y;,U}Y) < (X;,U¥)], for
1 < i < n, to be the rank of the i-th observation from
q.

Under the null hypothesis Hp, each rank W; has dis-
tribution Bernoulli(1/2) by Lemma A.2. Testing for
uniformity of the ranks on {0,1} is equivalent to test-
ing whether a coin is unbiased given the i.i.d. flips
{Wi,...,Wy,}. Let B := Yo (1 —W;)/n denote the
empirical proportion of zeros. By the central limit
theorem, for sufficiently large n, we have that Bis ap-
proximately normally distributed with mean 1/2 and
standard deviation 1/(24/n). For the given significance
level @« = 2®(—c), we form the two-sided reject re-
gion F' = (—00,7) U (v, 0), where the critical value v
satisfies
v—1/2

c= m:%/ﬁ(v—lﬂ). (34)

Replacing n in Eq. (7), we obtain

v=1/2+¢/(2Vn)
=1/2+¢/(2(2¢/Los(p, a)?))
=1/2+ Leo(p,q)?/4. (35)

This construction ensures that Pr {reject | Ho} = .

We now show that the test with this rejection region
has power 3 > Pr{reject |H;} = 1 — ®(—c¢). Under
the alternative hypothesis Hy, each W; has (in the
worst case) distribution Bernoulli(1/2 + Lo (p,q)?/2)
by Theorem A.19, so that the empirical proportion
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B is approximately normally distributed with mean
at least 1/2 + Lo (p, q)?/2 and standard deviation at
most 1/(24/n). Under the alternative distribution of
B, the standard score ¢’ of the critical value v is

;7= (1/2+ Leo(p,9)?/2)
1/(2y/n)
= 2v/n((1/2+ Loo(p,@)*/4) — (1/2 + Loo(p, 9)*/2))
= —2v/n(Loo(p, )?/4)
= —VnLso(p,q)*/2

= —C’

(36)

where the second equality follows from Eq. (35). Ob-
serve that the not reject region F¢ = [—v,~] C (—o0,7],
and so the probability that B falls in F° is at most the
probability that B < ~, which by Eq. (36) is equal to
®(—c). It is then immediate that § > 1 — ®(—¢). O

The following corollary follows directly from Theo-
rem 3.7.

Corollary A.21. As the significance level o varies,
the proposed test with ordering C and m = 1 achieves
an overall error (a + (1 — 5))/2 < 3®(—c)/2 using
n =4c?/Loo(p,q)* samples.

A.5 Distribution of the test statistic under
the alternative hypothesis

In this subsection we derive the distribution of R under
the alternative hypothesis p # q. As before, write

p(z) =3, ., p(®)
Theorem A.22. The distribution of R is given by
Pr{R=r}= Z H(xz,m,r)q(z)
€T

for 0 <r <m, where H(z,m,r) =

(37)

m
1

TH .
S0 2

e=0 .
-2 ()

WLECRETE } (0<p) < 1)

(1) G 1= By

Proof. Define the following random variables:

L= T[X; < X, (38
=1

~—

B iﬂ X, = X, (39)
i=1

i=1

We refer to L, E, and G as “bins”, where L is the “less
than” bin, F is the “equal to” bin, and G is the “greater
than” bin (all with respect to X). Total probability
gives

Pr{R=r}= ZPr{R:r,XO =z}
ze€T
= Z Pr{R=r|Xo=z}q(z).

€T
q(xz)>0

Fix € T such that q(z) > 0. Consider
Pr{R=r|Xy=s}. The counts in bins L, E, and
G are binomial random variables with m trials, where
the bin L has success probability p(z), the bin E has
success probability p(z), and the bin G has success
probability 1 — (p(z) + p(z)). We now consider three
cases.

Case 1: p(z) = 0. The event {E = 0} occurs with
probability one since each X;, for 1 < ¢ < m, can-
not possibly be equal to x. Therefore, conditioned
on {Xy =z}, the event {R = r} occurs if and only if
{L =r}. Since L is binomially distributed,

Pr{R=r|Xo=2a}=Pr{L=r| Xy =12z}

Case 2: p(z) = 1. Then the event {E = m} occurs
with probability one since each X;, for 1 <1i < m, can
only equal s. The uniform numbers Uy, ..., U,, used to
break the ties will determine the rank R of Xy. Let B
be the rank of Uy among the m other uniform random
variables Uy, ..., Uy,. The event {R = r} occurs if and
only if {B = r}. Since the U; are i.i.d., B is uniformly
distributed over {0,1,2,...,m} by Lemma A.2. Hence
1

Pr{R:r|X0:x}:Pr{B:T\onx}:m.

Case 3: 0 < p(x) < 1. By total probability,

Pr{R=r|X, =1z}

:ZPr{R:r|X0:x,E:e}Pr{E:e|X0:x}.
e=0

Since E is binomially distributed,

Pr{E=clXo =) = () o) - plo)]” "
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We now tackle the event {R =r| Xy =z, E =e}. The
uniform numbers Uy, ..., U,, used to break the ties will
determine the rank R of Xy. Define B to be the rank
of Uy among the e other uniform random variables
assigned to bin E, i.e., those U; for 1 < i < m such
that X; = s. The random variable B is independent
of all the X;, but is dependent on E. Given {E = e},
B is uniformly distributed on {0,1,...,e}. By total
probability,

Pr{R=r|Xo=z,FE =c¢}

=Y [Pr{R=r|Xo=2,E=¢,B=0b}
b=0
Pr{B=b|E =e}]
1
e+1°

:ZPr{R:r\XO:x,E:e,B:b}
b=0

Conditioned on {E =-e} and {B =0}, the event
{R =r} occurs if and only if {L =}, since exactly
0 random variables in bin E “are less” than Xg, so
exactly r random variables in bin L are needed to en-
sure that the rank of Xg is . By the same reasoning,
for 0 < b < e, conditioned on {E = e, B = b} we have
{R =r} if and only if {L =r — b}.

Now, conditioned on {E = e}, there are m — e remain-
ing assignments to be split among bins L and G. Let
i be such that X; # x. Then the relative probability
that X; is assigned to bin L is p(x) and to bin G is
1 — (p(z) + p(x)). Renormalizing these probabilities,
we conclude that L is conditionally (given {F =e}) a
binomial random variable with m — e trials and suc-
cess probability p(z)/(p(z) + (1 — (p(z) + p(x)))) =
p(z)/(1 - p(z)). Hence

Pr{R=r|Xo=2x,FE =e,B=>0}
=Pr{L=r—-b|Xg=2a,FE=¢}
p(x)

() [ e

completing the proof. O

Remark A.23. The sum in Eq. (37) of Theorem A.22
converges since H(xz,m,r) < 1.

Remark A.24. Theorem A.22 shows that it is not the
case that we must have p = q whenever there exists
some m for which the rank R is uniform on [m + 1].
For example, let m = 1, let T := {0,1,2,3}, let < be
the usual order < on 7, and let p = %50 + %53 and
q:= %61 + %52. Let X ~p and Y ~ q. Then we have
Pr{R=0} = Pr{X>Y} =1/2 = Pr{Y <X} =
Pr{R =1}

Rather, Theorem A.1 tells us merely if R is not uniform
on {0,...,m} for some m, then p # q. In the example
given above, m = 2 (and so by Theorem A.7 all m > 2)
provides such a witness.



