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Abstract

When the weights in a particle filter are not
available analytically, standard resampling
methods cannot be employed. To circum-
vent this problem state-of-the-art algorithms
replace the true weights with non-negative
unbiased estimates. This algorithm is still
valid but at the cost of higher variance of the
resulting filtering estimates in comparison to
a particle filter using the true weights. We
propose here a novel algorithm that allows for
resampling according to the true intractable
weights when only an unbiased estimator of
the weights is available. We demonstrate our
algorithm on several examples.

Keywords: Bernoulli factory, random weight particle
filter, unbiased estimation, Rao-Blackwellization

1 INTRODUCTION

Over the last 25 years particle filters have become
a standard tool for optimal estimation in the con-
text of general state space hidden Markov models
(HMMs) with applications in ever more complex sce-
narios. HMMs are described by a latent (unobserved)
process (Xt)t∈N taking values in a space X and evolving
according to the state transition density

Xt | (Xt−1 = x) ∼ f( · | x)

for t ≥ 2 and X1 ∼ µ(·). The states can be observed
through an observation process (Yt)t∈N, taking values
in a space Y with observation density

Yt | (Xt = x) ∼ g( · | x).

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Particle filters (PFs) sequentially approximate the joint
distributions

πt (x1:t) = p(x1:t | y1:t)

=
g(y1 | x1)µ(x1)

∏t
k=2 g(yk | xk)f(xk | xk−1)

p(y1:t)

=
g(y1 | x1)µ(x1)

∏t
k=2$ (xk | yk, xk−1)

p(y1:t)

on the space Xt at time t by evolving a set of samples,
termed particles, through time. We use here the short-
hand notation xj:k = (xj , . . . , xk). The quantity p(y1:t)
denotes the marginal likelihood of the model

p(y1:t) =

∫
g(y1 | x1)µ(x1)

t∏
k=2

$ (xk | yk, xk−1) dx1:t

(1)
which is usually intractable. The PF algorithm pro-
ceeds as follows. Given a set of particles {Xi

t−1, i =
1, . . . , N} at time t − 1 the particles are propagated
through q(xt | xt−1, yt). To adjust for the discrepancy
between the distribution of the proposed states and
πt (x1:t) the particles are weighted by

wt(xt−1, xt) =
$ (xt | yt, xt−1)

q(xt | xt−1, yt)
, t ≥ 2, (2)

w1(x1) =
g(y1 | x1)µ(x1)

q(x1 | y1)
.

A subsequent resampling step according to these
weights ensures that only promising particles survive.
Here we consider only multinomial resampling, where
we write I1:N ∼ Mult {N ;w1, . . . , wN} to denote the
vector I1:N consisting of N samples from a multino-
mial distribution with probabilities proportional to
w1, . . . , wN . The algorithm is summarized in Algo-
rithm 1.

In most applications, interest lies not in the distribution
itself, but rather in the expectations

I(h) =

∫
h(x1:t)πt(x1:t)dx1:t (3)

for some test function h : Xt → R. Applying a PF we
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Algorithm 1 Particle filter with N particles
At time t = 1

1: Sample X̃i
1 ∼ q(· | y1), i = 1 . . . N

2: Compute weights

w1,i = wt(X̃
i
1), i = 1, . . . , N

3: I1:N ∼ Mult {N ;w1,1, . . . , w1,N}
4: Set Xi

1 = X̃Ii
1 , i = 1. . . . , N

At times t ≥ 2
5: Sample X̃i

t ∼ q( · | Xi
t−1, yt), i = 1, . . . , N

6: Compute weights as in (2)

wt,i = wt(X
i
t−1, X̃

i
t), i = 1, . . . , N

7: I1:N ∼ Mult{N ;wt,1, . . . , wt,N}
8: For i = 1, . . . , N set

Xi
1:t =

(
XIi

1:(t−1), X̃
Ii
t

)
.

can estimate this integral, for a set of particle genealo-
gies

{
Xi

1:t, i = 1, . . . , N
}
, by taking

Ît,PF(h) =
1

N

N∑
i=1

h
(
Xi

1:t

)
. (4)

When the PF weights (2) are not available analyti-
cally, standard resampling routines—steps 3 and 7 in
Algorithm 1—cannot be performed. However, in many
cases one might be able to construct an unbiased esti-
mator of the resampling weights. Del Moral et al. [6],
Fearnhead et al. [9], Liu and Chen [13], and Rousset
and Doucet [16] show that using random but unbiased
non-negative weights still yields a valid algorithm. This
can be easily seen by considering a standard particle
filter on an extended space. Yet, this flexibility does
not come without cost. Replacing the true weights
with a noisy estimate increases the variance for Monte
Carlo estimates of type (4).

Here we introduce a new resampling scheme that allows
for multinomial resampling from the true intractable
weights while just requiring access to non-negative
unbiased estimates. Thus, any PF estimate of type (4)
will have the same variance as if the true weights were
known. This algorithm relies on an extension of recent
work in Dughmi et al. [8] where the authors consider
an unrelated problem.

In the supplementary material we collect the proofs
for Propositions 3, 4 and 5, Theorem 6 and additional
simulation studies. Code to reproduce our results is
available online1.

1URL: http://www.stats.ox.ac.uk/~schmon/.

2 PARTICLE FILTERS WITH
INTRACTABLE WEIGHTS

Particle filters for state space models with intractable
weights rely on the observation that replacing the true
weights with a non-negative unbiased estimate is equiv-
alent to a particle filter on an extended space. In this
section we introduce some examples of models where
the weights are indeed not available analytically and
review briefly how the random weight particle filter
(RWPF) can be applied in these instances.

2.1 Locally optimal proposal

Recall that in the setting of a PF for a state space
model at time t − 1 the proposal for t which leads
to the minimum one step variance, termed the locally
optimal proposal q∗, is

q∗(xt | xt−1, yt) =
g(yt | xt)f(xt | xt−1)

p(yt | xt−1)
,

see, e.g. Doucet et al. [7, Proposition 2]. Sampling from
the locally optimal proposal is usually straightforward
using a rejection sampler. The weights

wt(xt−1, xt) = p(yt | xt−1)

=

∫
g(yt | xt)f(xt | xt−1)dxt, (5)

however, are intractable if the integral on the right-
hand side does not have an analytical expression, thus
prohibiting an exact implementation of this algorithm.
Our algorithm will enable us to resample according to
these weights.

2.2 Partially observed diffusions

Most research on particle filters with intractable
weights has been carried out in the setting of partially
observed diffusions, see e.g. Fearnhead et al. [9], which
we will describe here briefly. For simplicity, consider
the univariate diffusion2 process of the form

dXt = a(Xt)dt+ dBt, t ∈ [0, T ], (6)

where a : R→ R denotes the drift function and T ∈ R
is the time horizon. For a general diffusion constant
speed as assumed in (6) can be obtained whenever
the Lamperti transform is available. The diffusion is
observed at discrete times ti, i = 1, . . . T with mea-
surement error described by the density g(yti | xti).
In this model the resampling weights are often in-
tractable since for most diffusion processes the tran-
sition density f∆t(xti | xti−1

) over the interval with
2It is not necessary to restrict oneself to univariate dif-

fusions, see e.g. Fearnhead et al. [9].

http://www.stats.ox.ac.uk/~schmon/
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length ∆t = ti− ti−1 is not available analytically. How-
ever, as shown in Beskos and Roberts [2], Dacunha-
Castelle and Florens-Zmirou [4], and Rogers [15] the
transition density over an interval of length ∆t can be
expressed as

f∆t(y | x) = ϕ(y;x,∆t) exp (A(y)−A(x))

× E

[
exp

(
−
∫ ∆t

0

φ(Ws)ds

)]
(7)

where ϕ( · ;x,∆t) is the density of a Normal distribu-
tion with mean x and variance ∆t, (Ws)s∈[0,∆t] de-
notes a Brownian bridge from x to y and φ(x) =(
a2(x) + a′(x)

)
/2 for a function A : R → R with

A′(x) = a(x). The expectation on the right-hand side
in (7) is with respect to the Brownian bridge and is
usually intractable. Thus, for a particle filter to work
in this example one either needs to implement a Boot-
strap PF, which can sample the diffusion (6) exactly
[see, e.g. 2], or one constructs an unbiased estimator of
the expectation on the right-hand side to employ the
RWPF. Note that for a function g and U ∼ Unif[0, t]
we have

E
[
g(WU )

λ
|Ws, 0 ≤ s ≤ t

]
=

∫ t

0

g(Ws)

λt
ds.

Using this relationship we can use debiasing schemes
such as the Poisson estimator [1] to find a non-negative
unbiased estimator of the expectation of the exponen-
tial.

2.3 Random weight particle filter

Here we briefly review the RWPF and compare its
asymptotic variance to that of a PF with known
weights. Assume one does not have access to the
weight $ (xt | yt, xt−1) in (2) but only to some non-
negative unbiased estimate $̂(xt | yt, xt−1, Ut), where
Ut are auxiliary variables sampled from some density
m. Then we carry out the multinomial resampling in
Algorithm 1 by taking I1:N ∼ Mult{N ; ŵt,1, . . . , ŵt,N},
where ŵt,k is defined as in (2) with $ (xt | yt, xt−1)
replaced by $̂(xt | yt, xt−1, Ut). This is equivalent to a
standard particle filter on the extended space targeting
at time t the distribution

π̄t (x1:t, u1:t) ∝
t∏

k=1

$̂(xk | yk, xk−1, uk)m (uk)

which satisfies

π̄t (x1:t, u1:t) = πt(x1:t)π̄t(u1:t | x1:t) (8)

with

π̄t(u1:t | x1:t) =

t∏
k=1

$̂(xk | yk, xk−1, uk)m (uk)

$ (xk | yk, xk−1)
.

A PF targeting the sequence of distributions πt directly
can be interpreted as a Rao-Blackwellized PF [7] of the
PF on the extended space. Hence, the following is a
direct consequence of [3, Theorem 3].

Proposition 1. For any sufficiently regular3 real-
valued test function h, the exact weight PF (EWPF)
and RWPF estimators of I(h) defined in (3) both satisfy
a
√
N -central limit theorem with asymptotic variances

satisfying σ2
EWPF,h ≤ σ2

RWPF,h.

3 BERNOULLI RACES

Assume now that the intractable weights can be written
as follows

wt(xt−1, xt) =
g(yt | xt)f (xt | xt−1)

q (xt | xt−1, yt)

= c (xt−1, xt, yt) b (xt−1, xt, yt) , (9)

where 0 ≤ b(x, x′, y) ≤ 1 for all x, x′, y ∈ X, and that
we are able to generate a coin flip Z with P(Z = 1) =
b (x, x′, y). We will assume that c(x, x′, y) in (9) is
analytically available for any x, x′, y. For brevity we
will denote (9) as wi = cibi, for particles i = 1, . . . , N ,
dropping for now the dependence on t.

The aim of this section is to develop an algorithm
to perform multinomial sampling proportional to the
weights wi, that is, sample from discrete distributions
of the form

p(i) =
cibi∑N
k=1 ckbk

, i = 1, . . . N (10)

where c1, . . . , cN denote fixed constants whereas the
b1, . . . , bN are unknown probabilities. We assume we
are able to sample coins Zi ∼ Ber(bi), i = 1, . . . , N.
In practice, the c1, . . . , cN are selected to ensure that
b1, . . . , bN take values between 0 and 1. The Bernoulli
race algorithm for multinomial sampling proceeds by
first proposing from the distribution

P (I = i) =
ci∑N
k=1 ck

(11)

and then sampling ZI ∼ Ber(bI). If ZI = 1, return I,
otherwise the algorithm restarts. Pseudo code describ-
ing this procedure is presented in Algorithm 2. If we
take cj = 1 for all j = 1, . . . , N we recover the original
Bernoulli race algorithm from Dughmi et al. [8].

Proposition 2. Algorithm 2 samples from the distri-
bution

p(i) = P(I = i | ZI = 1) =
cibi∑N
k=1 ckbk

.

3We refer the reader to Chopin [3] for the mathematical
details.
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Algorithm 2 Bernoulli race
1: Draw I ∼ Mult{1; c1, . . . , cN}
2: Draw Z ∼ bI
3: if Z = 1 then return I = I
4: else go back to line 1
5: end if

Proof. Note that the probability of sampling I = i and
accepting is

P(I = i, Zi = 1) =
bici∑
k ck

.

It follows that observing ZI = 1 has probability P(ZI =
1) =

∑
k bkck/

∑
k ck. Now for any i = 1, . . . N

p(i) = P(I = i | ZI = 1)

=
P(I = i, Zi = 1)

P(ZI = 1)

=
bici∑
k ck

/∑
k bkck∑
k ck

=
bici∑
k bkck

.

3.1 Efficient Implementation

This algorithm repeatedly proposes an a priori unknown
amount of random variables from the multinomial dis-
tribution (11). Naïve implementations of multinomial
sampling are of complexity O(N) for one draw from
the multinomial distribution. Standard resampling al-
gorithms, however, can sample N random variables at
cost O(N) [see e.g. 11] but in this case the number
of samples needs to be known beforehand. We show
here that Bernoulli resampling can still be implemented
with an average of O(N) operations.

To ensure that the Bernoulli resampling is fast we need
cheap samples from the multinomial distribution with
weights proportional to c1, . . . , cN . We can achieve this
with the Alias method [17, 18] which requires O(N)
preprocessing after which we can sample with O(1)
complexity. Hence, the overall complexity depends
on the number of calls to the Bernoulli factory per
sample. Denote Cj,N the number of coin flips that are
required to accept a value for the jth sample, where
j = 1, . . . , N . The random variable Cj,N follows a
geometric distribution with success probability

ρN = P(ZI = 1) =

∑N
k=1 ckbk∑N
k=1 ck

. (12)

The expected number of trials until a value is accepted
is then

E [Cj,N ] =
1

ρN
(j = 1, . . . , N) .

The complexity of the resampling algorithm depends
on the values of the acceptance probabilities b1, . . . , bN .

For example, if all probabilities are identical, that is,
b1 = . . . = bN = b, we expect N/b coin flips, each of
cost O(1), which leads to overall order O(N) complex-
ity. In practice, however, the success probabilities of
our Bernoulli factories are all different. Assuming all
bj , j = 1, . . . , N are non-zero, the expected algorith-
mic complexity per particle is bounded by the inverse
of smallest and largest Bernoulli probabilities. Let
b = min{b1, . . . , bN}. Then,

E[Cj,N ] =

∑
k ck∑
k bkck

≤
∑
k ck

b
∑
k ck

=
1

b

and with b = max{b1, . . . , bm}

E[Cj,N ] ≥ 1

b
.

In practice, the complexity of the Bernoulli sampling
algorithm depends on the behavior of ρN as shown by
the following central limit theorem.

Proposition 3. Assume limN→∞ ρN =: ρ ∈ (0, 1).
Then we have the following central limit theorem for
the average number of coin flips as N →∞

√
N

 1

N

N∑
j=1

Cj,N −
1

ρN

 d→ N
(

0,
1− ρ
ρ2

)
,

where d→ denotes convergence in distribution.

In particular, Proposition 3 implies that the run-time
concentrates around N/ρN with fluctuations of order√
N . Thus, the order of complexity depends on the

order of ρN and we have complexity O(N) if

lim sup
N→∞

∣∣∣∣∣
∑N
k=1 ck∑N
k=1 ckbk

∣∣∣∣∣ <∞. (13)

As an example consider the case where c1 = . . . = cN =
c are all identical. Then at time t

ρt,N =
1

N

N∑
k=1

wt,k. (14)

An instance of this setting is the locally optimal pro-
posal presented in Section 2.1. It is well known that
as N → ∞ (14) will converge towards p(yt | y1:t−1)
and indeed we see that the algorithm’s run-time will
concentrate around a quantity of order N .
Remark. After the Alias table is constructed, the algo-
rithm can be implemented in parallel. This can lead
to considerable gains if the number of particles used in
the particle filter is high. If c1 = . . . = cN = c, or if
the constants denote a distribution for which a table
as in the Alias method is already implemented before
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program execution, the above algorithm can be imple-
mented entirely in parallel. Murray et al. [14] consider
the case of multinomial resampling using a rejection
sampler with uniform proposal on the set {1, . . . , N}
with known weights and show that this algorithm has
parallel complexity O(logN).

3.2 Estimating the Probability of Stopping

In our later applications we will be interested in evalu-
ating the success probability

ρN =

∑N
k=1 ckbk∑N
k=1 ck

.

Assume that we sample N independent realizations
from a multinomial distribution using the Bernoulli race
algorithm described above and that C1,N , . . . , CN,N
are the geometric random variables that count the
number of trials until the algorithm accepts a value
and terminates. Then ρ̂naive

N = 1/C̄N , where C̄N =∑N
k=1 Ck,N/N is a consistent estimator of ρ since

E(Ci,N ) = 1/ρN for all i = 1, . . . , N and therefore
by a weak law of large numbers C̄N→1/ρ in proba-
bility and 1/C̄N→ρ in probability by the continuous
mapping theorem. Unfortunately, the estimator ρ̂naive

N

is not unbiased which would be desirable. However,
this can be remedied by constructing the minimum
variance unbiased estimator [see 10, Definition 7.1.1]
for a geometric distribution. This result is well known,
but we repeat it here for convenience.
Proposition 4. For N ∈ N let C1,N , . . . , CN,N de-
note independent samples from a geometric distribution
with success probability ρN , then the minimum variance
unbiased estimator for ρN is

ρ̂mvue
N =

N − 1∑N
k=1 Ck,N − 1

. (15)

In order to understand the asymptotic behavior of the
estimator (15) we also provide the following central
limit theorem.
Proposition 5. For N ∈ N let C1,N , C2,N , . . . denote
independent samples from a geometric distribution with
success probability ρN , then

√
N (ρ̂mvue

N − ρN )
d→ N

(
0, (1− ρ) ρ2

)
.

4 BERNOULLI RACE PARTICLE
FILTER

4.1 Algorithm Description

We now consider the application of the Bernoulli race
algorithm to particle filter methods. The Bernoulli

race can be employed as a multinomial resampling al-
gorithm, Mult{w1, . . . , wN}, in Algorithm 1. However,
the clear advantage is that this algorithm can be im-
plemented even if the true weights are not analytically
available, but we do have access to non-negative un-
biased estimates. A [0, 1]-valued unbiased estimator
b̂ for b can be converted into an unbiased coin flip by
noting that P

(
V ≤ b̂

)
= b, where V ∼ Unif[0, 1] [see

e.g. Lemma 2.1 in 12].

We will refer to such a particle filter as a Bernoulli race
particle filter (BRPF).

4.2 Likelihood estimation

Even though the Bernoulli race resampling scheme en-
ables us to resample according to the true weights, the
normalizing constant or marginal likelihood (1) remains
intractable. We show here how we can still obtain an
unbiased estimator for the normalizing constant. We
first recall that in particle filters an estimator of the
normalizing constant is obtained by

p̂(y1:T ) =

T∏
t=1

p̂(yt | y1:t−1) =

T∏
t=1

1

N

N∑
k=1

wt,k. (16)

This estimator is well-known to be unbiased [see 5,
Chapter 7]. If the weights are not available this estima-
tor cannot be employed. Fortunately, the quantity (16)
comes up naturally when running the BRPF. Recall
that the probability for the Bernoulli race to stop at a
given iteration, i.e. to accept a value, is

P (Cj,N = 1) =

∑N
k=1 ct,kbt,k∑N
k=1 ct,k

=
1
N

∑N
k=1 wt,k

1
N

∑N
k=1 ct,k

.

Thus, conditional on the weights wt,k, k = 1, . . . , N , an
unbiased estimator of (16) is given by virtue of (15):

ρ̂N,T =

T∏
t=1

1

N

N∑
k=1

ct,k ·
N − 1∑N

k=1 Ck,N − 1
. (17)

Theorem 6. The estimator (17) is unbiased for
p(y1:T ), i.e. E [ρ̂N,T ] = p(y1:T ).

5 APPLICATIONS

5.1 Locally optimal proposal

We start with a Gaussian state space model. In linear
Gaussian state space models the Kalman Filter can be
used to analytically evolve the system through time.
Nevertheless, the aim here is a proof of concept of
the BRPF. We assume the latent variables follow the
Markov chain

Xt = aXt−1 + Vt
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where we take a = 0.8 and we observe these hidden
variables through the observation equation

Yt = Xt +Wt

with initialization X0 ∼ N (0, 5) and Vt ∼ N (0, 5),
Wt ∼ N (0, 5). In this particular instance the locally
optimal proposal is available analytically, but in most
practical scenarios this will not be the case. For this
reason sampling from the locally optimal proposal is im-
plemented using a rejection sampler that proposes from
the state equation. Coin flips for the weights (5) can be
obtained by sampling from the model ξt ∼ f(· | xt−1)
and computing

Zt = 1

{
U ≤ exp

(
− (yt − ξt)2

10

)}
, U ∼ Unif[0, 1].

This leads to the choice ct,1 = . . . = ct,N = 1/
√

10π
and

bt,k =

∫
exp

(
− (yt − x)2

10

)
f(x | xt−1)dxt−1.

Note that ct,k is defined such that

sup
x,x′,y

bt(x, x
′, y) = 1

Such a choice ensures that the acceptance probability in
the Bernoulli race, Algorithm 2, is as large as possible.
This can lead to a considerable speedup when using
the Bernoulli resampling algorithm.

5.1.1 Complexity and Run-time

Figure 1 shows the run-time for RWPF and the BRPF
for the Gaussian state space model. The BRPF clearly
has linear complexity in the number of particles. In a
sequential implementation the Bernoulli race (orange)
performs worse than the classical resampling scheme
(blue), but the difference vanishes when implementing
a parallel version of the Bernoulli race (green, with 32
cores). This demonstrates the speedup due to parallel
sampling of the coin flips. Since we need many Bernoulli
random variables each of which is computationally
cheap this algorithm lends itself to a implementation
using GPUs to further improve the performance of the
Bernoulli race.

5.1.2 Efficiency

As alluded to earlier, if Bernoulli resampling is per-
formed, the variance for any Monte Carlo estimate (4)
will be the same as if the true weights were known and
one applies standard multinomial resampling. From
Proposition 1 it follows that the asymptotic variance
of any Monte Carlo estimate of type (4) will be smaller

Figure 1: Comparison of the run-time for RWPF and
BRPF for Gaussian state space model. For BRPF we
show a sequential and a parallel implementation with
32 cores. For all algorithms we show wall-clock time
for number of particles N .

when applying a BRPF over a RWPF. While the vari-
ance for functions (4) in the BRPF coincides with
the standard particle filter we do not have access to
the same estimator for the normalising constant and
instead need to use the methods from Section 4.2.

For these reasons we will compare the performance of
the BRPF with the RWPF for a set of different test
functions h : XT → R by comparing the variance of PF
estimates (4). We then study the estimation of the
normalizing constant separately. For the simulation we
consider the functions

h1(x1:T ) =
1

T

T∑
t=1

xt, h2(x1:T ) = ‖x1:T ‖2,

h3(x1:T ) = xT , h4(x1:T ) = (xT − x̄T )
2
,

where x̄T =
∑N
i=1 x

i
T /N . The PF approxi-

mations (4) using h3 and h4 are estimators
for the quantities µT =

∫
xT p(dxT | y1:T ) and∫

(xT − µT )
2
p(dxT | y1:T ).

All estimates are based on 100 runs of each particle
filter using N = 100 particles. The results are collected
in Table 1. We denote the standard deviation of the
test functions under the BRPF as σBRPF and σRWPF

for the RWPF. All measures indicate a reduction in the
standard deviation. For the estimator of the function
h1, the standard deviation is reduced by 26% when
compared to the RWPF.

We now investigate the estimates for the normalizing
constant. Table 2 shows the standard deviation of the
(log-)normalizing constant of a Gaussian state space
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Table 1: For test functions hi, . . . i = 1, . . . , 4 the stan-
dard deviation for RWPF and BRPF over 100 itera-
tions.

Test function σRWPF σBRPF σBRPF/σRWPF

h1 0.17 0.12 0.74

h2 0.93 0.78 0.84

h3 0.19 0.19 0.96

h4 0.42 0.40 0.94

Table 2: Comparison of the normalizing constant es-
timate for different implementations of the particle
filter.

sd(log p̂(y1:T ))

BRPF 0.55
RWPF 0.66

model for T = 50 time steps. In this setting it is not
obvious why the Bernoulli race resampling estimate
should outperform the estimate provided by the RWPF.
In our case however, we find that the BRPF performs
better.

5.2 Partially Observed Diffusion

We use the sine diffusion, a commonly used example
in the context of partially observed diffusions, see e.g.
Fearnhead et al. [9], given by the stochastic differential
equation (SDE)

dXs = sin(Xs)dt+ dBs, s ∈ [0, 15].

Here, (Bs)s∈[0,15] denotes a Brownian motion and
the drift function in (6) is a(x) = sin(x). Con-
sequently, A(x) = − cos(x) and with φ(x) =(
sin(x)2 + cos(x)

)
/2, the transition density is

f∆t(x, y) = ϕ(y;x,∆t) exp (− cos(y) + cos(x))

× E

[
exp

(
−
∫ ∆t

0

φ(Ws)ds

)]
. (18)

We observe the state of the SDE through zero mean
Gaussian noise with standard deviation 5 yielding
weights

w(xt−1, xt, yt) =
ϕ(yt;xt, 5

2)f∆t(xt | xt−1)

q(xt | xt−1, yt)
,

As the proposal q(· | xt−1, yt) we take one step of the
Euler–Maruyama scheme.

The weights are intractable because of the expecta-
tion on the right-hand side in (18). The construction

Figure 2: Tracking performance for different particle
filters; RWPF with 100 particles (RWPF100) and 1000
particles (RWPF1000) as well as a particle filter using
Bernoulli resampling with 100 particles (BerPF100).

of unbiased coin flips can often rely on similar tech-
niques as the construction of unbiased estimators. We
can construct an unbiased estimator for the transition
density in the following way. Fix a Brownian bridge
(Ws)s∈[0,∆t] starting at x and finishing at y. Sample
κ ∼ Pois(λ∆t), U1 . . . , Uκ ∼ U [0,∆t] then the Poisson
estimator [1] is given by

P̂ (κ, U1 . . . , Uκ) = exp {(λ− c) ∆t}
κ∏
i=1

{c− φ (WUi
)}

λ
,

where c is chosen such that the estimator is non-
negative. The Poisson estimator is unbiased

E
[
P̂ (κ, U1 . . . , Uκ)

]
= E

[
exp

(
−
∫ ∆t

0

φ(Ws)ds

)]
.

(19)

For the purposes of implementing the BRPF, we need
to construct a coin flip with success probability propor-
tional to (19). We use the probability generating func-
tion approach which works analogously to the Poisson
estimator. Sample κ ∼ Pois(λ∆t), Vi ∼ Unif[0, 1], i =
1, . . . κ, then

Z =

κ∏
i=1

1

{
Vi ≤

{c− φ (WUi)}
λ

}

has success probability

exp {(c− λ)∆t}E

[
exp

(
−
∫ ∆t

0

φ(Ws)ds

)]
.
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Figure 3: Kernel density estimate of p(x10 | y1:10) based
on particle approximations from a RWPF with 100 par-
ticles (RWPF) a BRPF with 100 particles (Bernoulli)
and a RWPF with 1000 particles.

Hence, to implement the BRPF we can choose

ct,k =
ϕ(yt;xt, 5

2)ϕ(xt;xt−1,∆t)

ϕ(yt;xt−1 + ∆t sin(xt−1),∆t)

× exp (− cos(xt) + cos(xt−1)− (c− λ)∆t)

bt,k = exp {(c− λ)∆t}E

[
exp

(
−
∫ ∆t

0

φ(W k
s )ds

)]
,

where (W k
s )s∈[0,∆t] denotes a Brownian bridge from

xkt−1 to xkt .

5.2.1 Complexity and Run-time

As in the previous example, we observe the BRPF to
be of order O(N) and slower than the RWPF. However,
implementing the Bernoulli race in parallel yields al-
most the same performance in terms of run-time. The
details can be found in the supplementary material.

5.2.2 Efficiency

One run for the RWPF and the BRPF is shown in
Figure 2, where we show the true state of the SDE as
well as the noisy observations and the particle filter ap-
proximations. In this scenario precise state estimation
is hampered by the high noise and resulting partial
multimodality of the filtering distribution as shown in
Figure 3. For N = 100, Figure 2 shows that the BRPF
performs much better as it finds the true state earlier.
The RWPF finds this trajectory only when the number
of particles is increased (here we show also the case
N = 1000). With the same test functions as above
we compare both algorithms in Table 3. We observe
gains for all functions, with the most significant gain

Table 3: Comparison of the normalizing constant es-
timate for different implementations of the particle
filter.

Test function σRWBF σBRPF σBRPF/σRWPF

h1 1.41 1.27 0.91

h2 1.61 1.58 0.98

h3 1.26 0.64 0.50

h4 1.09 0.87 0.80

Table 4: Comparison of the normalizing constant es-
timate for different implementations of the particle
filter.

sd(log p̂(y1:T ))

RWPF 3.83
BRPF 3.11

Bootstrap 3.13

for the conditional mean, h3. Again, the Bernoulli race
will ordinarily be slower, but most of the difference
in run-time vanishes when the Bernoulli race is imple-
mented in parallel. Further details are provided in the
supplementary material.

As a final test we use both particle filters for estimating
the (log-)normalizing constant. The results are listed
in Table 4. For comparison we also employ a bootstrap
particle filter using the exact algorithm [2] to propose
from the model. We observed this implementation to
be slower than the other two. The BRPF estimate (17)
outperforms the RWPF and the bootstrap PF.

6 Conclusion

We have introduced the idea of Bernoulli races to re-
sampling in particle filtering, utilizing the equivalence
of unbiased estimation and the construction of unbiased
coin-flips. This algorithm provides the first resampling
scheme to allow for exact implementation of multi-
nomial resampling when the weights are intractable,
but unbiased estimates are available. We have shown
that our algorithm has a complexity of order N , like
standard multinomial resampling, and demonstrated
its advantages over alternative methods in a variety of
settings. In doing so we have focused our attention to
the resampling step. Further gains using our algorithm
could be obtained by considering auxiliary particle fil-
ters and to resample only if the effective sample size
drops beyond a certain threshold. We expect both to
positively impact the performance of the BRPF.
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