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Abstract

We consider the problem of probably ap-
proximately correct (PAC) ranking n items
by adaptively eliciting subset-wise preference
feedback. At each round, the learner chooses
a subset of k items and observes stochastic
feedback indicating preference information of
the winner (most preferred) item of the cho-
sen subset drawn according to a Plackett-Luce
(PL) subset choice model unknown a priori.
The objective is to identify an ε-optimal rank-
ing of the n items with probability at least
1 − δ. When the feedback in each subset
round is a single Plackett-Luce-sampled item,
we show (ε, δ)-PAC algorithms with a sample
complexity of O

(
n
ε2 ln n

δ

)
rounds, which we

establish as being order-optimal by exhibiting
a matching sample complexity lower bound
of Ω

(
n
ε2 ln n

δ

)
—this shows that there is es-

sentially no improvement possible from the
pairwise comparisons setting (k = 2). When,
however, it is possible to elicit top-m (≤ k)
ranking feedback according to the PL model
from each adaptively chosen subset of size k,
we show that an (ε, δ)-PAC ranking sample
complexity of O

(
n
mε2 ln n

δ

)
is achievable with

explicit algorithms, which represents an m-
wise reduction in sample complexity compared
to the pairwise case. This again turns out to
be order-wise unimprovable across the class
of symmetric ranking algorithms. Our algo-
rithms rely on a novel pivot trick to maintain
only n itemwise score estimates, unlike O(n2)
pairwise score estimates that has been used
in prior work. We report results of numerical
experiments that corroborate our findings.
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1 Introduction

Ranking or sorting is a classic search problem and basic
algorithmic primitive in computer science. Perhaps the
simplest and most well-studied ranking problem is using
(noisy) pairwise comparisons, which started from the
work of Feige et al. [19], and which has recently been
studied in machine learning under the rubric of ranking
in ‘dueling bandits’ [9].

However, more general subset-wise preference feedback
arises naturally in application domains where there
is flexibility to learn by eliciting preference informa-
tion from among a set of offerings, rather than by
just asking for a pairwise comparison. For instance,
web search and recommender systems applications typ-
ically involve users expressing preferences by clicking
on one result (or a few results) from a presented set.
Medical surveys, adaptive tutoring systems and multi-
player sports/games are other domains where subsets of
questions, problem set assignments and tournaments,
respectively, can be carefully crafted to learn users’
relative preferences by subset-wise feedback.

In this paper, we explore active, probably approxi-
mately correct (PAC) ranking of n items using subset-
wise, preference information. We assume that upon
choosing a subset of k ≥ 2 items, the learner receives
preference feedback about the subset according to the
well-known Plackett-Luce (PL) probability model [27].
The learner faces the goal of returning a near-correct
ranking of all items, with respect to a tolerance param-
eter ε on the items’ PL weights, with probability at
least 1− δ of correctness, after as few subset compari-
son rounds as possible. In this context, we make the
following contributions:

1. We consider active ranking with winner informa-
tion feedback, where the learner, upon playing a
subset St ⊆ [n] of exactly k = |St| elements at
each round t, receives as feedback a single winner
sampled from the Plackett-Luce probability dis-
tribution on the elements of St. We design two
(ε, δ)-PAC algorithms for this problem (Section
5) with sample complexity O

(
n
ε2 ln n

δ

)
rounds, for
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learning a near-correct ranking on the items.

2. We show a matching lower bound of Ω
(
n
ε2 ln n

δ

)
rounds on the (ε, δ)-PAC sample complexity of
ranking with winner information feedback (Section
6), which is also of the same order as that for the
dueling bandit (k = 2) [38]. This implies that
despite the increased flexibility of playing larger
sets, with just winner information feedback, one
cannot hope for a faster rate of learning than in
the case of pairwise comparisons.

3. In the setting where it is possible to obtain ‘top-
rank’ feedback – an ordered list of m ≤ k items
sampled from the Plackett-Luce distribution on
the chosen subset – we show that natural gen-
eralizations of the winner-feedback algorithms
above achieve (ε, δ)-PAC sample complexity of
O
(
n
mε2 ln n

δ

)
rounds (Section 7), which is a signif-

icant improvement over the case of only winner
information feedback. We show that this is order-
wise tight by exhibiting a matching Ω

(
n
mε2 ln n

δ

)
lower bound on the sample complexity across (ε, δ)-
PAC algorithms.

4. We report numerical results to show the perfor-
mance of the proposed algorithms on synthetic
environments (Section 8).

By way of techniques, the PAC algorithms we develop
leverage the property of independence of irrelevant at-
tributes (IIA) of the Plackett-Luce model, which allows
for O(n) dimensional parameter estimation with tight
confidence bounds, even in the face of a combinato-
rially large number of possible subsets of size k. We
also devise a generic ‘pivoting’ idea in our algorithms
to efficiently estimate a global ordering using only lo-
cal comparisons with a pivot or probe element: split
the entire pool into playable subsets all containing one
common element, learn local orderings relative to this
element and then merge. Here again, the IIA structure
of the PL model helps to ensure consistency among
preferences aggregated across disparate subsets but
with a common reference pivot. Our sample complex-
ity lower bounds are information-theoretic in nature
and rely on a generic change-of-measure argument but
with carefully crafted confusing instances.

Related Work. Over the years, ranking from pair-
wise preferences (k = 2) has been studied in both
the batch or non-adaptive setting [20, 32, 37, 30] and
the active or adaptive setting [7, 22, 2]. In particular,
prior work has addressed the problem of statistical
parameter estimation given preference observations
from the Plackett-Luce model in the offline setting
[30, 15, 26, 21]. There also have been recent devel-
opments on the PAC objective for different pairwise

preference models, such as those satisfying stochastic
triangle inequalities and strong stochastic transitivity
[38], general utility-based preference models [36], the
Plackett-Luce model [34] and the Mallows model [11]].
Recent work has studied PAC-learning objectives other
than identifying the single (near) best arm, e.g. recov-
ering a few of the top arms [10, 28, 13], or the true
ranking of the items [12, 18]. There is also work on
the problem of Plackett-Luce parameter estimation
in the subset-wise feedback setting [23, 26], but for
the batch (offline) setup where the sampling is not
adaptive. Recent work by Chen et al. [14] analyzes
an active learning problem in the Plackett-Luce model
with subset-wise feedback; however, the objective there
is to recover the top-` (unordered) items of the model,
unlike full-rank recovery considered in this work. More-
over, they give instance-dependent sample complexity
bounds, whereas we allow a tolerance (ε) in defining
good rankings, natural in many settings [34, 38, 11].

2 Preliminaries

Notation. We denote the set [n] = {1, 2, ..., n}. When
there is no confusion about the context, we often rep-
resent (an unordered) subset S as a vector, or ordered
subset, S of size |S| (according to, say, the order in-
duced by the natural global ordering [n] of all the
items). In this case, S(i) denotes the item (member)
at the ith position in subset S. ΣS = {σ | σ is a per-
mutation over items of S}. where for any permutation
σ ∈ ΣS , σ(i) denotes the position of element i ∈ S in
the ranking σ. 1(ϕ) denote an indicator variable that
takes the value 1 if the predicate ϕ is true, and 0 other-
wise. Pr(A) is used to denote the probability of event
A, in a probability space that is clear from the con-
text. Ber(p) and Geo(p) respectively denote Bernoulli
and Geometric 1 random variable with probability of
success at each trial being p ∈ [0, 1]. Moreover, for
any n ∈ N, Bin(n, p) and NB(n, p) respectively denote
Binomial and Negative Binomial distribution.

2.1 Discrete Choice Models and
Plackett-Luce (PL)

A discrete choice model specifies the relative preferences
of two or more discrete alternatives in a given set. A
widely studied class of discrete choice models is the
class of Random Utility Models (RUMs), which assume
a ground-truth utility score θi ∈ R for each alternative
i ∈ [n], and assign a conditional distribution Di(·|θi)
for scoring item i. To model a winning alternative given
any set S ⊆ [n], one first draws a random utility score
Xi ∼ Di(·|θi) for each alternative in S, and selects an
item with the highest random score.

1this is the ‘number of trials before success’ version
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One widely used RUM is the Multinomial-Logit (MNL)
or Plackett-Luce model (PL), where the Dis are taken
to be independent Gumbel distributions with parame-
ters θ′i [3], i.e., with probability densities Di(xi|θ′i) =

e−(xj−θ
′
j)e−e

−(xj−θ
′
j)

, θ′i ∈ R, ∀i ∈ [n]. Moreover as-
suming θ′i = ln θi, θi > 0 ∀i ∈ [n], it can be shown in
this case the probability that an alternative i emerges as
the winner in the set S 3 i becomes:Pr(i|S) = θi∑

j∈S θj
.

Other families of discrete choice models can be obtained
by imposing different probability distributions over the
utility scores Xi, e.g. if (X1, . . . Xn) ∼ N (θ,Λ) are
jointly normal with mean θ = (θ1, . . . θn) and covari-
ance Λ ∈ Rn×n, then the corresponding RUM-based
choice model reduces to the Multinomial Probit (MNP).

Independence of Irrelevant Alternatives A choice
model Pr is said to possess the Independence of Irrel-
evant Attributes (IIA) property if the ratio of prob-
abilities of choosing any two items, say i1 and i2
from within any choice set S 3 i1, i2 is independent
of a third alternative j present in S [4]. Specifi-

cally, Pr(i1|S1)
Pr(i2|S1)

= Pr(i1|S2)
Pr(i2|S2)

for any two distinct sub-

sets S1, S2 ⊆ [n] that contain i1 and i2. Plackett-Luce
satisfies the IIA property.

3 Problem Setup

We consider the PAC version of the sequential decision-
making problem of finding the ranking of n items by
making subset-wise comparisons. Formally, the learner
is given a finite set [n] of n > 2 arms. At each de-
cision round t = 1, 2, . . ., the learner selects a subset
St ⊆ [n] of k items, and receives (stochastic) feed-
back about the winner (or most preferred) item of
St drawn from a Plackett-Luce (PL) model with pa-
rameters θ = (θ1, θ2, . . . , θn), a priori unknown to the
learner. The nature of the feedback is described in Sec-
tion 3.1. We assume henceforth that θi ∈ [0, 1], ∀i ∈ [n],
and also 1 = θ1 > θ2 > . . . > θn for ease of exposition2.

Definition 1 (ε-Best-Item). For any ε ∈ [0, 1), an
item i is called ε-Best-Item if its PL score parameter θi
is worse than the Best-Item i∗ = 1 by no more than ε,
i.e. if θi ≥ θ1− ε. A 0-best item is an item with largest
PL parameter, which is also a Condorcet winner [33]
in case it is unique.

Definition 2 (ε-Best-Ranking). We define a rank-
ing σ ∈ Σ[n] to be an ε-Best-Ranking when no pair
of items in [n] is misranked by σ unless their PL
scores are ε-close to each other. Formally, @i, j ∈
[n], such that σ(i) > σ(j) and θi ≥ θj + ε. A 0-Best-

2We naturally assume that this knowledge ordering of
the items is not known to the learning algorithm, and note
that extension to the case where several items have the
same highest parameter value is easily accomplished.

Ranking will be called a Best-Ranking or optimal rank-
ing of the PL model. With 1 = θ1 > θ2 > . . . > θn,
clearly the unique Best-Ranking is σ∗ = (1, 2, . . . , n).

Definition 3 (ε-Best-Ranking-Multiplicative). We
define a ranking σ ∈ Σ[n] of σ∗ to be ε-Best-
Ranking-Multiplicative if @i, j ∈ [n], such that σ(i) >
σ(j), with Pr(i|{i, j}) ≥ 1

2 + ε.

Note: The term ‘multiplicative’ emphasizes the fact
that the condition Pr(i|{i, j}) ≥ 1

2 + ε equivalently

imposes a multiplicative constraint θi ≥ θj
(

1/2+ε
1/2−ε

)
on

the PL score parameters.

3.1 Feedback models

By feedback model, we mean the information received
(from the ‘environment’) once the learner plays a subset
S ⊆ [n] of k items. We consider the following feedback
models in this work:

Winner of the selected subset (WI): The envi-
ronment returns a single item I ∈ S, drawn indepen-
dently from the probability distribution Pr(I = i|S) =

θi∑
j∈S θj

∀i ∈ S.

Full ranking on the selected subset (FR):
The environment returns a full ranking σ ∈ ΣS ,
drawn from the probability distribution Pr(σ|S) =∏|S|
i=1

θσ−1(i)∑|S|
j=i θσ−1(j)

, σ ∈ ΣS . This is equivalent to pick-

ing item σ−1(1) ∈ S according to winner (WI) feedback
from S, then picking σ−1(2) according to WI feedback
from S \{σ−1(1)}, and so on, until all elements from S
are exhausted, or, in other words, successively sampling
|S| winners from S according to the PL model, without
replacement. But more generally, one can define

Top-m ranking from the selected subset (TR-m
or TR): The environment successively samples (with-
out replacement) only the first m items from among
S, according to the PL model over S, and returns the
ordered list. It follows that TR reduces to FR when
m = k = |S| and to WI when m = 1.

3.2 Performance Objective: (ε, δ)-PAC-Rank –
Correctness and Sample Complexity

Consider a problem instance with Plackett-Luce (PL)
model parameters θ ≡ (θ1, . . . , θn) and subsetsize
k ≤ n, with its Best-Ranking being σ∗ = (1, 2, . . . n),
and ε, δ ∈ (0, 1) are two given constants. A sequen-
tial algorithm that operates on this problem instance,
with WI feedback model, is said to be (ε, δ)-PAC-
Rank if (a) it stops and outputs a ranking σ ∈ Σ[n]

after a finite number of decision rounds (subset plays)
with probability 1, and (b) the probability that its



Active Ranking with Subset-wise Preferences

output σ is an ε-Best-Ranking is at least 1 − δ, i.e,
Pr(σ is ε-Best-Ranking) ≥ 1 − δ. Furthermore, by
sample complexity of the algorithm, we mean the ex-
pected time (number of decision rounds) taken by the
algorithm to stop.

In the context of our above problem objective, it is
worth noting the work by [34] addressed a similar prob-
lem, except in the dueling bandit setup (k = 2) with
the same objective as above, except with the notion of
ε-Best-Ranking-Multiplicative—we term this new objec-
tive as (ε, δ)-PAC-Rank-Multiplicative as referred
later for comparing the results. The two objectives are
however equivalent under a mild boundedness assump-
tion as follows:

Lemma 4. Assume θi ∈ [a, b], ∀i ∈ [n], for any
a, b ∈ (0, 1). If an algorithm is (ε, δ)-PAC-Rank,
then it is also (ε′, δ)-PAC-Rank-Multiplicative for
any ε′ ≤ ε

4b . On the other hand, if an algorithm
is (ε, δ)-PAC-Rank-Multiplicative, then it is also
(ε′, δ)-PAC-Rank for any ε′ ≤ 4aε(1 + ε).

4 Parameter Estimation with PL
based preference data

We develop in this section some useful parameter esti-
mation techniques based on adaptively sampled pref-
erence data from the PL model, which will form the
basis for our PAC algorithms later on, in Section 5.1.

4.1 Estimating Pairwise Preferences via
Rank-Breaking.

Rank breaking is a well-understood idea involving the
extraction of pairwise comparisons from (partial) rank-
ing data, and then building pairwise estimators on the
obtained pairs by treating each comparison indepen-
dently [26, 23], e.g., a winner a sampled from among
a, b, c is rank-broken into the pairwise preferences a � b,
a � c. We use this idea to devise estimators for the pair-
wise win probabilities pij = P (i|{i, j}) = θi/(θi + θj)
in the active learning setting. The following result,
used to design Algorithm 1 later, establishes explicit
confidence intervals for pairwise win/loss probability
estimates under adaptively sampled PL data.

Lemma 5 (Pairwise win-probability estimates for the
PL model). Consider a Plackett-Luce choice model
with parameters θ = (θ1, θ2, . . . , θn), and fix two items
i, j ∈ [n]. Let S1, . . . , ST be a sequence of (possibly
random) subsets of [n] of size at least 2, where T is a
positive integer, and i1, . . . , iT a sequence of random
items with each it ∈ St, 1 ≤ t ≤ T , such that for
each 1 ≤ t ≤ T , (a) St depends only on S1, . . . , St−1,
and (b) it is distributed as the Plackett-Luce winner of
the subset St, given S1, i1, . . . , St−1, it−1 and St, and

(c) ∀t : {i, j} ⊆ St with probability 1. Let ni(T ) =∑T
t=1 1(it = i) and nij(T ) =

∑T
t=1 1({it ∈ {i, j}}).

Then, for any positive integer v, and η ∈ (0, 1),

Pr

(
ni(T )

nij(T )
− θi
θi + θj

≥ η, nij(T ) ≥ v
)
≤ e−2vη

2

,

P r

(
ni(T )

nij(T )
− θi
θi + θj

≤ −η, nij(T ) ≥ v
)
≤ e−2vη

2

.

4.2 Estimating relative PL scores (θi/θj)
using Renewal Cycles

We detail another method to directly estimate (relative)
score parameters of the PL model, using renewal cycles
and the IIA property.

Lemma 6. Consider a Plackett-Luce choice model with
parameters (θ1, θ2, . . . , θn), n ≥ 2, and an item b ∈ [n].
Let i1, i2, . . . be a sequence of iid draws from the model.
Let τ = min{t ≥ N | it = b} be the first time at which b
appears, and for each i 6= b, let wi(τ) =

∑τ
t=1 1(it = i)

be the number of times i 6= b appears until time τ .
Then, τ − 1 and wi(τ) are Geometric random variables
with parameters θb∑

j∈[n] θj
and θb

θi+θb
, respectively.

With this in hand, we now show how fast the empirical
mean estimates over several renewal cycles (defined by
the appearance of a distinguished item) converge to
the true relative scores θi

θb
, a result to be employed in

the design of Algorithm 3 later.

Lemma 7 (Concentration of Geometric Random Vari-
ables via the Negative Binomial distribution.). Sup-
pose X1, X2, . . . Xd are d iid Geo( θb

θb+θi
) random vari-

ables, and Z =
∑d
i=1Xi. Then, for any η > 0,

Pr
(∣∣∣Zd − θi

θb

∣∣∣ ≥ η) < 2 exp

(
− 2dη2(

1+
θi
θb

)2(
η+1+

θi
θb

)).

5 Algorithms for WI Feedback

This section describes the design of (ε, δ)-PAC-Rank
algorithms with winner information (WI) feedback.

A key idea behind our proposed algorithms is to esti-
mate the relative strength of each item with respect to
a fixed item, termed as a pivot-item b. This helps to
compare every item on common terms (with respect
to the pivot item) even if two items are not directly
compared with each other. Our first algorithm Beat-
the-Pivot maintains pairwise score estimates Pib of the
items i ∈ [n]\{b} with respect to the pivot element by
deriving intuition from Lemma 5. The second algo-
rithm Score-and-Rank directly estimates the relative
scores θi

θb
for each item i ∈ [n]\{b}, relying on Lemma 6

(Section 4.2). Once all item scores are estimated with
enough confidence, the items are simply sorted with
respect to their preference scores to obtain a ranking.
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5.1 The Beat-the-Pivot algorithm

Algorithm 1 Beat-the-Pivot

1: Input:
2: Set of item: [n] (n ≥ k), and subset size: k
3: Error bias: ε > 0, confidence parameter: δ > 0
4: Initialize:
5: εb ← min( ε2 ,

1
2 ); b← Find-the-Pivot(n, k, εb,

δ
2 )

6: Set S ← [n] \ {b}, and divide S into G := dn−1k−1 e
sets G1,G2, · · · GG such that ∪Gj=1Gj = S and Gj ∩
Gj′ = ∅, ∀j, j′ ∈ [G], |Gj | = (k − 1), ∀j ∈ [G− 1]

7: If |GG| < (k − 1), then set R ← GG, and
S ← S \ R, S′ ← Randomly sample (k − 1− |GG|)
items from S, and set GG ← GG ∪ S′

8: Set Gj = Gj ∪ {b}, ∀j ∈ [G]
9: for g = 1, 2, . . . , G do

10: Set ε′ ← ε
16 and δ′ ← δ

8n

11: Play the subset Gg for t := 2k
ε′2 log 1

δ′ times
12: Set wi ← Number of times i won in m plays of

Gg, and estimate p̂ib ← wi
wi+wb

, ∀i ∈ Gg
13: end for
14: Choose σ ∈ Σ[n], such that σ(b) = 1 and σ(i) <

σ(j) if p̂ib > p̂jb, ∀i, j ∈ S ∪R
15: Output: The ranking σ ∈ Σ[n]

Beat-the-Pivot (Algorithm 1) first estimates an approx-
imate Best-Item b with high probability (1− δ/2). We
do this using the subroutine Find-the-Pivot(n, k, ε, δ)
(Algorithm Find-the-Pivot) that with probability at
least (1 − δ) Find-the-Pivot outputs an ε-Best-Item
within a sample complexity of O( nε2 log k

δ ).

Once the best item b is estimated, Beat-the-Pivot di-
vides the rest of the n−1 items into groups of size k−1,
G1,G2, · · · GG, and appends b to each group. This way
elements of every group get to compete with b, which
aids estimating the pairwise score compared to the
pivot item b, p̂ib owing to the IIA property of PL model
and Lemma 5 (Section 4.1), sorting which we obtain
the final ranking. Theorem 8 shows that Beat-the-
Pivot enjoys the optimal sample complexity guarantee

of O
(

( nε2 ) log
(
n
δ

))
).

Theorem 8 (Beat-the-Pivot: Correctness and Sample
Complexity). Beat-the-Pivot (Algorithm 1) is (ε, δ)-
PAC-Rank with sample complexity O

(
n
ε2 log n

δ

)
.

5.2 The Score-and-Rank algorithm

Score-and-Rank (Algorithm 3) differs from Beat-the-
Pivot in terms of the score estimate it maintains for
each item. Unlike our previous algorithm, instead of
maintaining pivot-preference scores pib = Pr(i � b),
Beat-the-Pivot, aims to directly estimate the PL-score
θi of each item relative to score of the pivot θb. In

other words, the algorithm maintains the relative score
estimates θi

θb
for every item i ∈ [n] \ {b} borrowing

results from Lemma 6 and 7, and finally return the
ranking sorting the items with respect to their rela-
tive pivotal-score. Score-and-Rank also runs within an
optimal sample complexity of

(
n
ε2 ln n

δ

)
as shown in

Theorem 9. Pseudocode for the algorithm is detailed in
Algorithm 3 in the appendix, due to space constraints.

Theorem 9 (Score-and-Rank: Correctness and Sample
Complexity). Score-and-Rank (Algorithm 3) is (ε, δ)-
PAC-Rank with sample complexity O

(
n
ε2 log n

δ

)
.

5.3 The Find-the-Pivot subroutine (for
algorithms 1 and 3)

In this section, we describe the pivot selection proce-
dure Find-the-Pivot(n, k, ε, δ). The algorithm serves
the purpose of finding an ε-Best-Item with high prob-
ability (1 − δ) that is used as the pivoting element b
both by Algorithm 1 and and 3 (Section 5.1) and 5.2).

Find-the-Pivot is based on the simple idea of tracing the
empirical best item–specifically, it maintains a running
winner r` at every iteration `, making it compete with
a set of k−1 arbitrarily chosen items. After competing
long enough (t := O

(
k
ε2 ln n

δ

)
rounds), if the empirical

winner c` turns out to be more than ε
2 -favorable than

the running winner r`, in term of its pairwise preference
score: p̂c`,r` >

1
2 + ε

2 , then c` replaces r`, or else r`
retains its place and status quo ensues. The formal
description of Find-the-Pivot is in the appendix.

Lemma 10 (Find-the-Pivot: Correctness and Sample
Complexity with WI). Find-the-Pivot (Algorithm 2)
achieves the (ε, δ)-PAC objective with sample complexity
O( nε2 log n

δ ).

6 Lower Bound

In this section we show the minimum sample complexity
required for any symmetric algorithm to be (ε, δ)-PAC-

Rank is at least Ω
(
n
ε2 log n

δ

)
(Theorem 12). Note

this in fact matches the sample complexity bounds
of our proposed algorithms (recall Theorem 8 and 9)
showing the tightness of both our upper and lower
bound guarantees. The key observation lies in noting
that results are independent of k, which shows the
learning problem with k-subsetwise WI feedback is as
hard as that of the dueling bandit setup (k = 2)—the
flexibility of playing a k sized subset does not help
in faster information aggregation. We first define the
notion of a symmetric or label-invariant algorithm.

Definition 11 (Symmetric Algorithm). A PAC al-
gorithm A is said to be symmetric if its output is
insensitive to the specific labelling of items, i.e., if
for any PL model (θ1, . . . , θn), bijection φ : [n] →
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[n] and ranking σ : [n] → [n], it holds that
Pr(A outputs σ | (θ1, . . . , θn)) = Pr(A outputs σ ◦
φ−1 | (θφ(1), . . . , θφ(n))), where Pr(· |(α1, . . . , αn)) de-
notes the probability distribution on the trajectory of A
induced by the PL model (α1, . . . , αn).

Theorem 12 (Lower bound on Sample Complexity
with WI feedback). Given a fixed ε ∈

(
0, 1√

8

]
, δ ∈ [0, 1],

and a symmetric (ε, δ)-PAC-Rank algorithm A for
WI feedback, there exists a PL instance ν such that the

sample complexity of A on ν is at least Ω

(
n
ε2 ln n

4δ

)
.

Proof. (sketch). The argument is based on the fol-
lowing change-of-measure argument (Lemma 1) of [25].
(restated in Appendix D.1 as Lemma 25). To em-
ploy this result, note that in our case, each bandit
instance corresponds to an instance of the problem
with arm set containing all the subsets of [n] of size
k: {S = (S(1), . . . S(k)) ⊆ [n] | S(i) < S(j), ∀i < j}.
The key part of our proof relies on carefully crafting
a true instance, with optimal arm 1, and a family of
slightly perturbed alternative instances {νa : a 6= 1},
each with optimal arm a 6= 1.

Designing the problem instances. We first renum-
ber the n items as {0, 1, 2, . . . n− 1}. Now for any inte-
ger q ∈ [n− 1], we define ν [q] to be the set of problem
instances where any instance νS ∈ ν [q] is associated to
a set S ⊆ [n− 1], such that |S| = q, and the PL param-
eters θ associated to instance νS are set up as follows:

θ0 = θ

(
1
4 − ε2

)
, θj = θ

(
1
2 + ε

)2

∀j ∈ S, and θj =

θ

(
1
2 − ε

)2

∀j ∈ [n−1]\S, for some θ ∈ R+, ε > 0. We

will restrict ourselves to the class of instances of the
form ν [q], q ∈ [n− 1].

Corresponding to each problem νS ∈ ν [q], such that
q ∈ [n− 2], consider a slightly altered problem instance
νS̃ associated with a set S̃ ⊆ [n − 1], such that S̃ =
S ∪ {i} ⊆ [n− 1], where i ∈ [n− 1] \ S. Following the
same construction as above, the PL parameters of the

problem instance νS̃ are set up as: θ0 = θ

(
1
4−ε

2

)
, θj =

θ

(
1
2 + ε

)2

∀j ∈ S̃, and θj = θ

(
1
2 − ε

)2

∀j ∈ [n− 1] \ S̃.

Remark 1. Note that any problem instance νS ∈ ν [q],
q ∈ [n− 1] is thus can be uniquely defined by its under-
lying set S ∈ [n − 1]. For simplicity we will also use
the notations S ∈ ν [q] to define the problem instance.

Remark 2. It is easy to verify that, for any θ ≥ 1
1−2ε ,

an ε-Best-Ranking (Definition. 2) for problem instance
νS , S ⊆ [n − 1], say σS, has to satisfy the following:
σS(i) < σS(0), ∀i ∈ S and σS(0) < σS(j), ∀j ∈ [n −

1] \ S. Thus for any instance S, the items in S should
precede item 0 which itself precedes items in [n− 1]\S.

For any ranking σ ∈ Σn, we denote by σ(1 : i) the set
first i items in the ranking, for any i ∈ [n].

We now fix any set S∗ ⊂ [n − 1], |S∗| = q = bn2 c.
Theorem 12 is now obtained by applying Lemma 25
on pair of instances (νS∗ , νS̃∗), for all possible choices

of S̃ = S ∪ {i}, i ∈ [n − 1]\S, and for the event E :=
{σA(1 : q + 1) = S∗ ∪ {0}}. However we apply a
tighter upper bounds for the KL-divergence term of in
the right hand side of Lemma 25. It is easy to note

that as A is (ε, δ)-PAC-Rank , obviously PrS∗
(
σA(1 :

q+ 1) = S∗ ∪ {0}
)
> 1− δ, and PrS̃∗

(
σA(1 : q+ 1) =

S∗ ∪ {0}
)
< PrS̃∗

(
σA(1 : q + 1) 6= S̃∗

)
< δ. Further

using kl(PrνS∗ (E), P rνS̃∗ (E)) ≥ kl(1 − δ, δ) ≥ ln 1
4δ

(due to Lemma 26) leads to a lower bound guarantee of

Ω
(
n
ε2 ln 1

δ

)
, but that is loose by an Ω

(
n
ε2 log n

)
additive

factor. Novelty of our analysis lies in further utilising
the symmetric property of A to prove a tighter upper
bound od the kl-divergence with the following result:

Lemma 13. For any symmetric (ε, δ)-PAC-Rank
algorithm A, and any problem instance νS ∈ ν [q] as-
sociated to the set S ⊆ [n − 1], q ∈ [n − 1], and for

any item i ∈ S, PrS

(
σA(1 : q) = S\{i} ∪ {0}

)
< δ

q ,

where PrS(·) denotes the probability of an event under
the underlying problem instance νS and the internal
randomness of the algorithm A (if any).

For our purpose, we use the above result for S = S̃∗

which leads to the desired tighter upper bound for
kl(PrνS∗ (E), P rνS̃∗ (E)) ≥ kl(1− δ, δq ) ≥ ln q

4δ , the last

inequality follows due to Lemma 26 (Appendix D.2).
The complete proof can be found in Appendix D.

Remark 3. Theorem 12 shows, rather surprisingly,
that the PAC-ranking with winner feedback information
from size-k subsets, does not become easier (in a worst-
case sense) with k, implying that there is no reduction
in hardness of learning from the pairwise comparisons
case (k = 2). While one may expect sample complexity
to improve as the number of items being simultane-
ously tested in each round (k) becomes larger, there is a
counteracting effect due to the fact that it is intuitively
‘harder’ for a high-value item to win in just a single
winner draw against a (large) population of k− 1 other
competitors. A useful heuristic here is that the number
of bits of information that a single winner draw from
a size-k subset provides is O(ln k), which is not sig-
nificantly larger than when k > 2; thus, an algorithm
cannot accumulate significantly more information per
round compared to the pairwise case.
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We also have a similar lower bound result for the (ε, δ)-
PAC-Rank-Multiplicative objective of Szörényi
et al. [34] (Section 3):

Theorem 14. Given a fixed ε ∈
(
0, 1√

8

]
, δ ∈ [0, 1],

and a symmetric (ε, δ)-PAC-Rank-Multiplicative
algorithm A for WI feedback model, there exists a PL
instance ν such that the sample complexity of A on ν

is at least Ω

(
n
ε2 ln n

4δ

)
.

7 Analysis with Top Ranking (TR)
feedback

We now proceed to analyze the problem with Top-m
Ranking (TR) feedback (Section 3.1). We first show
that unlike WI feedback, the sample complexity lower

bound here scales as Ω

(
n
mε2 ln n

δ

)
(Theorem 15), which

is a factor m smaller than that in Theorem 12 for the
WI feedback model. At a high level, this is because TR
reveals preference information for m items per feedback
round, as opposed to just a single (noisy) information
sample of the winning item (WI). Following this, we
also present two algorithms for this setting which are
shown to enjoy an exact optimal sample complexity

guarantee of O

(
n
mε2 ln n

δ

)
(Section 7.2).

7.1 Lower Bound for Top-m Ranking (TR)
feedback

Theorem 15 (Sample Complexity Lower Bound for

TR). Given ε ∈
(

0, 18

]
and δ ∈ (0, 1], and a symmet-

ric (ε, δ)-PAC-Rank algorithm A with top-m ranking
(TR) feedback (2 ≤ m ≤ k), there exists a PL instance
ν such that the expected sample complexity of A on ν

is at least Ω

(
n
mε2 ln n

4δ

)
.

Remark 4. The sample complexity lower bound for
(ε, δ)-PAC-Rank with top-m ranking (TR) feedback
model is 1

m -times that of the WI model (Theorem 12).
Intuitively, revealing a ranking on m items in a k-set

provides about ln
((

k
m

)
m!
)

= O(m ln k) bits of informa-

tion per round, which is about m times as large as that
of revealing a single winner, yielding an acceleration
by a factor of m.

Corollary 16. Given ε ∈
(

0, 1√
8

]
and δ ∈ (0, 1], and

a symmetric (ε, δ)-PAC-Rank algorithm A with full
ranking (FR) feedback (m = k), there exists a PL
instance ν such that the expected sample complexity of

A on ν is at least Ω

(
n
kε2 ln 1

4δ

)
.

7.2 Algorithms for Top-m Ranking (TR)
feedback model

In this section we present a modification of Beat-the-
Pivot (Algorithm 1) for (ε, δ)-PAC objective with top-
m ranking feedback. Algorithm 5 (Appendix E.1)
shows that how a simple generalization of Beat-the-
Pivot can proved to be (ε, δ)-PAC-Rank with optimal
sample complexity guarantee (Theorem 17), using the
idea of Rank-Breaking [26] on top-m ranking feedback.

Algorithm 5: Generalizing Beat-the-Pivot for top-
m ranking (TR) feedback. The main trick we use
in modifying Beat-the-Pivot for TR feedback is Rank
Breaking, which essentially extracts pairwise compar-
isons from subset-wise feedback as described below:

Rank-Breaking [26]. Given any set S of size k, if
σ ∈ ΣSm , (Sm ⊆ S, |Sm| = m) denotes a possible
top-m ranking of S, the Rank Breaking subroutine
considers each item in S to be beaten by its preceding
items in σ in a pairwise sense. See Algorithm 4 for
detailed description of the Rank-Breaking procedure.

Using Rank-Break (Algorithm 4), our modified Beat-
the-Pivot algorithm now essentially maintains the em-
pirical pivotal preferences p̂ib for each item i ∈ [n]\{b}
by applying Rank Breaking on the TR feedback σ of
each subsetwise play. Of course in general, Rank Break-
ing may lead to arbitrarily inconsistent estimates of the
underlying model parameters [3]. However, owing to
the IIA property of Plackett-Luce model, we get clean
concentration guarantees on pij using Lemma 5. This
is precisely the idea used for obtaining the 1

m factor
improvement in the sample complexity guarantees of
Beat-the-Pivot as analysed in Theorem 8. The formal
descriptions of Beat-the-Pivot generalized to the setting
of TR feedback, is given in Algorithm 5.

Theorem 17 (Beat-the-Pivot: Correctness and Sam-
ple Complexity with TR). With top-m ranking (TR)
feedback model, Beat-the-Pivot (Algorithm 5) is (ε, δ)-
PAC-Rank with sample complexity O( n

mε2 log n
δ ).

Remark 5. Comparing Theorems 8 and 17 shows
that the sample complexity of Beat-the-Pivot with TR
feedback (Algorithm 5) is m times smaller than its
corresponding counterpart for WI feedback, owing to the
additional information gain revealed from preferences
of top-m items instead of just 1 (i.e. only the winner).

8 Experiments

We first present the setup of our empirical evaluations:

Algorithms. We simulate the results on our two pro-
posed algorithms (1). Beat-the-Pivot and (2). Score-
and-Rank. We also compare our ranking performance
with the PLPAC-AMPR method, the only existing
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method (to the best of our knowledge) that addresses
the online PAC ranking problem, although only in the
dueling bandit setup (i.e. k = 2).

Ranking Performance Measure. We use the pop-
ular pairwise Kendall’s Tau ranking loss [29] for mea-
suring the accuracy of the estimated ranking σ with
respect to the Best-Ranking σ∗ with an additive ε-
relaxation: dε(σ

∗,σ) = 1

(n2)

∑
i<j(gij+gji), where each

gij = 1 ((θi > θj + ε) ∧ (σ(i) > σ(j))). All reported
performances are averaged across 50 runs.

Environments. We use four PL models: 1. geo8
(with n = 8) 2. arith10 (with n = 10) 3. har20 (with
n = 20) and 4. arith50 (with n = 50). Their individual
score parameters are as follows: 1. geo8: θ1 = 1,
and θi+1

θi
= 0.875, ∀i ∈ [7]. 2. arith10: θ1 = 1 and

θi − θi+1 = 0.1, ∀i ∈ [9]. 3. har20: θ = 1/(i), ∀i ∈
[20]. 4. arith50: θ1 = 1 and θi− θi+1 = 0.02, ∀i ∈ [9].

Figure 1: Ranking performance vs. sample size (#
rounds) with dueling plays (k = 2)

Ranking with Pairwise Preferences (k = 2). We
first compare the above three algorithms with pairwise
preference feedback, i.e. with k = 2 and m = 1 (WI
feedback model). We set ε = 0.01 and δ = 0.1. Fig-
ure 1 clearly shows superiority of our two proposed
algorithms over PLPAC-AMPR [34] as they give much
higher ranking accuracy given the sample size, rightfully
justifying our improved theoretical guarantees as well
(Theorem 8 and 9). Note that geo8 and arith50 are the
easiest and hardest PL model instances, respectively;
the latter has the largest n with gaps θi − θi+1 = 0.02.
This also reflects in our experimental results as the
ranking estimation loss being the highest for arith50
for all the algorithms, specifically PLPAC-AMPR very
poorly till 104 samples.

Figure 2: Ranking performance vs. subset size (k) with
WI feedback (m = 1)

Ranking with Subsetwise-Preferences (k > 2)

with Winner feedback. We next move to general
subsetwise preference feedback (k ≥ 2) for WI feedback
model (i.e. for m = 1) 3. We fix ε = 0.01 and δ = 0.1
and report the performance of Beat-the-Pivot on the
datasets har20 and arith50, varying k over the range
4 - 40. As expected from Theorem 8 and explained in
Remark 3, the ranking performance indeed does not
seem to be varying with increasing subsetsize k for WI
feedback model for both PL models (Figure 2).

Figure 3: Ranking performance vs. feedback size (m)
for fixed subset size (k)

Ranking with Subsetwise-Preferences (k > 2)
with Top-rank feedback. We finally report the per-
formance of Beat-the-Pivot (Algorithm 5) for top-m
ranking (TR) feedback model on two PL models: har20
(for k = 20) and arith50 (for k = 45), varying the range
of m from 2 to 40 (Figure 3). We set ε = 0.01 and
δ = 0.1 as before. As expected, in this case indeed
larger m improves the ranking accuracy given a fixed
sample size which reflects over theoretical guarantee
of 1

m -factor improvement of the sample complexity for
TR feedback (Theorem 15 and Remark 5).

9 Conclusion and Future Work

We have considered the PAC version of the problem of
adaptively ranking n items from k-subset-wise compar-
isons, in the Plackett-Luce (PL) preference model with
winner information (WI) and top ranking (TR) feed-
back. With just WI, the required sample complexity

lower bound is Ω
(
n
ε2 ln n

δ

)
, which is surprisingly inde-

pendent of the subset size k. We have also designed two
algorithms enjoying optimal sample complexity guar-
antees, and based on a novel pivoting-trick. With TR
feedback, a 1

m -times faster learning rate is achievable,
and we have given an algorithm with optimal sample
complexity guarantees.

In the future, it would be of interest to analyse the
problem with other choice models (e.g. multinomial
probit, Mallows, nested logit, generalized extreme-value
models, etc.), and perhaps to extend this theory to
newer formulations such as assortment selection [5, 16],
revenue maximization with item prices [35, 1], or even
in contextual scenarios [17] where every individual user
comes with their own model parameter.

3PLPAC-AMPR only works for k = 2 and is no longer
applicable henceforth.
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