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Appendices

A COST-BENEFIT GREEDY

Algorithm 1 Cost-benefit greedy
1: U [d], S ;
2: while U 6= ; do
3: j  argmaxj02U

F (j0|S)
G(j0|S)

4: if G(S [ {j})  c then
5: S S [ {j}
6: U U\{j}
7: return S

We prove the approximation guarantee of the CBG algorithm (Algorithm 1) for the following problem:

maximize
S✓[d]

F (S) subject to G(S)  c.

To obtain the main theorem, we use the following definitions and lemmas.

Let S⇤ be any subset of [d] such that G(S⇤)  c
⇤ and |S⇤| = k

⇤. As in the theorem of the main paper, we assume
that min{c, c⇤} � ⇢ holds. We suppose that t+ 1 elements are added when G(S) > c� ⇢ occurs in the loops of
Algorithm 1 for the first time. We let ji be the i-th element added to S for i 2 [t+1]. We define Si := {j1, . . . , ji}
for i 2 [t+ 1] and S0 := ;. Thanks to the monotonicity of G(·), the definition of ⇢, and G(St)  c� ⇢, we have

G(Si) = G(Si�1) +G(ji | Si�1)  G(St) +G(ji | Si�1)  c� ⇢+ ⇢ = c

for i 2 [t+ 1]; in particular, we have c� ⇢  G(St+1)  c. Namely, G(S1), . . . , G(St+1) do not exceed the budget
value, which means that ji (i 2 [t+ 1]) is the element added in the i-th iteration of the algorithm. Moreover, the
output, S, satisfies St+1 ✓ S.
Lemma 1. For i = 1, . . . , t+ 1, we have

F (Si)� F (Si�1) � ✓�k⇤�St,k⇤ · G(ji | Si�1)

c⇤
(F (S⇤)� F (Si�1)).

Proof. Thanks to the weak submodularity of F (·), we have
X

j2S⇤\Si�1

F (j | Si�1) � �Si�1,k⇤F (S⇤\Si�1 | Si�1)

= �Si�1,k⇤F (S⇤ | Si�1) � �St,k⇤F (S⇤ | Si�1).

Since ji is chosen greedily, ji = argmaxj /2Si�1

F (j|Si�1)
G(j|Si�1)

holds, and hence F (ji|Si�1)
G(ji|Si�1)

� F (j|Si�1)
G(j|Si�1)

for any j 2 S⇤\Si�1.
Using this fact and the above inequality, we obtain

F (ji | Si�1)
X

j2S⇤\Si�1

G(j | Si�1) � G(ji | Si�1)
X

j2S⇤\Si�1

F (j | Si�1)

� G(ji | Si�1)⇥ �St,k⇤F (S⇤ | Si�1).

We consider bounding from above
P

j2S⇤\Si�1
G(j | Si�1) in LHS. By using the definition of restricted inverse

curvature and superadditivity ratio of G(·), we obtain

X

j2S⇤\Si�1

G(j | Si�1) 
1

✓

X

j2S⇤\Si�1

G(j)  1

✓�k⇤
G(S⇤\Si�1) 

c
⇤

✓�k⇤
,
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where the last inequality comes from G(S⇤\Si�1)  G(S⇤)  c
⇤. Hence we obtain

c
⇤

✓�k⇤
(F (Si)� F (Si�1)) =

c
⇤

✓�k⇤
F (ji | Si�1) � G(ji | Si�1)⇥ �St,k⇤F (S⇤ | Si�1).

The lemma is obtained by using F (S⇤ | Si�1) = F (S⇤ [ Si�1) � F (Si�1) � F (S⇤) � F (Si�1) and rearranging
terms.

Lemma 2. For i = 1, . . . , t+ 1, we have

F (Si) �
 
1�

iY

i0=1

✓
1� ✓�k⇤�St,k⇤ · G(ji0 | Si0�1)

c⇤

◆!
F (S⇤).

Proof. We prove the lemma by induction on i = 1, . . . , t+ 1. First, if i = 1, the target inequality holds thanks
to Lemma 1. We then assume that the target inequality holds for S1, . . . ,Si�1 and prove it for Si. Combining
Lemma 1 and the assumption, we obtain

F (Si) = F (Si�1) + (F (Si)� F (Si�1))

� F (Si�1) + ✓�k⇤�St,k⇤ · G(ji | Si�1)

c⇤
(F (S⇤)� F (Si�1))

=

✓
1� ✓�k⇤�St,k⇤ · G(ji | Si�1)

c⇤

◆
F (Si�1) + ✓�k⇤�St,k⇤ · G(ji | Si�1)

c⇤
F (S⇤)

�
 
1�

iY

i0=1

✓
1� ✓�k⇤�St,k⇤ · G(ji0 | Si0�1)

c⇤

◆!
F (S⇤).

Thus the lemma holds by induction.

Theorem 1. Let S be the output of CBG and S⇤
be any subset that satisfies G(S⇤)  c

⇤
and |S⇤| = k

⇤
. If

F (·) has submodularity ratio �S,k⇤ , G(·) has superadditivity ratio �k⇤ and restricted inverse curvature ✓, and

min{c, c⇤} � ⇢ holds, then we have

F (S) �
✓
1� exp

✓
�✓�k⇤�S,k⇤ · c� ⇢

c⇤

◆◆
F (S⇤).

Proof. We define x := ✓�k⇤�St,k⇤ · c�⇢
c⇤ and yi := G(ji|Si�1)

G(St+1)
for i 2 [t + 1]. Thanks to G(St+1) � c � ⇢,

G(ji | Si�1)  ⇢  c
⇤, and ✓�k⇤�St,k⇤  1, we obtain

xyi = ✓�k⇤�St,k⇤ · c� ⇢

c⇤
· yi  ✓�k⇤�St,k⇤ · G(St+1)

G(ji | Si�1)
· yi = ✓�k⇤�St,k⇤  1.

Hence 1� xyi � 0. Since
Pt+1

i=1 yi =
Pt+1

i=1
G(ji|Si�1)
G(St+1)

= 1 holds,
Qt+1

i=1 (1� xyi) attains its maximum value when
we have y1 = · · · = yt+1 = 1

t+1 . Thus we obtain

t+1Y

i=1

✓
1� ✓�k⇤�St,k⇤ · c� ⇢

c⇤
· G(ji | Si�1)

G(St+1)

◆

✓
1� ✓�k⇤�St,k⇤ · c� ⇢

c⇤
· 1

t+ 1

◆t+1

. (A1)
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By using Lemma 2, inequality (A1), and G(St+1) � c� ⇢, we obtain

F (St+1) �
 
1�

t+1Y

i=1

✓
1� ✓�k⇤�St,k⇤ · G(ji | Si�1)

c⇤

◆!
F (S⇤) * Lemma 2

=

 
1�

t+1Y

i=1

✓
1� ✓�k⇤�St,k⇤ · c� ⇢

c⇤
· G(ji | Si�1)

c� ⇢

◆!
F (S⇤)

�
 
1�

t+1Y

i=1

✓
1� ✓�k⇤�St,k⇤ · c� ⇢

c⇤
· G(ji | Si�1)

G(St+1)

◆!
F (S⇤) * G(St+1) � c� ⇢

�
 
1�

✓
1� ✓�k⇤�St,k⇤ · c� ⇢

c⇤
· 1

t+ 1

◆t+1
!
F (S⇤) * inequality (A1)

�
✓
1� exp

✓
�✓�k⇤�St,k⇤ · c� ⇢

c⇤

◆◆
F (S⇤).

Since we have St ✓ St+1 ✓ S, we obtain

F (S) � F (St+1) �
✓
1� exp

✓
�✓�k⇤�S,k⇤ · c� ⇢

c⇤

◆◆
F (S⇤).

B IHT WITH CBG PROJECTION

Algorithm 2 IHT with CBG projection

1: Initialize x0 2 R[d]

2: for t = 0, 1, . . . , T � 1 do
3: gt  xt � ⌘rl(xt)
4: xt+1  Pc(gt) . CBG projection
5: return xT

We prove the theorem that guarantees the performance of Algorithm 2 for the following problem:

minimize
x2Rd

l(x) subject to G(supp(x))  c.

We first explain the CBG projection (Step 4) in detail. Given any z 2 R[d], ẑ = Pc(z) is obtained as follows: We
perform Algorithm 1 with objective function F (S) := kzSk22 =

P
j2S |zj |2, cost function G(S), and budget value c;

the resulting solution, S, satisfies c� ⇢  G(S)  c. We set ẑj to zj if j 2 S and 0 otherwise. Note that F (·) is
monotone and modular, which implies that its submodularity ratio is equal to 1. We first prove a key lemma that
guarantees the performance of the CBG projection.
Lemma 3. Assume c

⇤ � ⇢ and let S⇤
be an arbitrary subset such that G(S⇤)  c

⇤
and |S⇤| = k

⇤
. Given any

z 2 R[d]
, we let S := supp(Pc(z)). If G(·) has superadditivity ratio �k⇤ and restricted inverse curvature ✓, then

the following inequality holds for any c̃ � c⇤

✓�k⇤ log(kzS⇤k22/✏) + ⇢ and c > c̃+ ⇢:

kzS⇤\Sk22
c⇤


kzS\S⇤k22 + ✏

✓�k⇤(c� c̃� ⇢)
.

Proof. We define S̃ as the first subset, S, in the loops of Algorithm 1 that satisfy G(S) > c̃ � ⇢; note that
c̃� ⇢ < G(S̃)  c̃ holds. As in the proof of Theorem 1, we have

F (S̃) �
✓
1� exp

✓
�✓�k⇤ · c̃� ⇢

c⇤

◆◆
F (S⇤).



Greedy and IHT Algorithms for Non-convex Optimization with Monotone Costs of Non-zeros

Therefore, from c̃ � c⇤

✓�k⇤ log(kzS⇤k22/✏) + ⇢ = c⇤

✓�k⇤ log(F (S⇤)/✏) + ⇢, we obtain

F (S̃) � F (S⇤)� ✏. (A2)

We then suppose that t+ 1 elements are added to S̃ in the loops of Algorithm 1 when G(S) > c� ⇢ occurs for the
first time. We let ji be the i-th element added to S̃. We define Ŝi := {j1, . . . , ji} for i 2 [t+ 1] and Ŝ0 := ;. As
discussed in the proof of Theorem 1, we have

c̃� ⇢  G(Ŝ0 [ S̃)  · · ·  G(Ŝt+1 [ S̃) = G(Ŝt [ S̃) +G(jt+1 | Ŝt [ S̃)  c� ⇢+ ⇢ = c.

This inequality means that the budget constraint is not violated for i 2 [t + 1], and thus ji is added in the
(|S̃| + i)-th iteration of Algorithm 1. In particular, we have c� ⇢  G(Ŝt+1 [ S̃)  c. Furthermore, the output,
S, satisfies Ŝi [ S̃ ✓ S for i = 0, . . . , t + 1. Since ji is chosen greedily w.r.t. the cost-benefit ratio, we have
F (ji|Ŝi�1[S̃)

G(ji|Ŝi�1[S̃)
� F (j|Ŝi�1[S̃)

G(j|Ŝi�1[S̃)
for any j 2 S⇤\{Ŝi�1 [ S̃}. Therefore, we obtain

F (ji | Ŝi�1 [ S̃)
X

j2S⇤\{Ŝi�1[S̃}

G(j | Ŝi�1 [ S̃) � G(ji | Ŝi�1 [ S̃)
X

j2S⇤\{Ŝi�1[S̃}

F (j | Ŝi�1 [ S̃). (A3)

We can bound from below
P

j2S⇤\{Ŝi�1[S̃} F (j | Ŝi�1 [ S̃) in RHS as follows
X

j2S⇤\{Ŝi�1[S̃}

F (j | Ŝi�1 [ S̃) =
X

j2S⇤\{Ŝi�1[S̃}

|zj |2 � kzS⇤\Sk22.

On the other hand,
P

j2S⇤\{Ŝi�1[S̃} G(j | Ŝi�1 [ S̃) in LHS of (A3) can be bounded from above as follows:
X

j2S⇤\{Ŝi�1[S̃}

G(j | Ŝi�1 [ S̃)

 1

✓

X

j2S⇤\{Ŝi�1[S̃}

G(j) * definition of restricted inverse curvature

 1

✓�k⇤
G(S⇤\{Ŝi�1 [ S̃}) * definition of superadditivity ratio

 c
⇤

✓�k⇤
. * G(S⇤\{Ŝi�1 [ S̃})  c

⇤

Consequently, we have

F (Ŝi [ S̃)� F (Ŝi�1 [ S̃) = F (ji | Ŝi�1 [ S̃)

� ✓�k⇤ · G(ji | Ŝi�1 [ S̃)

c⇤
kzS⇤\Sk22 = ✓�k⇤ · G(Ŝi [ S̃)�G(Ŝi�1 [ S̃)

c⇤
kzS⇤\Sk22.

Taking the summation of both sides for i = 1, . . . , t+1, and using G(Ŝt+1[ S̃)�G(S̃) � (c�⇢)� c̃ and Ŝt+1[ S̃ ✓ S,
we obtain

F (S)� F (S̃) � F (Ŝt+1 [ S̃)� F (S̃)

� ✓�k⇤ · G(Ŝt+1 [ S̃)�G(S̃)

c⇤
kzS⇤\Sk22 � ✓�k⇤ · c� c̃� ⇢

c⇤
kzS⇤\Sk22. (A4)

Combining inequalities (A2) and (A4), we obtain the target inequality as follows:

kzS⇤\Sk22
c⇤

 F (S)� F (S̃)

✓�k⇤(c� c̃� ⇢)
 F (S)� F (S⇤) + ✏

✓�k⇤(c� c̃� ⇢)

kzS\S⇤k22 + ✏

✓�k⇤(c� c̃� ⇢)
,

where the last inequality comes from F (S)� F (S⇤)  F (S [ S⇤)� F (S⇤) = kzS\S⇤k22.

Using the above lemma, we obtain the main theorem:
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Theorem 2. Let k := maxt:0tT kxtk0 and ! := maxt:0tT kgtk2. Assume that l(·) is continuously twice

differentiable, µ2k+k⇤-RSC, and ⌫2k+k⇤-RSM, and that G(·) has superadditivity ratio �k⇤ and restricted inverse

curvature ✓. Set ⌘ = 1
⌫2k+k⇤ . If c

⇤ � ⇢ and c � 4c⇤

✓�k⇤

⇣
⌫2k+k⇤

µ2k+k⇤

⌘2
+ 2c⇤

✓�k⇤ log
�
!
2✏

�
+ 2⇢ hold, then we have

kxt+1 � x
⇤k2 

✓
1� 1

2
· µ2k+k⇤

⌫2k+k⇤

◆
kxt � x

⇤k2 + ⇣ +
µ2k+k⇤

⌫2k+k⇤
· ✏,

where ⇣ := 1
⌫2k+k⇤

⇣
1 + 1

2 · µ2k+k⇤

⌫2k+k⇤

⌘
maxS2F krl(x⇤)Sk2. Specifically, after

T � 2 · ⌫2k+k⇤

µ2k+k⇤
log
kx0 � x

⇤k2
✏

steps, we have

kxT � x
⇤k2  3✏+ 2⇣ · ⌫2k+k⇤

µ2k+k⇤
.

Proof. Let S⇤ := supp(x⇤), St := supp(xt), St+1 := supp(xt+1), and U := St+1 [ S⇤. In what follows, given any
A,B ✓ [d], if the inequality of RSC holds with ⌦ = {(x,y) | supp(x) ✓ A, supp(y) ✓ B}, then we say l(·) is
µA,B-RSC.

We first prove an inequality for later use. Note that l(·) is assumed to be twice differentiable. We let H(x) denote
the Hessian of l(·) evaluated at x. Given A,B ✓ [d] such that A ✓ B, if l(·) is µA,B-RSC, then the inequality of
RSC implies that function l(x)� µA.B

2 kxk
2
2 is convex at x w.r.t. direction d, where supp(x) ✓ A and supp(d) ✓ B;

i.e., H(x)B,B ⌫ µA,BIB,B holds. This fact means that, for any y 2 R[d] such that supp(y) ✓ S⇤ [ St, the spectral
norm of (I� ⌘H(y))(U[St),(U[St) is bounded from above by 1� ⌘µ(S⇤[St),(U[St). Therefore, by using the mean
value inequality, we obtain

k(x⇤ � xt � ⌘(rl(x⇤)�rl(xt)))Uk2  k(x⇤ � xt � ⌘(rl(x⇤)�rl(xt)))U[Stk2
 (1� ⌘µ(S⇤[St),(U[St))k(xt � x

⇤)k2
 (1� ⌘µ2k+k⇤)k(xt � x

⇤)k2

=

✓
1� µ2k+k⇤

⌫2k+k⇤

◆
k(xt � x

⇤)k2. (A5)

We then evaluate the performance of the CBG projection by bounding k(xt+1 � gt)Uk22 from above. Since
xt+1 = Pc(gt), we have k(xt+1 � gt)Uk22 = k(gt)S⇤\St+1

k22. From Lemma 3 with z = gt, S⇤ = supp(x⇤), S = St+1,
and c̃ = 2c⇤

✓�k⇤ log
�
!
2✏

�
+ ⇢ � c⇤

✓�k⇤ log
�
kgtk22/(4✏2)

�
+ ⇢, the following inequality holds for c > c̃+ ⇢:

k(xt+1 � gt)Uk22 = k(gt)S⇤\St+1
k22 

c
⇤

✓�k⇤(c� c̃� ⇢)
k(gt)St+1\S⇤k22 +

4c⇤✏2

✓�k⇤(c� c̃� ⇢)

 c
⇤

✓�k⇤(c� c̃� ⇢)
(k(gt)St+1\S⇤k22 + k(x⇤ � gt)S⇤k22) +

4c⇤✏2

✓�k⇤(c� c̃� ⇢)

=
c
⇤

✓�k⇤(c� c̃� ⇢)
k(x⇤ � gt)Uk22 +

4c⇤✏2

✓�k⇤(c� c̃� ⇢)
. (A6)

Setting c � 4c⇤

✓�k⇤

⇣
⌫2k+k⇤

µ2k+k⇤

⌘2
+ 2c⇤

✓�k⇤ log
�
!
2✏

�
+ 2⇢ = 4c⇤

✓�k⇤

⇣
⌫2k+k⇤

µ2k+k⇤

⌘2
+ c̃ + ⇢, we obtain the target inequality as
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follows:

kxt+1 � x
⇤k2

= k(xt+1 � x
⇤)Uk2 * supp(xt+1 � x

⇤) ✓ U

 k(xt+1 � gt)Uk2 + k(x⇤ � gt)Uk2 * triangle inequality


 
1 +

s
c⇤

✓�k⇤(c� c̃� ⇢)

!
k(x⇤ � gt)Uk2 + 2✏

s
c⇤

✓�k⇤(c� c̃� ⇢)
* (A6) and

p
x2 + y2  |x| + |y|


✓
1 +

1

2
· µ2k+k⇤

⌫2k+k⇤

◆
k(x⇤ � xt + ⌘rl(xt))Uk2 +

µ2k+k⇤

⌫2k+k⇤
· ✏ * definitions of c and gt


✓
1 +

1

2
· µ2k+k⇤

⌫2k+k⇤

◆
k(x⇤ � xt � ⌘(rl(x⇤)�rl(xt)))Uk2

+ ⌘

✓
1 +

1

2
· µ2k+k⇤

⌫2k+k⇤

◆
krl(x⇤)St+1k2 +

µ2k+k⇤

⌫2k+k⇤
· ✏ * triangle inequality and rl(x⇤)S⇤ = 0


✓
1 +

1

2
· µ2k+k⇤

⌫2k+k⇤

◆
k(x⇤ � xt � ⌘(rl(x⇤)�rl(xt)))Uk2 + ⇣ +

µ2k+k⇤

⌫2k+k⇤
· ✏ * definition of ⇣


✓
1 +

1

2
· µ2k+k⇤

⌫2k+k⇤

◆✓
1� µ2k+k⇤

⌫2k+k⇤

◆
kxt � x

⇤k2 + ⇣ +
µ2k+k⇤

⌫2k+k⇤
· ✏ * (A5)


✓
1� 1

2
· µ2k+k⇤

⌫2k+k⇤

◆
kxt � x

⇤k2 + ⇣ +
µ2k+k⇤

⌫2k+k⇤
· ✏. *

⇣
1 +

a

2

⌘
(1� a)  1� a

2
for a � 0

We turn to the inequality obtained after T steps. Using the inequality proved above, we obtain

kxT � x
⇤k2


✓
1� 1

2
· µ2k+k⇤

⌫2k+k⇤

◆T

kx0 � x
⇤k2 +

✓
⇣ +

µ2k+k⇤

⌫2k+k⇤
· ✏
◆ T�1X

t=0

✓
1� 1

2
· µ2k+k⇤

⌫2k+k⇤

◆t


✓
1� 1

2
· µ2k+k⇤

⌫2k+k⇤

◆T

kx0 � x
⇤k2 + 2⇣ · ⌫2k+k⇤

µ2k+k⇤
+ 2✏.

Setting T � 2 · ⌫2k+k⇤

µ2k+k⇤ log kx0�x⇤k2

✏ � log kx0�x⇤k2

✏

.
log
⇣
1� 1

2 · µ2k+k⇤

⌫2k+k⇤

⌘�1
, we obtain

kxT � x
⇤k2  3✏+ 2⇣ · ⌫2k+k⇤

µ2k+k⇤
.
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