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Abstract

The objective of goodness-of-fit testing is to
assess whether a dataset of observations is
likely to have been drawn from a candidate
probability distribution. This paper presents
a rank-based family of goodness-of-fit tests
that is specialized to discrete distributions on
high-dimensional domains. The test is readily
implemented using a simulation-based, linear-
time procedure. The testing procedure can be
customized by the practitioner using knowl-
edge of the underlying data domain. Unlike
most existing test statistics, the proposed test
statistic is distribution-free and its exact (non-
asymptotic) sampling distribution is known in
closed form. We establish consistency of the
test against all alternatives by showing that
the test statistic is distributed as a discrete
uniform if and only if the samples were drawn
from the candidate distribution. We illus-
trate its efficacy for assessing the sample qual-
ity of approximate sampling algorithms over
combinatorially large spaces with intractable
probabilities, including random partitions in
Dirichlet process mixture models and random
lattices in Ising models.

1 Introduction

We address the problem of testing whether a dataset
of observed samples was drawn from a candidate prob-
ability distribution. This problem, known as goodness-
of-fit testing, is of fundamental interest and has appli-
cations in a variety of fields including Bayesian statis-
tics [10; 31], high-energy physics [34], astronomy [22],
genetic association studies [17], and psychometrics [3].
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Rank-based methods are a popular approach for assess-
ing goodness-of-fit and have received great attention in
the nonparametric statistics literature [15]. However,
the majority of existing rank-based tests operate under
the assumption of continuous distributions [16, VI.8]
and analogous methods for discrete distributions that
are theoretically rigorous, customizable using domain
knowledge, and practical to implement in a variety of
settings remain much less explored.

This paper presents a new connection between
rank-based tests and discrete distributions on high-
dimensional data structures. By algorithmically speci-
fying an ordering on the data domain, the practitioner
can quantitatively assess how typical the observed sam-
ples are with respect to resampled data from the can-
didate distribution. This ordering is leveraged by the
test to effectively surface distributional differences.

More specifically, we propose to test whether obser-
vations {y1, . . . , yn}, taking values in a countable set
T , were drawn from a given discrete distribution p on
the basis of the rank of each yi with respect to m i.i.d.
samples {x1, . . . , xm} from p. If yi was drawn from p
then we expect its rank to be uniformly distributed over
{0, 1, . . . ,m}. When the ranks show a deviation from
uniformity, it is unlikely that the yi were drawn from
p. A key step is to use continuous random variables to
break any ties when computing the ranks. We call this
statistic the Stochastic Rank Statistic (SRS), which has
several desirable properties for goodness-of-fit testing:

1. The SRS is distribution-free: its sampling distribu-
tion under the null does not depend on p. There
is no need to construct ad-hoc tables or use Monte
Carlo simulation to estimate rejection regions.

2. The exact (non-asymptotic) sampling distribution
of the SRS is a discrete uniform. This exactness
obviates the need to apply asymptotic approxima-
tions in small-sample and sparse regimes.

3. The test is consistent against all alternatives. We
show that the SRS is distributed as a discrete
uniform if and only if {y1, . . . , yn} ∼iid p.
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4. The test gives the practitioner flexibility in decid-
ing the set of properties on which the observations
be checked to agree with samples from p. This
flexibility arises from the design of the ordering
on the domain that is used to compute the ranks.

5. The test is readily implemented using a procedure
that is linear-time in the number of observations.
The test is simulation-based and does not require
explicitly computing p(x), which is especially use-
ful for distributions with intractable probabilities.

While the test is consistent for any ordering (T ,≺) over
the domain that is used to compute the SRS, the power
of the test depends heavily on the choice of ≺. We
show how to construct orderings in a variety of domains
by (i) defining procedures that traverse and compare
discrete data structures; (ii) composing probe statistics
that summarize key numerical characteristics; and (iii)
using randomization to generate arbitrary orderings.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the goodness-of-fit problem and discusses
related work. Section 3 presents the proposed test and
several theoretical properties. Section 4 gives concep-
tual examples for distributions over integers, binary
strings, and partitions. Section 5 applies the method to
(i) compare approximate Bayesian inference algorithms
over mixture assignments in a Dirichlet process mix-
ture model and (ii) assess the sample quality of random
lattices from approximate samplers for the Ising model.

2 The Goodness-of-Fit Problem

Problem 2.1. Let p be a candidate discrete distribu-
tion over a finite or countably infinite domain T . Given
observations {y1, . . . , yn} drawn i.i.d. from an unknown
distribution q over T , is there sufficient evidence to
reject the hypothesis p = q?

In the parlance of statistical testing, we have the fol-
lowing null and alternative hypotheses:

H0 := [p = q] H1 := [p 6= q].

A statistical test φn : T n → {reject, not reject} says, for
each size n dataset, whether to reject or not reject the
null hypothesis H0. We define the significance level

α := Pr {φn(Y1:n) = reject | H0} (1)

to be the probability of incorrectly declaring reject.
For a given level α, the performance of the test φn is
characterized by its power

β := Pr {φn(Y1:n) = reject | H1} , (2)

which is the probability of correctly declaring reject.

Classical goodness-of-fit tests for nominal (unordered)
data include the multinomial test [14]; Pearson chi-
square test [23]; likelihood-ratio test [33]; nomi-
nal Kolmogorov–Smirnov test [13; 24]; and power-
divergence statistics [26]. For ordinal data, goodness-
of-fit test statistics include the ordinal Watson, Cramér–
von Mises, and Anderson–Darling [7] tests as well as the
ordinal Kolmogorov–Smirnov [4; 8]. These approaches
typically suffer from statistical issues in large domains.
They assume that p(x) is easy to evaluate (which is
rarely possible in modern machine-learning applica-
tions such as graphical models) and/or require that
each discrete outcome x∈T has a non-negligible expec-
tation np(x) [20; 28] (which requires a large number of
observations n even when p and q are noticeably far
from one another). In addition, the rejection regions of
these statistics are either distribution-dependent (which
requires reestimating the region for each new candi-
date distribution p) or asymptotically distribution-free
(which is inexact for finite-sample data and imposes
additional statistical assumptions on p and q). The
Mann–Whitney U [19], which is also a rank-based test
that bears some similarity to the SRS, is only consis-
tent under median shift, whereas the proposed method
is consistent under general distributional inequality.

Recent work in the theoretical computer science liter-
ature has established computational and sample com-
plexity bounds for testing approximate equality of dis-
crete distributions [5]. These methods have been pri-
marily studied from a theoretical perspective and have
not been shown to yield practical goodness-of-fit tests
in practice, nor have they attained widespread adoption
in the applied statistics community. For instance, the
test in [1] is based on a variant of Pearson chi-square. It
requires enumerating over the domain T and represent-
ing p(x) explicitly. The test in [32] requires specifying
and solving a complex linear program. While these
algorithms may obtain asymptotically sample-optimal
limits, they are designed to detect differences between
p and q in a way that is robust to highly adversarial
settings. These tests do not account for any structure in
the domain T that can be leveraged by the practitioner
to effectively surface distributional differences.

Permutation and bootstrap resampling of test statistics
are another family of tests for goodness-of-fit [11]. The-
oretically rigorous and consistent tests can be obtained
using kernel methods, including the maximum mean
discrepancy [12] and discrete Stein discrepancy [35].
Since the null distribution is unknown, rejection re-
gions are estimated by bootstrap resampling, which
may be inexact due to discreteness of the data. Instead
of bootstrapping, the SRS can be used to obtain an ex-
act, distribution-free test by defining an ordering using
the kernel. This connection is left for future work.
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Figure 1: Overview of the proposed goodness-of-fit test for discrete distributions. Stage 1: Observations {y1, . . . , yn}
are assumed to be drawn i.i.d. from an unknown discrete distribution q over a finite or countable observation domain T
(shown in the top-left corner). Stage 2: For each yi, m samples {Xi1, . . . , Xim} are simulated i.i.d. from the candidate
distribution p over T . Stage 3: Given a total order ≺ on T and the observed and simulated data, a stochastic ranking
procedure returns the rank ri of each yi within {Xi1, . . . , Xim}, using uniform random numbers to ensure the ranks are
unique. Stage 4: The histogram of the ranks {r1, . . . , rn} is analyzed for uniformity over {0, 1, . . . ,m}.

3 A Family of Exact and
Distribution-Free GOF Tests

In this section we describe our proposed method for
addressing the goodness-of-fit problem. The proposed
procedure combines (i) the intuition from existing meth-
ods for ordinal data [7] that the deviation between the
expected CDF and empirical CDF of the sample serves
as a good signal for goodness-of-fit, with (ii) the flexibil-
ity of probe statistics in Monte Carlo-based resampling
tests [11] to define, using an ordering ≺ on T , charac-
teristics of the distribution that are of interest to the
experimenter. Figure 1 shows the step-by-step work-
flow of the proposed test and Algorithm 1 formally
describes the testing procedure.

Algorithm 1 Exact GOF Test using SRS

Input:


simulator for candidate dist. p over T ;
i.i.d. samples {y1, y2, . . . , yn} from dist. q;
strict total order ≺ on T , of any order type;
number m ≥ 1 of datasets to resimulate;
significance level α of hypothesis test;

Output: Decision to reject the null hypothesis H0 :p=q
versus alternative hypothesis H1 :p 6=q at level α.

1: for i = 1, 2, . . . , n do
2: X1, X2, . . . , Xm ∼iid p
3: U0, U1, . . . , Um ∼iid Uniform(0, 1)
4: ri ←

∑m
k=1 I[Xk ≺ yi] + I[Xk = yi, Uk < U0]

5: Use a standard hypothesis test to compute p-value of
{r1, . . . , rn} under a discrete uniform on {0, . . . ,m}.

6: return reject if p ≤ α, else not reject.

The proposed method addresses shortcomings of exist-
ing statistics in sparse regimes. It does not require the
ability to compute p(x) and it is not based on com-
paring the expected frequency of each x∈T (which is

often vanishingly small) with its observed frequency.
Furthermore, the stochastic rank statistics ri have an
exact and distribution-free sampling distribution. The
following theorem establishes that the ri are uniformly
distributed if and only if p = q. (Proofs are in the
Appendix.)

Theorem 3.1. Let T be a finite or countably infinite
set, let ≺ be a strict total order on T , let p and q be two
probability distributions on T , and let m be a positive
integer. Consider the following random variables:

X0 ∼ q (3)

X1, X2, . . . , Xm ∼iid p (4)

U0, U1, U2, . . . , Um ∼iid Uniform(0, 1) (5)

R =
∑m
j=1 I [Xj ≺ X0] + I [Xj = X0, Uj < U0] . (6)

Then p = q if and only if for all m≥ 1, the rank R is
distributed as a discrete uniform random variable on
the set of integers [m+ 1] := {0, 1, . . . ,m}.

Note that the ri in line 4 of Algorithm 1 are n i.i.d.
samples of the random variable R in Eq. (6), which is
the rank of X0∼q within a size m sample X1:m∼iid p.
For Theorem 3.1, it is essential that ties are broken by
pairing each Xi with a uniform random variable Ui, as
opposed to, e.g., breaking each tie independently with
probability 1/2, as demonstrated by the next example.

Example 3.2. Let T contain a single element. Then
all the Xi (for 0 ≤ i ≤ m) are equal almost surely.
Break each tie between X0 and Xj by flipping a fair
coin. Then R is binomially distributed with m trials
and weight 1/2, not uniformly distributed over [m+ 1].

We now establish theoretical properties of R which
form the basis of the goodness-of-fit test in Algorithm 1.
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First note that in the case where all the Xi are almost
surely distinct, the forward direction of Theorem 3.1,
which establishes that if p = q then the rank R is
uniform for all m ≥ 1, is easy to show and is known
in the statistical literature [2]. However no existing
results make the connection between rank statistics
and discrete random variables over countable domains
with ties broken stochastically. Nor do they establish
that p = q is a necessary condition for uniformity of R
(across all m beyond some integer) and can therefore be
used as the basis of a consistent goodness-of-fit test. We
now state an immediate consequence of Theorem 3.1.

Corollary 3.3. If p 6= q, then there is some M ≥ 1
such that R is not uniformly distributed on [M + 1].

The next theorem significantly strengthens Corol-
lary 3.3 by showing that if p 6= q, the rank statistic is
non-uniform for all but finitely many m.

Theorem 3.4. Let p 6= q and M be defined as in
Corollary 3.3. Then for all m ≥M , the rank R is not
uniformly distributed on [m+ 1].

In fact, unless p and q satisfy an adversarial symmetry
relationship under the selected ordering ≺, the rank is
non-uniform for all m ≥ 1.

Corollary 3.5. Let C denote the lexicographic order
on T × [0, 1] induced by (T ,≺) and ([0, 1], <). Suppose
Pr {(X,U1) C (Y,U0)} 6= 1/2 for Y ∼ q, X ∼ p, and
U0, U1 ∼iid Uniform(0, 1). Then for all m ≥ 1, the rank
R is not uniformly distributed on [m+ 1].

The next theorem establishes the existence of an order-
ing on T satisfying the hypothesis of Corollary 3.5.

Theorem 3.6. If p 6= q, then there is an ordering ≺∗
whose associated rank statistic R is non-uniform for
m = 1 (and hence by Theorem 3.4 for all m ≥ 1).

Intuitively, ≺∗ sets elements x ∈ T which have a high
probability under q to be “small” in the linear order,
and elements x∈T which have a high probability un-
der p to be “large” in the linear order. More precisely,
≺∗ maximizes the sup-norm distance between the in-
duced cumulative distribution functions p̃ and q̃ of p
and q, respectively (Figure 3). Under a slight vari-
ant of this ordering, for finite T , the next theorem
establishes the sample complexity required to obtain
exponentially high power in terms of the statistical
distance L∞(p,q) = supx∈T |p(x)− q(x)| between p
and q.

Theorem 3.7. Given significance level α = 2Φ(−c)
for c > 0, there is an ordering for which the proposed
test with m = 1 achieves power β ≥ 1− Φ(−c) using

n ≈ 4c2/L∞(p,q)4 (7)

samples from q, where Φ is the cumulative distribution
function of a standard normal.

This key result is independent of the domain size and
establishes a lower bound for any ≺ because it is based
on the optimal ordering ≺∗. The next theorem derives
the exact sampling distribution for any pair of distri-
butions (p,q), which is useful for simulation studies
(e.g., Figure 3) that characterize the power of the SRS.

Theorem 3.8. The distribution of R is given by

Pr {R = r} =
∑
x∈T

H(x,m, r) q(x) (8)

for 0 ≤ r ≤ m, where H(x,m, r) :=

m∑
e=0

{[
e∑
j=0

(
m− e
r − j

)[
p̃(x)

1− p(x)

]r−j
[
1− p̃(x)

1− p(x)

](m−e)−(r−j)(
1

e+ 1

)]
(
m

e

)
[p(x)]

m
[1− p(x)]

e−m

}
if 0<p(x)< 1,(

r

m

)
[p̃(x)]

r
[1− p̃(x)]

m−r
if p(x) = 0,

1

m+ 1
if p(x) = 1,

and p̃(x) :=
∑
x′≺x p(x) is the CDF of p.

4 Examples

We now apply the proposed test to a countable domain
and two high-dimensional finite domains, illustrating a
power comparison and how distributional differences
can be detected when the number of observations is
much smaller than the domain size. We use Pearson chi-
square to assess uniformity of the SRS for Algorithm 1
(see [29] for alternative ways to test for a uniform null).
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Figure 2: The left panel shows a pair (p,q) of reflected,
bimodal Poisson distributions with slight location shift. The
right plot compares the power of testing p=q using the
SRS (for various choices of m) to several baseline methods.
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Figure 3: In each of the two panels (a) and (b), the left plot shows the sup-norm distance between the sampling distribution

of the rank statistic and the discrete uniform (using Eq. 8 in Theorem 3.8), for a uniform null p := pind on {0, 1}16 against
alternative distributions of the form q := wpalt + (1− w)pind, for increasing mixture weight 0 ≤ w ≤ 1 and six different
orderings on the binary strings. The right plot compares the cumulative distribution function of the null distribution
(diagonal line in gray) with the cumulative distribution functions of the alternative distribution (when w = 1) as obtained
by sorting the binary strings according to each ordering. Orderings which induce a greater distance between the cumulative
distribution functions of the null and alternative distributions result in more power to detect the alternative.

4.1 Bimodal, Symmetric Poisson

We first investigate the performance of the SRS for
testing a pair of symmetric, multi-modal distribu-
tions over the integers with location shift. In par-
ticular, for x∈Z, define distribution f(x;λ1, λ2) :=
1
2

(
1
2Poisson(|x|;λ1) + 1

2Poisson(|x|;λ2)
)
. Note f is a

mixture of Poisson distributions with rates λ1 and λ2,
reflected symmetrically about x= 0. We set p(x) :=
f(x; 10, 20) and q := f(x; 10, 25) so that q is location-
shifted in two of the four modes (Figure 2, left panel).

The right plot of Figure 2 compares the power for
various sample sizes n from q according to the SRS
(m= 1, 2, 3, 30, shown in increasing shades of gray) and
several baselines (shown in color). The baselines (AD,
MMD, KS, and Mann–Whitney U) are used to assess
goodness-of-fit by performing a two-sample test on n
samples from q with samples drawn i.i.d. from p. The
power (at level α= 0.05) is estimated as the fraction
of correct answers over 1024 independent trials. The
Mann–Whitney U, which is also based on rank statistics
with a correction for ties, has no power for all n as it can
only detect median shift, as does the SRS with m= 1
(see Corollary 3.5). The SRS becomes non-uniform for
m= 2 although this choice results in low power. The
SRS with m= 3 has comparable power to the AD and
MMD tests. The SRS with m= 30 is the most powerful,
although it requires more computational effort and
samples from p (Algorithm 1 scales as O(mn)).

4.2 Binary strings

Let T := {0, 1}k be the set of all length k binary strings.
Define the following distributions to be uniform over
all strings x = (x1, . . . , xk) ∈ {0, 1}k which satisfy the
given predicates:

pind : uniform on all strings,

podd :
∑k
i=1 xi ≡ 1 (mod 2),

ptie : x1 = x2 = · · · = xk/2.

Each of these distributions assigns marginal probability
1/2 to each bit xi (for 1 ≤ i ≤ k), so all deviations
from the uniform distribution pind are captured by
higher-order relationships. The five orderings used for
comparing binary strings are

≺lex : Lexicographic (dictionary) ordering,

≺par : Parity of ones, ties broken using ≺lex,

≺one : Number of ones, ties broken using ≺lex,

≺coo : Cooler ordering (randomly generated) [30],

≺dbj : De Bruijn sequence ordering.

We set the null distribution p := pind and construct
alternative distributions q := wpc + (1 − w)pind as
mixtures of pind with the other two distributions, where
w ∈ [0, 1] and c ∈ {odd,not}. We take bit strings of
length k = 16 with n = 256 observations so that
|T | = 65, 536 and 0.4% of the domain size is observed.
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(a) Sampling distribution of four different probe statistics {t1, t2, t3, t4} of a dataset of par-
titions, as sampled from p (Eq. (9); blue) and from q (Eq. (10); green) estimated by Monte
Carlo simulation. Vertical red lines indicate 2.5% and 97.5% quantiles. Even though p 6=q,
the distributions of these statistics are aligned in such a way that a statistic tj(Y1:m) ∼ q
is unlikely to appear as an extreme value in the sampling distribution of the corresponding
statistic tj(X1:m) ∼ p, which leads to under-powered resampling-based tests.
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(b) Monte Carlo simulation of the
rank statistic illustrates its significant
uniform distribution under the null
hypothesis (top) and significant non-
uniform distribution under the alter-
native hypothesis (bottom).

Figure 4: Comparison of the sampling distribution of (a) various bootstrapped probe statistics [11] with (b) the stochastic
rank statistic, for goodness-of-fit testing the Chinese restaurant processes on N = 20 customers. Discussion in main text.

Figure 3 shows how the non-uniformity of the SRS
(computed using Theorem 3.8) varies for each of the
two alternatives and five orderings (m= 6). Each or-

dering induces a different CDF over {0, 1}k for the
alternative distribution, shown in the right panel for
w= 1. Orderings with a greater maximum vertical
distance between the null and alternative CDF attain
greater rank non-uniformity. No single ordering is more
powerful than all others in both test cases. However,
in each case, some ordering detects the difference even
at low weights w, despite the sparse observation set.

The alternative q = podd in Figure 3b is especially
challenging: in a sample, all substrings (not necessarily
contiguous) of a given length j < k are equally likely.
Even though the SRS is non-uniform for all orderings,
the powers vary significantly. For example, comparing
strings using ≺lex does not effectively distinguish be-
tween pind and podd, as strings with an odd number of
ones are lexicographically evenly interspersed within
the set of all strings. The parity ordering (which is op-
timal for this alternative) and the randomly generated
cooler ordering have increasing power as w increases.

4.3 Partition testing

We next apply the SRS to test distributions on the
space of partitions of the set {1, 2, . . . , N}. Let ΠN

denote the set of all such partitions. We define a
distribution on ΠN using the two-parameter Chinese
Restaurant Process (CRP) [6, Section 5.1]. Letting
(x|y)N := (x)(x+ y) · · · (x+ (N − 1)y), the probability

of a partition π := {π1, . . . , πk} ∈ ΠN with k tables
(blocks) is given by

CRP(π; a, b) :=


(b|a)k
(b|1)N

∏k
i=1(1− a)ck−1 (if a > 0)

bk

(b|1)N

∏k
i=1(ck − 1)! (if a = 0),

where ci is the number of customers (integers) at table
πi (1≤i≤ k). Simulating a CRP proceeds by sequen-
tially assigning customers to tables [6, Def. 7]. Even
though we can compute the probability of any partition,
the cardinality of ΠN grows exponentially in N (e.g.,
|Π20| ≈ 5.17× 1013). The expected frequency of any
partition is essentially zero for sample size n�|ΠN |,
so Pearson chi-square or likelihood-ratio tests on the
raw data are inappropriate. Algorithm 2 defines a total
order on the partition domain ΠN .

Algorithm 2 Total order ≺ on the set of partitions ΠN

Input:

{
Partition π := {π1, π2, . . . , πk} ∈ ΠN with k blocks.
Partition ν := {ν1, ν2, . . . , νl} ∈ ΠN with l blocks.

Output: LT if π ≺ ν; GT if π � ν; EQ if π = ν.
1: if k < l then return LT . ν has more blocks
2: if k > l then return GT . π has more blocks
3: π̃ ← blocks of π sorted by value of least element in the block
4: ν̃ ← blocks of ν sorted by value of least element in the block
5: for b = 1, 2, . . . , l do
6: if |π̃b| < |ν̃b| then return LT . ν̃b has more elements

7: if |π̃b| > |ν̃b| then return GT . π̃b has more elements

8: π′b ← values in π̃b sorted in ascending order
9: ν′b ← values in ν̃b sorted in ascending order
10: for i = 1, 2, . . . , |π′b| do
11: if π′b,i < ν′b,i then return LT . π′b has smallest element

12: if π′b,i > ν′b,i then return GT . ν′b has smallest element

13: return EQ
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We consider the following pair of distributions:

p := CRP(0.26, 0.76)/2 + CRP(0.19, 5.1)/2 (9)

q := CRP(0.52, 0.52). (10)

These distributions are designed to ensure that parti-
tions from p and q have similar distributions on the
number and sizes of tables. Figure 4a shows a compar-
ison of using Monte Carlo simulation of various boot-
strapped probe statistics for assessing goodness-of-fit
versus using the SRS with the ordering in Algorithm 2.

In Figure 4a, each probe statistic takes a size m dataset
X1:m (where each Xi is a partition) and produces a
numerical summary such as the average of the number
of tables in each sample. A resampling test [11] that
uses these probe statistics will report (with high prob-
ability) that an observed statistic t(Y1:m) ∼ q drawn
from the alternative distribution is a non-extreme value
in the null distribution t(X1:m) ∼ p (as indicated by
alignment of their quantiles, shown in red) and will
therefore have insufficient evidence to reject p = q.

On the other hand, Figure 4b shows that when ranked
using the ordering obtained from Algorithm 2 (which is
based on a multivariate combination of the univariate
probe statistics in Figure 4a specified procedurally),
a partition Y ∼ q is more likely to lie in the cen-
ter of a dataset X1:m ∼iid p, as illustrated by the
non-uniform rank distribution under the alternative
hypothesis (the gray band shows 99% variation for a
uniform histogram). By comparing the top and bottom
panels of Figure 4b, the SRS shows that partitions from
q have a poor fit with respect to partitions from p, de-
spite their agreement on multiple univariate summary
statistics shown in Figure 4a.

5 Applications

We next apply the proposed test to assess the sample
quality of random data structures obtained from ap-
proximate sampling algorithms over combinatorially
large domains with intractable probabilities.

5.1 Dirichlet process mixture models

The recent paper [31] describes simulation-based cali-
bration (SBC), a procedure for validating samples from
algorithms that can generate posterior samples for a
hierarchical Bayesian model. More specifically, for a
prior π(z) over the parameters z and likelihood func-
tion π(x|z) over data x, integrating the posterior over
the joint distribution returns the prior distribution:

π(z) =

∫
[π(z|x′)π(x′|z′)dx′]π(z′)dz′. (11)

Figure 5: The uniformity of the SRS (bottom row) captures
convergence behavior of MCMC sampling algorithms for
Dirichlet process mixture models that are not captured by
standard diagnostics such as the logscore (top row).

Eq. (11) indicates that by simulating n datasets
{x1, . . . , xn} i.i.d. from the marginal distribution, sam-
ples {ẑ1, . . . , ẑn} (where zi≈π(z|xi)) from an approxi-
mate posterior should be i.i.d. samples from the prior
π(z). An approximate sampler can be thus be diag-
nosed by performing a goodness-of-fit test to check
whether ẑ1:n are distributed according to π. Ranks of
univariate marginals of a continuous parameter vector
z ∈Rd are used in [31]. We extend SBC to handle dis-
crete latent variables z taking values in a large domain.

We sampled n= 1000 datasets {x1, . . . , xn} indepen-
dently from a Dirichlet process mixture model. Each
dataset xi has k= 100 observations and each observa-
tion is five-dimensional (i.e., xi ∈Rk×5) with a Gaus-
sian likelihood. From SBC, samples ẑ1:n (where zi ∈Πk

and |Πk| ≈ 10115) of the mixture assignment vector
should be distributed according to the CRP prior π(z).
The top row of Figure 5 shows trace plots of the logscore
(unnormalized posterior) of approximate samples from
Rao–Blackwellized Gibbs, Auxiliary Variable Gibbs,
and No-Gaps Gibbs samplers (Algorithms 3, 8, and
4 in [21]). Each line corresponds to an independent
run of MCMC inference. The bottom row shows the
evolution of the uniformity of the SRS using m= 64
and the ordering on partitions from Algorithm 2.

While logscores typically stabilize after 100 MCMC
steps (one epoch through all observations in a dataset)
and suggest little difference across the three samplers,
the SRS shows that Rao-Blackwellized Gibbs is slightly
more efficient than Auxiliary Variable Gibbs and that
the sample quality from No-Gaps Gibbs is inferior to
those from the other two algorithms up until roughly
5, 000 steps. These results are consistent with the ob-
servation from [21] that No-Gaps has inefficient mixing
(it excessively rejects proposals on singleton clusters).
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Figure 6: Assessing the goodness-of-fit of approximate samples of a 64× 64 Ising model for Gibbs sampling and Metropolis–
Hastings sampling (with the custom spin proposal from [18]) at two temperatures using the SRS. In both cases, the SRS
converges to its uniform distribution more rapidly for samples obtained from MH than for those from Gibbs sampling.

5.2 Ising models

In this application we use the SRS to assess the sample
quality of approximate Ising model simulations. For
a ferromagnetic k × k lattice with temperature T , the
probability of a spin configuration x ∈ {−1,+1}k×k is

P (x) ∝ exp
(
−1/T

∑
i,j xixj

)
. (12)

While Eq. (12) is intractable to compute for any x due
to the unknown normalization constant, coupling-from-
the-past [25] is a popular MCMC technique which can
tractably obtain exact samples from the Ising model.
For a 64 × 64 Ising model (domain size 264×64), we
obtained 650 exact samples using coupling-from-the-
past, and used these “ground-truth” samples to assess
the goodness-of-fit of approximate samples obtained
via Gibbs sampling and Metropolis–Hastings sampling
(with a custom spin proposal [18, Section 31.1]).

For each temperature T = 3 and T = 8, we obtained
7,800 approximate samples using MH and Gibbs. The
first two rows of Figure 6 each show the evolution of one
particular sample (Gibbs, top; MH, bottom). Two ex-
act samples are shown in the final column of each panel.
All approximate and exact samples are independent
of one another, obtained by running parallel Markov
chains. The SRS of the exact samples with respect
to the approximate samples was taken at checkpoints
of 100 MCMC steps, using m= 12 and an ordering
based on the Hamiltonian energy, spin magnetization,
and connected components. SRS histograms (and 99%
variation bands) evolving at various steps are shown
above the Ising model renderings.

The SRS is non-uniform (including in regimes where the
difference between approximate and exact samples is
too fine-grained to be detected visually) at early steps
and more uniform at higher steps. The plots show
that MH is a more efficient sampler than Gibbs at
moderate temperatures, as its sample quality improves
more rapidly. This characteristic was conjectured in
[18], which noted that the MH sampler “has roughly
double the the probability of accepting energetically
unfavourable moves, so may be a more efficient sampler
[than Gibbs]”. In addition, the plots suggest that
the samples become close to exact (in terms of their
joint energy, magnetization, and connected components
characteristics) after 20,000 steps for T = 8 and 100,000
steps for T = 3, even though obtaining exact samples
using coupling-from-the-past requires between 500,000
and 1,000,000 MCMC steps for both temperatures.

6 Conclusion

This paper has presented a flexible, simple-to-
implement, and consistent goodness-of-fit test for dis-
crete distributions. The test statistic is based on the
ranks of observed samples with respect to new samples
from the candidate distribution. The key insight is to
compute the ranks using an ordering on the domain
that is able to detect differences in properties of interest
in high dimensions. Unlike most existing statistics, the
SRS is distribution-free and has a simple exact sam-
pling distribution. Empirical studies indicate that the
SRS is a valuable addition to the practitioner’s toolbox
for assessing sample quality in regimes which are not
easily handled by existing methods.



Saad, Freer, Ackerman, and Mansinghka

Acknowledgments

The authors thank the anonymous referees for their
helpful feedback. This research was supported by the
DARPA SD2 program (contract FA8750-17-C-0239);
the Ethics and Governance of Artificial Intelligence
Initiative of the MIT Media Lab and Harvard’s Berk-
man Klein Center; the Systems That Learn Initiative
of MIT CSAIL; and an anonymous philanthropic gift.

References

[1] Jayadev Acharya, Constantinos Daskalakis, and
Gautam Kamath. Optimal testing for properties of
distributions. In Advances in Neural Information
Processing Systems 28 (NIPS), pages 3591–3599.
Curran Associates, 2015.

[2] Mohammad Ahsanullah, Valery B. Nevzorov, and
Mohammad Shakil. An Introduction to Order
Statistics. Atlantis Studies in Probability and
Statistics. Atlantis Press, 2013.

[3] Erling B. Andersen. A goodness of fit test for
the Rasch model. Psychometrika, 38(1):123–140,
1973.

[4] Taylor B. Arnold and John W. Emerson. Non-
parametric goodness-of-fit tests for discrete null
distributions. The R Journal, 3(2), 2011.
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