Shinsaku Sakaue

Appendices

A COST-BENEFIT GREEDY

Algorithm 1 Cost-benefit greedy

1: U<—[d],S<—(Z)
2: while U # 0 do

3: J < argmax; ¢y %
4 if G(SU{j}) < cthen
5 S+ Su{j}

6: U« U\{j}

7: return S

We prove the approximation guarantee of the CBG algorithm (Algorithm 1) for the following problem:

maximize F(S) subject to G(S) <ec.
SCld]

To obtain the main theorem, we use the following definitions and lemmas.

Let S* be any subset of [d] such that G(S*) < ¢* and |S*| = k*. As in the theorem of the main paper, we assume
that min{c, ¢*} > p holds. We suppose that ¢ + 1 elements are added when G(S) > ¢ — p occurs in the loops of
Algorithm 1 for the first time. We let j; be the i-th element added to S for i € [t +1]. We define S; == {j1,...,7:}
for i € [t + 1] and Sp := 0. Thanks to the monotonicity of G(-), the definition of p, and G(S;) < ¢ — p, we have

G(Si) = G(Si—1) +G(ji | Si—1) < G(S¢) +G(ji | Sic1) Sc—p+p=c

for ¢ € [t 4 1]; in particular, we have ¢ — p < G(S¢41) < ¢. Namely, G(S1), ..., G(St41) do not exceed the budget
value, which means that j; (i € [t + 1]) is the element added in the i-th iteration of the algorithm. Moreover, the
output, S, satisfies S;41 C S.

Lemma 1. Fori=1,...,t+ 1, we have

G(ji | Si—1)

F(Si) = F(Si-1) = 0Bk=7s, 5~ - p (F(S*) — F(Si—1)).

Proof. Thanks to the weak submodularity of F(-), we have

> FG1Sic1) =5 1 k- F(S\Si1 | Sic1)
jGS*\Sq‘,_l

=95, b+ F(S" | Siz1) > 75, k= F(S* | Si—1)-

Since j; is chosen greedily, j; = argmax;gs, | gg;lg’:; holds, and hence gg’l‘g’:% > 28121:3 for any j € S*\S;_1.

Using this fact and the above inequality, we obtain

F(i|Sic1) Y, GG 1Sic)>GGilSic) Y, F(ilSio)

JES*\Si—1 FES*\S;_1
> G(ji | Sic1) X vs, k= F(S* | Siz1).

We consider bounding from above };cs.\s, , G(j | Si—1) in LHS. By using the definition of restricted inverse
curvature and superadditivity ratio of G(-), we obtain

. 1 N c*
Z G(j) < mG(S \S;—1) < ma

S

Z G(j[Si-1) <

JES*\Si—1 JES*\S;—1
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where the last inequality comes from G(S*\S;_1) < G(S*) < ¢*. Hence we obtain

* *

c c

(F'(Si) = F(Si—1)) = 57— F (i | Si=1) = G(i | Si—1) X s,k F(S™ | Si=1).
0B 0B
The lemma is obtained by using F(S* | S;—1) = F(S* US;_1) — F(Si—1) > F(5*) — F(S;-1) and rearranging
terms. O
Lemma 2. Fori=1,...,t+ 1, we have

i

1«&)2(1-[1(1—w%w&M.GU”E”‘Q>>F63.

; C
=1

Proof. We prove the lemma by induction on ¢ = 1,...,¢ + 1. First, if i = 1, the target inequality holds thanks
to Lemma 1. We then assume that the target inequality holds for Sq,...,S;_1 and prove it for S;. Combining
Lemma 1 and the assumption, we obtain

F(Si) = F(Si—1) + (F(Si) — F(Si-1))

G 'i Si— *
> F(Sia) + 08k, - SO (b5t (s, )
G(ji | Si— G(ji | Si- y
= (1 — 0Bk=s, k= - (jCI*1>> F(Si—1) + 0Bk=7s, 5 - %F(S )
i Glin | Su_ )
> (1 - H (1 — 0Bk+s, 1~ - (]C|*1)>> F(S").
=1
Thus the lemma holds by induction. O

Theorem 1. Let S be the output of CBG and S* be any subset that satisfies G(S*) < ¢* and |S*| = k*. If
F(-) has submodularity ratio sy, G(-) has superadditivity ratio B+ and restricted inverse curvature 0, and
min{c, ¢*} > p holds, then we have

F(S) = (1 — exp <9ﬁk*%,k* : Cc*p)> F(S").

Proof. We define x = 0fg7ys, x+ - =2 and y; = %SJ:;) for i € [t +1]. Thanks to G(S¢y1) > ¢ —p,

GUji | Si-1) < p < ¢, and 0B4-7s, 4+ < 1, we obtain

c— G(S
zyY; = 0Bk+s, k= - Tp “Yi < OBkeYs, k- (7”1) “Yi = OBkys, k- < 1.
c G(ji | Si-1)
Hence 1 — zy; > 0. Since Zfii Yi = Zfii %S;)l) =1 holds, Hf: (1 — zy;) attains its maximum value when
we have y; = -+ = ypy1 = t_%l Thus we obtain
t4+1 . t+1
c—p G(ilSi-1) c—p 1
1 — 08 .- . < (1-68.- o . . Al
H < Br+s, ,k o GGy ) S Br=s, k | (A1)

i=1
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By using Lemma 2, inequality (A1), and G(Sty1) > ¢ — p, we obtain

F(St41) > (1

:<1

1

+

(1_% i W))w - Lemma 2

C*

&
+ I
_

C—p sz‘szl F

’:1

(1 - 951@ * VS k*

i=1 < )
> (1 I (1 = 0Bks, k- C;p & jzsjl - ) F(S " G(St41) > c—p
i=1
> (1 — ( — 0Brs, k- CC—*p : t+11> ) *. inequality (A1)
> <1 — exp (_eﬁk*’YShk* ' c;p)) F(s7)

Since we have S; C S;y1 C S, we obtain

F(S) > F(Sir) > (1 ~exp (—%k*%,k* o ”)) F(S).

C*
L]

B IHT WITH CBG PROJECTION
Algorithm 2 THT with CBG projection

1: Initialize xo € Rl

2: fort=0,1,...,T—1do

3: gt — Xt — 'f]Vl(Xt)

4 Xer1 ¢ Po(gt) > CBG projection

5: return xr

We prove the theorem that guarantees the performance of Algorithm 2 for the following problem:

minimize [(x) subject to G(supp(x)) < c.
xER4

We first explain the CBG projection (Step 4) in detail. Given any z € Rl z = P.(z) is obtained as follows: We
perform Algorithm 1 with objective function F(S) = ||zs||3 = >jes |zj|2, cost function G(S), and budget value ¢;
the resulting solution, S, satisfies ¢ — p < G(S) < c. We set z; to z; if j € S and 0 otherwise. Note that F(-) is
monotone and modular, which implies that its submodularity ratio is equal to 1. We first prove a key lemma that
guarantees the performance of the CBG projection.

Lemma 3. Assume ¢* > p and let S* be an arbitrary subset such that G(S*) < ¢* and |S*| = k*. Given any
z € R we let S := supp(P.(z)). If G(-) has superadditivity ratio By- and restricted inverse curvature 0, then
the following inequality holds for any ¢ > 927 log( )+ p and ¢ > é+ p:

|zs\s|3 < |zs\s+ 13 + €
¢t T OBk(c—E—p)

Proof. We define S as the first subset, S, in the loops of Algorithm 1 that satisfy G(S) > ¢ — p; note that
¢ — p < G(S) < ¢ holds. As in the proof of Theorem 1, we have

F(S) > (1 — exp (—9@6* : 5;p)> F(S%).
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Therefore, from é >

e 10825 [3/) + p = 55, og(F(5*)/€) + p, we obtain

F(S)> F(S*) — . (A2)
We then suppose that ¢ 4+ 1 elements are added to S in the loops of Algorithm 1 when G(S) > ¢ — p occurs for the

first time. We let j; be the i-th element added to S. We define S; := {Jj1,...,j;} for i € [t +1] and Sg := 0. As
discussed in the proof of Theorem 1, we have

EfpSG(SQUS)SSG(gt_A,_lUg):G(stug)+G(]t+1|gtU§)SC*p+p:C

This inequality means that the budget constraint is not violated for ¢ € [t + 1], and thus j; is added in the
(S| + 9)-th iteration of Algorithm 1. In particular, we have ¢ — p < G(S¢41 US) < ¢. Furthermore, the output,
S, satisfies S; US C S for i = 0,...,t + 1. Since j; is chosen greedily w.r.t. the cost-benefit ratio, we have

F(J1‘§7—1U§) > F(j|§7_1U§) . * ’\‘ = A
OB ®) 2 CURa0d) for any j € S*\{S;—1 US}. Therefore, we obtain

F(]Z | Si,1 @] g) Z G(j | gifl U g) > G(]z ‘ SZ‘,1 U S) Z F(] | Si,1 U g) (A3)
F€S*\{S;—1US} FES*\{S;_1US}

We can bound from below }°, q.\ (s, 15 £'(J | S;_1 US) in RHS as follows

Yo FGISaudS = Y Il = el
7€S*\{5;_1US} jE€S*\{8;_1US}
On the other hand, Zjes*\{éi,lué} G(j|S;-1US) in LHS of (A3) can be bounded from above as follows:
S G5 UY)

jes*\{8;_1US}

1
< ] Z G(j) - definition of restricted inverse curvature
j€S*\{8;_1US}
1 . -
< WG(S*\{Si_l uS}hH) *.* definition of superadditivity ratio
k*
< o G(S\{Si_ USY) < ¢
0B~

Consequently, we have

F(5;US) — F(S5;_1US) = F(j; | Si—1 US)
G | S,-1US)

C*

G(S;US) —G(5;_1US)

C*

> 0B+ |zs\sl|5 = 0Bk - |zs+\s]I3-

Taking the summation of both sides for i = 1,...,t+1, and using G(S¢+1US)—G(S) > (¢—p)—éand S 1 US C S,
we obtain
F(S) = F(S) > F(S141US) — F(S)
)

G(Siy1US)—G(S
> o - SO U8 2 C6)

c—Cc—p
|zs\sll3 > 0Bk~ - THZS*\sH%- (A4)
Combining inequalities (A2) and (A4), we obtain the target inequality as follows:

lzs-\sll3 _ F(S) = F(S) _ F(S)=F(S)+e _ lzs\s[3+¢
¢ T 0Be(c—¢—p) T OBk(c—c—p) T OB-(c—c—p)’

where the last inequality comes from F'(S) — F/(S*) < F(SUS*) — F(S*) = ||zs\s~

2 O

Using the above lemma, we obtain the main theorem:
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Theorem 2. Let k = maxpo<i<7 [|X¢llo and w = maxgo<i<r ||8t|l2- Assume that I(-) is continuously twice
differentiable, pog1x--RSC, and vopyi+-RSM, and that G(-) has supemdditivity ratio B+ and restricted inverse

JIfet>pand e > (Ziiiii) + & log (&) + 2p hold, then we have

curvature 6. Set n = V2 e

1 k+k* bl
s = < (1 5 2250 ) o o 4 L2
2 V2k+k* V2k+k*

Vogtk* Vogtk*

where ¢ == —1 (1 +1. M) maxser | VI(x*)s||2. Specifically, after

T>2-

_ *
Vok+k log ||X0 X ||2
H2k+k* €

steps, we have

Vok4k*

lxr — x*||2 < 3e+2¢ - .
H2k+k>

Proof. Let S* := supp(x*), S; := supp(x¢), St+1 = supp(x¢+1), and U := S; 11 US*. In what follows, given any
A,B C [d], if the inequality of RSC holds with Q = {(x,y) | supp(x) C A,supp(y) C B}, then we say I(-) is
MA,B-RSC.

We first prove an inequality for later use. Note that I(-) is assumed to be twice differentiable. We let H(x) denote
the Hessian of I(-) evaluated at x. Given A,B C [d] such that A C B, if I(-) is ua g-RSC, then the inequality of
RSC implies that function I(x) — 42 ||x||3 is convex at x w.r.t. direction d, where supp(x) C A and supp(d) C B;
ie., H(x)g g = paglg g holds. This fact means that, for any y € R4 such that supp(y) € S* US,, the spectral
norm of (I —nH(y))us,),(uus,) is bounded from above by 1 — nus-us,),(uus,)- Therefore, by using the mean
value inequality, we obtain

[(x* =% = n(VI(x") = VI(x:))ull2 < [[(x* = x¢ = n(VI(x") = VI(x¢)))uus, |2
(1 = mays=us,),uus)) I1(xe — x7) |2
(1-

M2k+k*) |(Xt —X )||2

IANIAIA

= (1 o - ) e (45)

Dok K~

We then evaluate the performance of the CBG projection by bounding ||(x¢+1 — g¢)ull3 from above. Since
X¢41 = Pe(gt), we have |[(xi41 — g¢)ull3 = [[(8¢)s+\s,,, ||3. From Lemma 3 with z = g, S* = supp(x*), S = S¢41,
(&) +p> 75, log (Ilgel|3/(4€?)) + p, the following inequality holds for ¢ > ¢ + p:

-~ 2
andcfg

* * 2
9 9 c 9 4c*e
— = * < * S —
||(Xt+1 gt)UH2 ||(gt)5 \St+1||2 = eﬁk*(c_é_p)H(gt)St,Jrl\s 5+ eﬁk* (C—é—p)
c* 9 4c* e
< e B s I+ 16" = gl )+ gt —
c* 4c*e?

1" — ge)ull3 + (A6)

" 0B (c—c—p) 0Bk-(c—¢—p)

2
. 4c* Voktk* Vol k* ~ . . .
Setting ¢ > 96 (#%M*) + GBk* log ( ) +2p = Gﬁk* (7#%“*) + ¢ + p, we obtain the target inequality as
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follows:

IN

—~

IN

IN

IN

<

<

l[xt41 —x"||2

—_
+

—_ = — —
+ = + +
N = N =

—_
_|_

—
\

—
—+

= [|(xt+1 — X" )ull2 supp(xeyr; —x*) C U
X1 — 8ullz + [[(x" = g)ull2 .- triangle inequality
c* c*
—————— | |(x" —g)ulle + 2¢y | =m————— " (A6) and /2? +y2 < |z| +
Qﬁk*(c—c—p)>”( ull+ 26y [ (A6) and VI < o]+
: W) I(x* —x¢ + nVI(xe))ull2 + Mok *.* definitions of ¢ and g,
Vkt k> Vok+k*
k+k* * *
N o = (TU) = Vi)l
Yokt k>
1 pokyre . Mok 4k L . . .
s | [[VI(x )5,y llo+ ——— - € . triangle inequality and Vi(x*)s« =0
2 Vokyke Vot ke
. W) I(x* —x¢ — n(VI(x") — VI(x¢)))ull2 + ¢+ e L *.» definition of ¢
V2k4k* Vok+k*
Haterke ) (1 - ’“‘2’”’“*) I — x|z + ¢ + E2EERT - (A5)
Vokt k> V2t ke Voktk*
“”“*’“) 3, — x*[|o + ¢ + K2R (1+3) (1—a)<1-2fora>0
U2kt b Vok+ k> 2 2

7~ N7 N 7N + N TN N

N~ N~ N =

We turn to the inequality obtained after T" steps. Using the inequality proved above, we obtain

[z —x"||2
1y T . T—1 | t
< (1_.%%) %0 — %" (12 + <<+2k+k.€) T (1_.%+k)
2 Vokyke Voktk* = 2 Vokikr
1 o\ Vok+k
< (1_. 2kt ) Ix0 — x*[|2 4 2¢ - =2 4 9,
2 Vopypr H2k+k*

* * -1
Setting T > 2 - 2k4E" o0 HXOZX l2 > 10g HXOZX H2/log (1 -1 M) , we obtain

H2k+k* Vok+k*

VoK~

[x7 —x"[|2 < 3e +2¢ -
H2k4-k*
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