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Abstract

Non-convex optimization methods, such as
greedy-style algorithms and iterative hard
thresholding (IHT), for `0-constrained mini-
mization have been extensively studied thanks
to their high empirical performances and
strong guarantees. However, few works have
considered non-convex optimization with gen-
eral non-zero patterns; this is unfortunate
since various non-zero patterns are quite com-
mon in practice. In this paper, we consider
the case where non-zero patterns are specified
by monotone set functions. We first prove
an approximation guarantee of a cost-benefit
greedy (CBG) algorithm by using the weak

submodularity of the problem. We then con-
sider an IHT-style algorithm, whose projec-
tion step uses CBG, and prove its convergence
guarantee. We also provide many applications
and experimental results that confirm the ad-
vantages of the algorithms introduced.

1 INTRODUCTION

In many practical optimization problems, target solu-
tions are expected to have certain non-zero patterns
such as contiguous sparsity and group sparsity to
name a few. In the context of convex optimization
approaches (Tibshirani et al., 2005; Bach, 2010; Tewari
et al., 2011; Chen et al., 2012), such problems are often
formulated with regularization terms that represent
certain structures of non-zeros; e.g., fused lasso, group
lasso, and submodularity-based regularization.

For the case where only the number of non-zeros is
constrained, i.e., `0-constrained minimization, non-
convex optimization algorithms such as greedy-style
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algorithms, iterative hard thresholding (IHT), and hard
thresholding pursuit (HTP) have recently been attract-
ing much attention thanks to their strong theoretical
guarantees and high empirical performances (Jain et al.,
2014; Yuan et al., 2016; Elenberg et al., 2018). Most
of the existing works are built on desirable properties
of the `0-constraint (e.g., exact projection is possible),
and thus to address non-convex optimization with more
general constraints on non-zeros is very challenging.
Therefore, only a few works have studied non-convex
optimization methods that can deal with more general
constraints than the `0-constraint, even though various
non-zero patterns can arise in practice as considered
in the context of convex optimization. Namely, the
field still awaits a theoretical analysis of non-convex
optimization methods that can handle problems with
a wide variety of constraints on non-zeros.

In this paper, we consider non-convex constrained op-
timization problems formulated as follows:

minimize
x2R[d]

l(x) subject to G(supp(x))  c, (1)

where [d] := {1, . . . , d} and supp(x) ✓ [d] is the sup-

port of x, which is the set of indices corresponding
to the non-zeros of x. We assume that the objec-
tive function, l : R[d] ! R, is continuously differen-
tiable and that it has restricted strong convexity (RSC)
and restricted smoothness (RSM) as detailed later; l(·)
may be non-convex on R[d] in general. Set function
G : 2[d] ! R, which we call the cost function, is mono-
tone and normalized (i.e., G(;) = 0), and c > 0 rep-
resents a budget value; the resulting feasible region
is generally non-convex. We assume that G(·) has a
positive restricted inverse curvature as detailed later.
We define F := {S ✓ [d] | G(S)  c} ✓ 2[d], which is
the collection of all feasible supports. Note that the
`0-constrained minimization, whose constraint is given
by G(supp(x)) = | supp(x)| =: kxk0, is a special case of
problem (1). As elucidated in Section 5, optimization
problems that can be formulated as (1) arise in many
applications. RSC and RSM, imposed on the objective
function, have been used in many recent studies since
they are useful for deriving theoretical guarantees of
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non-convex optimization methods. As in (Jain et al.,
2014), RSC/RSM-based analysis is advantageous in
that it requires neither the demanding restricted iso-

metric property (RIP) condition (Candès et al., 2006)
nor strong convexity (SC) and smoothness (SM) over
the whole domain, R[d].

1.1 Our Contributions

We make the following contributions:

• We consider a cost-benefit greedy (CBG) for prob-
lem (1) and prove its approximation guarantee
based on (Elenberg et al., 2018), which connects
RSC/RSM to weak submodularity.

• We consider an IHT-style method for problem (1),
whose projection step is performed with CBG, and
prove its convergence guarantee by using the above
approximation guarantee of CBG.

• An advantage of the above CBG and IHT is that
they can be applied to a wide variety of non-convex
constrained optimization problems of form (1). To
demonstrate this, we provide many examples of
cost functions, G(·).

• We experimentally evaluate CBG and IHT. Specif-
ically, we show that IHT is advantageous when
problems are well-conditioned, while CBG is effec-
tive for ill-conditioned problems. We also confirm
that both CBG and IHT are robust against the
non-convexity of objective functions compared to
an alternative convex optimization method. We
finally confirm the practical utility of CBG and
IHT via experiments on real-world data.

1.2 Related work

Our work is related to greedy and IHT-style algorithms.
Below we show some relevant studies on each algorithm.

Greedy Algorithm In the area of sparse optimiza-
tion, greedy-style algorithms such as orthogonal match-
ing pursuit (OMP) (Pati et al., 1993), CoSaMP (Needell
and Tropp, 2009), and forward greedy selection (Shalev-
Shwartz et al., 2010) have been studied extensively. For
optimization problems whose constraints are defined
with subadditive coding complexity, Huang et al. (2011)
developed a greedy-style algorithm called StructOMP.
Unlike these works, our analysis of CBG accepts con-
straints defined with monotone set functions. Most of
the above studies rely on the RIP condition (Candès
et al., 2006) or other similar assumptions; the RIP con-
dition is somewhat demanding since it requires the ob-
jective function to be quadratic and its Hessian to have
a bounded condition number on some restricted space.

Jain et al. (2014) showed that RSC/RSM provide a
more general analysis framework for non-convex sparse
optimization; after that, many RSC/RSM-based guar-
antees have been studied for `0-constrained minimiza-
tion (Yuan et al., 2016; Jain and Kar, 2017). Recently,
it has been revealed that `0-constrained minimization
with RSC/RSM objective functions can be seen as
weakly submodular maximization under a cardinal-
ity constraint (Liberty and Sviridenko, 2017; Elenberg
et al., 2018), implying that greedy maximization of
weakly submodular function is a promising approach
to non-convex optimization with RSC/RSM objectives.
However, few studies have considered weakly submodu-
lar maximization with constraints that are more general
than the cardinality constraint. The only exception
is (Chen et al., 2018), which studies weakly submodular
maximization under a matroid constraint. In contrast,
our work considers weakly submodular maximization
under a monotone set-function constraint, which can-
not be represented as a matroid constraint in general.
(Non-)submodular maximization problems with various
constraints were studied in (Zhang and Vorobeychik,
2016; Qian et al., 2018), but their objective functions
are not proved to have connection to RSC/RSM objec-
tives unlike weakly submodular functions.

IHT-style Algorithm For non-convex sparse opti-
mization, IHT/HTP-style methods have been widely
studied (Blumensath and Davies, 2009; Foucart, 2011).
Recently, RSC/RSM-based guarantees of IHT/HTP-
style methods have been proved for `0-constrained min-
imization (Jain et al., 2014; Yuan et al., 2016). IHT-
style methods for non-convex optimization problems
with other constraints have also been studied, but the
problem settings considered in the existing works are
different from problem (1). For example, Khanna and
Kyrillidis (2018) have developed an accelerated IHT
for the case where exact projection onto the feasible
region is possible. Barber and Ha (2018) have proved
convergence of projected gradient descent for the case
where the feasible region is parametrized with local

concavity. Algorithms based on head and tail approxi-

mations have been studied for non-convex optimization
defined on graph structures (Hegde et al., 2015; Zhou
and Chen, 2016). Examples of problem (1) include a
variant of this setting as in Section 5, but our algo-
rithm is different from the existing methods in that it
can be applied to other various problems and that it
requires only simple greedy projection and a gradient
descent procedure, while the existing methods rely on
an elaborated approximation algorithm for an NP-hard
problem, called the prize-collecting Steiner tree. The
closest to our method is an IHT-style method with
greedy projection for non-convex optimization with
group sparsity (Jain et al., 2016). The difference be-
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tween the two methods is as follows: In the projection
step of (Jain et al., 2016), the greedy algorithm approx-
imately solves a submodular maximization problem
under a cardinality constraint; hence the well-known
analysis (Nemhauser et al., 1978) is applicable. On the
other hand, in our IHT with CBG projection, the CBG
algorithm aims to solve modular function maximization
under a monotone set-function constraint; to guarantee
the performance of this projection step, we need an
approximation guarantee of CBG, which is our first
contribution and is presented in Section 3.

1.3 Organization

Section 2 provides necessary definitions and back-
ground. Our main results on CBG and IHT are pre-
sented in Sections 3 and 4, respectively. Section 5
presents examples of monotone cost functions. Experi-
ments are shown in Section 6. Section 7 concludes this
paper. All proofs are presented in the appendices.

2 BACKGROUND

Below we introduce the definitions and background
that are necessary for the subsequent discussion.

Sets and Set Functions Subsets of [d] are denoted
by upper case sans-script fonts: e.g., S and T. Elements
in [d] are basically denoted by j; we sometimes abuse
the notation and denote {j} ✓ [d] simply by j. Set
functions defined on 2[d] are denoted by upper case
letters: e.g., F and G. Given set function F : 2[d] ! R,
we define F (T | S) := F (S[T)�F (S) for any S,T ✓ [d].
All set functions considered in this paper are monotone:
F (T | S) � 0 for any S,T ✓ [d]. We say F (·) is
submodular if it satisfies F (j | S) � F (j | T) for any
S ✓ T and j /2 T and supermodular if it satisfies
F (j | S)  F (j | T) for any S ✓ T and j /2 T.

Submodularity Ratio Given monotone F : 2[d] !
R, its weak submodularity is parametrized with the
following submodularity ratio (Das and Kempe, 2011).
Let U ✓ [d] and k > 0 be a fixed subset and integer,
respectively. We define submodularity ratio �U,k of
F (·) as the largest scalar that satisfies

�U,kF (S | L) 
X

j2S

F (j | L)

for any disjoint L, S ✓ [d] such that L ✓ U and |S|  k.
We have �U,k 2 [0, 1] for any U and k. In particular,
we have �U,k = 1 iff F (·) is submodular. Note that
�U,k  �U0,k0 holds for any U0 ✓ U and k

0  k.

Superadditivity Ratio Let G : 2[d] ! R be any
monotone set function and k > 0 be a fixed integer. As

in (Bogunovic et al., 2018), we define superadditivity

ratio �k of G(·) as the largest scalar that satisfies

�k

X

j2S

G(j)  G(S)

for any |S|  k. Note that we have �k  �k0 for any
k
0  k and that �k 2 [1/k, 1] holds due to monotonicity.

If G(·) is supermodular, we have �k = 1.

Curvature and Inverse Curvature Given a mono-
tone set function G : 2[d] ! R, generalized curva-
ture (Bian et al., 2017) and generalized inverse curva-
ture (Bogunovic et al., 2018) of G are defined as the
smallest scalars ↵, ↵̌ 2 [0, 1], respectively, that satisfy

G(j | S\{j} [M) � (1� ↵)G(j | S\{j})
G(j | S\{j}) � (1� ↵̌)G(j | S\{j} [M)

for any S,M ✓ [d] and j 2 S\M. Function G is sub-
modular (supermodular) iff ↵̌ = 0 (↵ = 0). In our
analysis, it suffices that a variant of the generalized
inverse curvature of cost function G is bounded, which
we define as the largest scalar ✓ 2 [0, 1] that satisfies

G(j) � ✓G(j | M)

for any M ✓ [d] and j /2 M. We refer to ✓ as restricted

inverse curvature since it is defined by restricting the
definition of ↵̌ to the case where S is a singleton: S =
{j}. Note that we have ✓ � 1� ↵̌.

Vectors and Matrices Vectors are denoted by bold
lower case letters (e.g., x and y); zero vectors are
denoted simply by 0. Given S ✓ [d] and x 2 R[d],
whose j-th entry is associated with j 2 [d], xS 2 RS

denotes the restriction of x to S. Matrices are denoted
by bold upper case letters (e.g., A and X); I denotes
the identity matrix. Given A 2 R[n]⇥[d], where n is
a positive integer, AS 2 R[n]⇥S denotes a submatrix
whose columns are restricted to S. Given square matrix
A 2 R[d]⇥[d], AS,S 2 RS⇥S denotes a square submatrix
whose rows and columns are restricted to S.

Restricted Strong Convexity and Restricted
Smoothness Given a continuously differentiable
function, l : R[d] ! R, and ⌦ ✓ R[d] ⇥ R[d], we say
l(·) is µ⌦-RSC and ⌫⌦-RSM if it satisfies

l(y) � l(x) + hrl(x),y � xi+ µ⌦

2
ky � xk22

l(y)  l(x) + hrl(x),y � xi+ ⌫⌦

2
ky � xk22

(2)

for all (x,y) 2 ⌦, where k · k2 denotes the `2-norm.
We refer to µ⌦ and ⌫⌦ as RSC and RSM constants,
respectively. Note that, given µ⌦, ⌫⌦, and ⌦0 ✓ ⌦, we
can set µ⌦0 and ⌫⌦0 so as to satisfy µ⌦0 � µ⌦ and ⌫⌦0 
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⌫⌦, respectively. We call ⌦ := ⌫⌦/µ⌦ � 1 a restricted

condition number (Jain and Kar, 2017), and objective
functions with a smaller restricted condition number
are typically easier to deal with. For convenience,
if (2) holds with ⌦ = {(x,y) | kxk0  k1, kyk0 
k1, kx�yk0  k2}, we say l(·) is µk1,k2 -RSC and ⌫k1,k2 -
RSM. Furthermore, we define µk := µk,k and ⌫k := ⌫k,k.

Other Setups In what follows, we define ⇢ :=
maxj2[d],S✓[d] G(j | S); i.e., ⇢ is the maximum marginal
increase of G yielded by adding a single element. As
in (Shalev-Shwartz et al., 2010), in the context of `0-
constrained minimization, whose constraint is given
by kxk0  k, we typically have a trade-off between
sparsity k and objective error `(x) � `(x⇤), where
x
⇤ 2 R[d] is a target sparse solution. Considering this

background, most existing guarantees are parametrized
with k and k

⇤ = kx⇤k0. Since problem (1) includes
the `0-constrained minimization, similar parametriza-
tion is naturally needed to obtain theoretical guaran-
tees for problem (1). Here, we fix c

⇤ � 0 and take
x
⇤ := argminx2R[d]{l(x) | G(x)  c

⇤} to be a target
solution; our guarantees will be parametrized with c

and c
⇤ as shown later. We also define k

⇤ := kx⇤k0.

3 COST-BENEFIT GREEDY

We consider a greedy-style algorithm for problem (1).
As in (Krause and Cevher, 2010; Bogunovic et al.,
2018), we define a set function as follows:

F (S) := l(0)� min
supp(x)✓S

l(x), (3)

where S ✓ [d]. Note that F (·) is monotone and satisfies
F (;) = 0. We assume that F (S) can easily be evalu-
ated for any S 2 F , which is true in many cases: If l(·)
is a quadratic loss function, F (S) can be obtained by
computing a pseudo-inverse matrix. Given more gen-
eral objective functions, we can use iterative methods
(e.g., (Shalev-Shwartz and Zhang, 2016)) to compute
the minimum in (3). With F (·) thus defined, we re-
formulate problem (1) as the following set-function
maximization problem:

maximize
S✓[d]

F (S) subject to G(S)  c. (4)

Thanks to the result of (Elenberg et al., 2018), the
above problem can be seen as a constrained weakly
submodular function maximization problem. Formally,
F (·) has the following property:
Proposition 1 (Elenberg et al. (2018)). For any U ✓
[d] and k 2 Z>0, submodularity ratio �U,k of F (·) is

bounded with RSC and RSM constants of l(·) as

�U,k �
µ|U|+k

⌫|U|+1,1
�

µ|U|+k

⌫|U|+k
.

Algorithm 1 Cost-benefit greedy
1: U [d], S ;
2: while U 6= ; do
3: j  argmaxj02U

F (j0|S)
G(j0|S)

4: if G(S [ {j})  c then
5: S S [ {j}
6: U U\{j}
7: return S

Algorithm 1 presents the details of the cost-benefit
greedy algorithm (CBG) for problem (4), which is a
set-function constraint version of the greedy algorithm
studied in (Sviridenko, 2004; Leskovec et al., 2007). A
similar algorithm, called StructOMP, was also stud-
ied in (Huang et al., 2011) for the case where l(·) is
quadratic and the constraint is defined using subaddi-
tive coding complexity. Unlike this result, our result
accepts any l(·) with RSC/RSM and monotone cost
functions with positive restricted inverse curvature.
Theorem 1. Let S be the output of CBG and S⇤

be

any subset that satisfies G(S⇤)  c
⇤

and |S⇤| = k
⇤
. If

F (·) has submodularity ratio �S,k⇤ , G(·) has superaddi-

tivity ratio �k⇤ and restricted inverse curvature ✓, and

min{c, c⇤} � ⇢ holds, then we have

F (S) �
✓
1� exp

✓
�✓�k⇤�S,k⇤ · c� ⇢

c⇤

◆◆
F (S⇤).

By using definition (3), Proposition 1, and Theorem 1,
we obtain the following guarantee of CBG for prob-
lem (1):
Corollary 1.a. Let x := argminsupp(x0)✓S l(x

0) and

k := |S|. If l(·) is µk+k⇤-RSC and ⌫k+1,1-RSM, then

l(x)  l(x⇤)+exp

✓
�✓�k⇤

µk+k⇤

⌫k+1,1
· c� ⇢

c⇤

◆
(l(0)�l(x⇤))

holds. In particular, for any ✏ > 0, if we have

c � c
⇤

✓�k⇤
· ⌫k+1,1

µk+k⇤
log

l(0)� l(x⇤)

✏
+ ⇢,

then l(x)  l(x⇤) + ✏ holds.

As in (Shalev-Shwartz et al., 2010), in the case of `0-
constrained minimization, whose constraint is given by
kxk0  k, the greedy algorithm is known to achieve an
✏-error by setting

k � kx⇤k0 · ⌫
µ
log

l(0)� l(x⇤)

✏
,

where µ := µR[d]⇥R[d] and ⌫ := ⌫R[d]⇥R[d] are SC and
SM constants, respectively. Therefore, our result can
be seen as a set-function-constraint version of the ex-
isting result for `0-constrained minimization, where
the difficulty of dealing with general cost functions is
represented using parameters: ✓ and �k⇤ .
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Algorithm 2 IHT with CBG projection

1: Initialize x0 2 R[d]

2: for t = 0, 1, . . . , T � 1 do
3: gt  xt � ⌘rl(xt)
4: xt+1  Pc(gt)

5: return xT

4 IHT WITH CBG PROJECTION

We consider applying an IHT-style method (Algo-
rithm 2) to problem (1). Similarly to the standard
IHT (Jain et al., 2014), the algorithm iteratively up-
dates a solution via gradient descent and projection
onto the feasible region. However, since the constraint
is given by a set function, G(·), we need a projec-
tion step that works well with G(·). Here, we use the
CBG algorithm to perform the projection step, which
is denoted by Pc(gt). More precisely, we execute Al-
gorithm 1 with objective function F (S) = k(gt)Sk22,
cost function G(S), and budget value c; we thus obtain
solution S. We then set (xt+1)j to (gt)j if j 2 S and
0 otherwise. This projection step is similar to that
of (Jain et al., 2016), but there is a technical difference
between them as explained in Section 1.2. Thanks to
Theorem 1, we can evaluate the performance of Pc(·),
from which we can obtain the following convergence
guarantee of IHT with CBG projection:
Theorem 2. Let k := maxt:0tT kxtk0 and ! :=
maxt:0tT kgtk2. Assume that l(·) is continuously

twice differentiable, µ2k+k⇤-RSC, and ⌫2k+k⇤-RSM,

and that G(·) has superadditivity ratio �k⇤ and re-

stricted inverse curvature ✓. Set ⌘ = 1
⌫2k+k⇤ . If c

⇤ � ⇢

and c � 4c⇤

✓�k⇤

⇣
⌫2k+k⇤

µ2k+k⇤

⌘2
+ 2c⇤

✓�k⇤ log
�
!
2✏

�
+ 2⇢ hold, then

we have

kxt+1 � x
⇤k2


✓
1� 1

2
· µ2k+k⇤

⌫2k+k⇤

◆
kxt � x

⇤k2 + ⇣ +
µ2k+k⇤

⌫2k+k⇤
· ✏,

where ⇣ := 1
⌫2k+k⇤

⇣
1 + 1

2 · µ2k+k⇤

⌫2k+k⇤

⌘
maxS2F krl(x⇤)Sk2.

Specifically, after T � 2 · ⌫2k+k⇤

µ2k+k⇤ log kx0�x⇤k2

✏ steps, we

have kxT � x
⇤k2  3✏+ 2⇣ · ⌫2k+k⇤

µ2k+k⇤ .

Namely, given appropriate c, we can recover x
⇤ with

up to O(⇣ · ⌫2k+k⇤

µ2k+k⇤ ) error; in particular, ⇣ = 0 holds if
xmin := argminx2R[d] l(x) satisfies G(supp(xmin))  c

⇤.
As in (Jain et al., 2014), IHT achieves an ✏-error for `0-

constrained minimization if k � ⌦

✓⇣
⌫2k+k⇤

µ2k+k⇤

⌘2
kx⇤k0

◆

and T � ⌦
⇣

⌫2k+k⇤

µ2k+k⇤ log
⇣

l(x0)
✏

⌘⌘
. Therefore, our result

can again be seen as a set-function-constraint version
of the existing result for `0-constrained minimization.

Below we detail additional techniques that can improve
the empirical performance of the algorithm.

Backtracking for Step-size Computation In ex-
periments, we use the following standard backtracking
to compute ⌘ in Step 3. Let ⌘t denote the step size used
in the t-th iteration. We first set ⌘t  2⌘t�1 if t � 2
and ⌘t = 1 if t = 1. If l(gt) > l(xt) occurs with the cur-
rent step size, ⌘t, we then set ⌘t  ⌘t/2 and recompute
gt; we repeat this until we get l(gt)  l(xt). We thus
guarantee that the objective value always decreases via
gradient descent in Step 3.

Full Correction The following full-correction step
can be incorporated into Algorithm 2: After obtaining
xt+1 in Step 4, we set xt+1  argminx2R[d]{l(x) |
supp(x) ✓ supp(xt+1)}. This technique is often used
to speed up IHT, and so we used it in our experiments.

5 APPLICATIONS

An advantage of the above CBG and IHT is that it can
be applied to various problems of form (1). Below we
list examples of cost functions, G(·), and we show that
their superadditivity ratio, �k, and restricted inverse
curvature, ✓, can be bounded.

Non-subadditive Costs Most existing works on
greedy algorithms that deal with set-function-based
constraints assume that the set functions have subad-
ditivity (Huang et al., 2011) or submodularity (Iyer
and Bilmes, 2013). However, those properties are not
always satisfied in realistic situations. To be concrete,
let B1,B2 ✓ [d] be two fixed subsets, which may over-
lap. We consider a sparse regression problem, where [d]
represents the full set of features; we suppose that B1

and B2 represent two groups of expensive features and
that to use any j1 2 B1 and j2 2 B2 simultaneously is
very expensive. To force the resulting solutions to be
sparse and cheap, it is natural to use G(S) = |S|+C(S)
as a cost function, where C(S) is defined as

C(S) :=

8
><

>:

a if either S \ B1 6= ; or S \ B2 6= ;,
b if S \ B1 6= ; and S \ B2 6= ;,
0 otherwise

with some 0  a  b. The function is monotone, but it
is neither submodular nor subadditive; if S1 ✓ B1\B2,
S2 ✓ B2\B1, and b > 2a, then we have C(S1)+C(S2) <
C(S1[S2)  C(S1[S2)+C(S1\S2). On the other hand,
since we have |S|+C(S)

|S|+
P

j2S C(j) �
1

1+ 1
|S|

P
j2S C(j)

� 1
1+b for

any S ✓ [d], superadditivity ratio �k is bounded from
below by 1

1+b . Furthermore, by considering each case
separately, we can confirm that restricted inverse curva-
ture ✓ of G is bounded from below by min{1, 1+a

1+(b�a)}.
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It is not difficult to extend the above discussion to the
case where there are more groups of expensive features.
In the experiment (Section 6.4), we show that such
a cost function naturally arises when predicting the
status of patients from data collected via some tests.

Contiguous Sparsity Suppose that the entries of
x 2 R[d] are arranged on a 1D line. We aim to obtain
sparse x such that supp(x) has a small number of in-
tervals (see, the right figure in Figure 3). As in (Bach,
2010), the following submodular function is often used
to obtain such a solution: G(S) := ⇠|S| + NI(S), where
⇠ � 0 is a hyper-parameter and NI(S) is the number of
intervals formed by S (e.g., NI({1, 2, 4, 5}) = 2). More
generally, given a graph and vertex subset S, we can
define NI(S) as the number of connected components in-
duced by S. The resulting constraint forces solutions to
have a small number of non-zeros and connected compo-
nents, which can be seen as a variant of the constraint
considered in (Hegde et al., 2015). Let deg � 0 be the
largest degree in the graph, and assume that ⇠ is set to
satisfy ⇠ � deg�1, which makes function G monotone.
Since G is submodular, we have ✓ � 1�↵̌ = 1. Further-
more, since ⇠|S|+NI(S)

⇠|S|+
P

j2S NI(j) �
⇠|S|+1

⇠|S|+
P

j2S NI(j) �
⇠+k�1

⇠+1

holds for any S of size at most k, we have �k � ⇠+k�1

⇠+1 .

Submodular Costs with Bounded Curvature
As in (Sharma et al., 2015; Maehara et al., 2017), var-
ious monotone submodular functions have bounded
curvature ↵ 2 [0, 1]. As shown in (Bogunovic et al.,
2018), superadditivity ratio �k is bounded from below
by 1�↵, and restricted inverse curvature ✓ of submod-
ular functions is equal to 1. In particular, if G(·) is
modular, which corresponds to the case of a knapsack
constraint, we have ✓ = �k = 1. Therefore, our analy-
sis can be applied to any monotone submodular cost
function whose curvature ↵ is bounded from above.

Concave Functions of Non-negative Weights
Let h : [0,1) ! [0,1) be a non-decreasing con-
cave function such that h(0) = 0, and suppose that
each j 2 [d] is associated with non-negative weight
wj � 0. Then, G(S) := h(

P
j2S wj) is known to be

monotone and submodular (Bach, 2013); hence ✓ = 1.
Of particular interest, letting p 2 [1,1) and regarding
w

p
j � 0 as a weight value, the p-norm function defined

as G(S) = kwSkp := (
P

j2S w
p
j )

1/p is monotone and
submodular, where w := (w1, . . . , wd)>. Thanks to
Hölder’s inequality, we have

P
j2S wj  kwSkp|S|

p�1
p ,

which means �k � k
� p�1

p .

Spectral Functions of Submatrix Given matrix
A 2 R[n]⇥[d], monotone submodular functions, G(S),
defined with submatrix AS are used in many sce-

narios. One such example is the trace norm func-
tion, G(S) =

q
tr(A>

S AS), which is a composition
of h(x) =

p
x and

P
j2S kAjk22; hence its super-

additivity ratio and restricted inverse curvature are
bounded as above. In sparse Bayesian learning, G(S) =
log(det(⇠IS,S + A

>
S AS)) is often used (Wipf and Na-

garajan, 2009; Bach, 2010), which is monotone if ⇠ � 1.
We define X := ⇠I+A

>
A and xmax := maxj2[d] Xj,j .

Let �min be the smallest eigenvalue of X. If �min > 1,
then �k = min|S|k

log(det(XS,S))P
j2S logXj,j

� log �min

log xmax
holds. Fur-

thermore, we have ✓ = 1 from the submodularity.

6 EXPERIMENTS

We conduct experiments to study behavior of CBG
and IHT. In Sections 6.1, 6.2, and 6.3, we use synthetic
instances of regression with contiguous sparsity to elu-
cidate typical behavior of CBG and IHT with various
settings. In Section 6.4, we apply CBG and IHT to
instances with real-world data.

In Sections 6.1–6.3, we use fused lasso (Tibshirani et al.,
2005) as a baseline method, which is a convex-relaxation
method to deal with contiguous sparsity. With fused
lasso, a solution is obtained by solving minx2R[d] l(x) +

�1kxk1 + �2
Pd

i=2 |xi � xi�1|. We used the efficient
fused lasso algorithm (EFLA) (Liu et al., 2010) to solve
the problem. We applied fused lasso with 16 pairs of pa-
rameters, (�1,�2) 2 {10�1

, 10�2
, 10�3

, 10�4}2, to the
instances, and we found that the overall performance
is good with (�1,�2) = (10�2

, 10�3); hence this pair is
used in the following experiments.

All our experiments were conducted on a 64-bit macOS
(High Sierra) machine with 3.3GHz Intel Core i7 CPUs
and 16 GB RAM. With IHT and fused lasso, we contin-
ued the iteration until the objective-value improvement,
l(xt)� l(xt+1), became smaller than 10�8.

Summary of Results Since the experiments are
very extensive, we here summarize the results: IHT
works well with well-conditioned instances (Section 6.1),
while CBG is effective for ill-conditioned instances in
terms of solution quality (Section 6.2). Both CBG
and IHT can work well even if the objective functions
are non-convex, while fused lasso cannot (Section 6.3).
Section 6.4 demonstrates that CBG and IHT can work
with a non-subadditive cost function. We also see that
CBG and IHT have complementary natures, which
emphasizes the importance of studying both of them.

6.1 Well-conditioned Instances

We consider a regression model with contiguous spar-
sity on a 1D line; given a sample of size n, we estimate
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Figure 1: Results of well-conditioned instances. The left
and right figures show the running times and estimation
errors of the three methods, respectively. Each value
is calculated by taking an average over 100 instances.

x 2 R[d] that has a small number of non-zeros and
intervals. Given design matrix A 2 R[n]⇥[d] and obser-
vation vector y 2 R[n], we use a quadratic loss function:
l(x) := 1

2nky �Axk22. We randomly generated 100 in-
stances as follows. We chose Strue ✓ [d] of size k, which
corresponds to non-zeros of the true solution, xtrue,
so as to have only two intervals. Each non-zero entry
of xtrue was chosen uniformly at random from [�1, 1].
As a cost function, we used G(S) = 2|S| + NI(S). In
this well-conditioned setting, we drew each entry of
A 2 R[n]⇥[d] from the standard normal distribution,
which we denote by N , and we set ytrue = Axtrue.
We then set y = ytrue + 0.1u, where each entry of
u 2 R[n] was drawn from N . We thus obtained A and
y. Throughout this section, we set k = 10, and we inves-
tigate how the sample size, n, and the dimensionality, d,
affect the performance of the algorithms. The budget
value was set as c = 1.25(k/d)⇥G([d]). We evaluate
the three methods (CBG, IHT, and fused lasso) by run-
ning time and estimation error, kx� xtruek2/kxtruek2,
where x is an output of the algorithms.

Results The results are presented in Figure 1. The
left figure shows the running times of the three methods,
where the dimensionality varies as d = 50, 100, . . . , 300
and we set n = bk log dc. We see that IHT is far faster
than the other methods. The right figure indicates
estimation errors of each method; here, we set d = 100
and the sample size varies as n = 50, 100, . . . , 300.
Except for the case of n = 50, IHT achieves the smallest
estimation error. These results suggest that IHT is the
overall winner when instances are well-conditioned and
sufficiently large samples are available.

6.2 Ill-conditioned Instances

The problem setting used in this section is almost
the same as that of the previous section. The only
difference is the construction of design matrix A 2
R[n]⇥[d]: The matrix consists of bn/2c rows that are
drawn from a heavily correlated d-dimensional normal
distribution, whose correlation coefficient is set to 0.8,
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Figure 2: Comparisons of running times and estima-
tion errors for ill-conditioned instances. Each value is
calculated by taking an average over 100 instances.

and dn/2e rows whose elements are drawn from N .
Matrix A thus obtained has a larger condition number
than the previous one. We thus generated 100 ill-
conditioned random instances.

Results The results are shown in Figure 2. As with
the well-conditioned case, IHT is the fastest. Compared
to the well-conditioned case, fused lasso is much slower
than CBG. This is because the speed of fused lasso, a
convex-optimization approach, is more negatively im-
pacted by the ill-condition than is CBG. More precisely,
the speeds of fused lasso and CBG generally depend
on the condition number,  := ⌫/µ, and restricted con-
dition number, ⌦, respectively; with ill-conditioned
instances,  tends to become much larger than ⌦, and
thus fused lasso slows down much more. Regarding
estimation errors, unlike the well-conditioned case, the
performance of IHT is the poorest, and CBG achieves
the smallest errors. This is consistent with our theoret-
ical results: To obtain the guarantees, IHT and CBG
require that the budget value, c, is larger than ⌦(2

⌦)
and ⌦(⌦), respectively, which implies IHT is more
vulnerable to the ill-condition than CBG.

6.3 Non-convex Objective Functions

We again consider regression problems with contiguous
sparsity. We set d = 100 and k = 10. As in the previous
sections, xtrue 2 R[d] has k non-zeros, which form only
two intervals as in Figure 3; we here set all non-zeros of
xtrue to 1. To create a non-convex objective function,
we first randomly generated a graph Laplacian matrix,
L 2 R[d]⇥[d], whose smallest eigenvalue is always equal
to 0. We then set l(x) = 1

2d (x� xtrue)>H(x� xtrue),
where H := L�!I; the smallest eigenvalue of the Hesse
matrix, H/d, is �!/d, and so ! � 0 can be seen as a
parameter that controls the non-convexity of l(·). On
the other hand, as long as ! is small, the objective
function is RSC/RSM over the feasible region. We
observed that l(·) became non-convex over the feasible
region when ! � 1; in this case the optimal value can
become arbitrarily small. Therefore, we consider l(·)
with ! = 0, 0.2, . . . , 0.8.



Greedy and IHT Algorithms for Non-convex Optimization with Monotone Costs of Non-zeros

0.0 2.0 4.0 6.0 8.0
Non-convexity: �

0.00

0.25

0.50

0.75

1.00
E

st
im

at
io

n
er

ro
r:

kx
�

x
tr

u
ek

2

kx
tr

u
ek

2
CBG

IHT

Fused Lasso

0 50 100
j

xtrue

CBG

IHT

Fused Lasso

Figure 3: Results of an instance with a non-convex
objective function. The left figure shows estimation
errors of each method. The right figure illustrates xtrue

and solutions of the three methods for ! = 0.8.

Results Figure 3 shows the results. As in the left
figure, CBG and IHT achieve small estimation errors
for every !, while those of fused lasso increase with
!. The right figure illustrates xtrue and the solutions
obtained with the three methods for ! = 0.8. We see
that CBG and IHT successfully recovered xtrue, while
fused lasso failed to recover xtrue. Note that fused
lasso is expected to perform well in this setting since
the true solution, xtrue, has only four pairs of adjacent
entries, (xi�1,xi), satisfying xi�1 6= xi; in such cases,
the fusion penalty, �2

Pd
i=2 |xi�xi�1|, typically works

well. Therefore, the performance decline of fused lasso
is purely due to the increase in non-convexity. These
results suggest that CBG and IHT are advantageous
when the objective functions are non-convex.

6.4 Real-world Instances

We consider sparse regression instances with real-world
data. As in Sections 6.1 and 6.2, the objective function
is defined as l(x) := 1

2nky �Axk22. Observation vector
y and design matrix A were obtained from Diabetes
data, which is available as a scikit-learn dataset. The
original data has 10 features: age, sex, bmi, average
blood pressure (abp), and six attributes (S1–S6) whose
values are obtained via a blood test. As in (Bertsimas
et al., 2016), we consider interaction of the original
features; consequently, we have d = 10 +

�10
2

�
= 55

features. The dataset has a sample of size n = 442, and
we split them into training data (n = 200) and test data
(n = 242). With the data thus obtained, we perform
regression to obtain a sparse linear model, which we
use to predict the status of patients. Here, we consider
a cost function that forces output solutions to be sparse
and burdenless; to obtain the values of abp and S1–S6,
we need to conduct a blood pressure test and blood test,
respectively, which are burdensome for a patient, and to
do both of the tests imposes much of a burden. Thus, to
avoid using features that requires burdensome tests, we
use cost function G(S) := |S|+C(S), where C : 2[d] ! R
is defined as follows: Let B1,B2 ✓ [d] be two subsets
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Figure 4: Training and test errors of CBG and IHT
with various budget values.

of burdensome features that are associated with abp
and S1–S6, respectively; for example, an interaction
feature that consists of age and abp is included in B1.
Given budget value c, we define

C(S) :=

8
><

>:

0.1c if either S \ B1 6= ; or S \ B2 6= ;,
0.3c if S \ B1 6= ; and S \ B2 6= ;,
0 otherwise.

We consider various budget values c = 0, 2, . . . , 10. To
the best of our knowledge, no methods other than CBG
and IHT can work with the above cost function, and
thus we apply the two methods to the problem and
evaluate their performances.

Results Figure 4 shows the results. When c was
small (about c  4), IHT outperformed CBG. Actually,
IHT successfully avoided choosing burdensome features,
while CBG had trouble handling the constraints with
small c; in fact, all solutions x obtained with CBG
satisfied supp(x) \ B1 6= ; and supp(x) \ B2 6= ; for
c � 2, which leads to excessive cost values. When c was
large, however, IHT behaved somewhat conservatively;
even with sufficiently large c, the solutions of IHT did
not use features included in B1. In contrast, CBG
achieved small training errors by aggressively choosing
features that are burdensome but effective for reducing
objective values. These results suggest that CBG and
IHT can exhibit complementary natures; i.e., IHT is
better than CBG when c is small, and the opposite is
true when c is large. In practice, it can be beneficial
to apply both CBG and IHT to a given instance and
use the solution with the smaller training error.

7 CONCLUSION

We proved theoretical guarantees of CBG and IHT
for non-convex optimization problems with monotone
cost function constraints. We provided examples of
monotone cost functions and showed that their super-
additivity ratio and restricted inverse curvature can be
bounded. Experiments showed typical behavior and
advantages of the considered algorithms.
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