
Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai

A More on MFPOO (Algorithm 2)

In this section we will provide more insights about our
second algorithm MFPOO (Algorithm 2). We would
like to note that in practice if the evaluations of per-
formed by the series of MFHOO instances are stored,
then the subsequent MFHOO instances can reuse this
information and save on the cost budget. Our imple-
mentation can account for this aspect and this provides
a significant performance improvement in practice. In
Algorithm 1 and Algorithm 2 it has been assumed that
the bias function is known, which may not be true in
practice. However, we can assume a simple parame-
teric form of the bias function and update it online. We
will provide more details about this in Appendix D.1.

We would also like to highlight the following about
Theorem 2, which provides simple regret guarantees
for MFPOO. Note that Theorem 2 only states that one
of the MFHOO instances spawned by Algorithm 2 has
a simple regret bound stated in the theorem. However,
we do not provide any theoretical guarantees regarding
the fact that with high probability i∗ selected in step 6
of Algorithm 2 is the MFHOO instance with the best
performance. The analysis of POO [11] can provide
such a guarantee in a non-multi-fidelity setup by keep-
ing track of the average value of the points evaluated
by each of the HOO instances spawned. This analysis
cannot be extended as the points evaluated by differ-
ent MFHOO instances are all at different gradations
of the fidelity and thus have varying biases. However,
it should be noted that in practice the point xΛ,i re-
turned by MFHOO instance i is chosen according to
the scheme in Remark 1. Therefore, the function value
of the point returned is a good indicator of the overall
performance of the MFHOO instance and thus it is
expected that the best performing MFHOO instance
is selected in step 6. This is also corroborated by the
strong empirical performance of MFPOO in our real
and synthetic experiments in Section 6.

B Regret Guarantees when (ν∗, ρ∗) are
known

The analysis of Algorithm 1 proceeds in these steps:

(i) We first prove that N(Λ) (the number of steps
performed by the algorithm) has to be at least some
quantity n(Λ) with probability one, when MFHOO is
run with a cost budget of Λ.

(ii) Given that the algorithm performs n(Λ) evalu-
ations we prove that the cumulative regret (see the
definition in [3]) incurred by the algorithm till then
is bounded by Rn(Λ). Therefore, owing to step 22 of
the algorithm, the simple regret s(Λ) is bounded by

Rn(Λ)/n(Λ). The main challenge in the analysis is to
show that the guarantees similar to that of HOO [3]
can be achieved in the presence of fidelity biases and
under the new set of assumptions.

Lemma 1 is the main result for Step-(i) of the analysis.

Lemma 1. When Algorithm 1 is run with a budget of
Λ, N(Λ) ≥ n(Λ) + 1 where,

n(Λ) = max{n :

n∑
h=1

λ(zh) < Λ}.

Proof. Note that the structure of MFHOO is such that
at each step a child of a current leaf node is expanded
and the child is queried at a fidelity zh+1 where h was
the height of the leaf node. Also note that for all h,
zh+1 > zh, and therefore λ(zh+1) > λ(zh). Suppose,
n steps of MFHOO has been performed. The worst
case cost in those n steps can therefore be in the case
where the algorithm explores without branching, that
is at time-step t ∈ [n] a node at depth h = t is queried.

In this case the cost incurred is
∑n
h=1 λ(zh). There-

fore, in this dominating corner case the algorithm
will query at least n(Λ) times. Thus, in all other
cases the algorithm is bound to perform at least n(Λ)
queries.

The main result for step (ii) of the analysis if provided
as Theorem 3.

Theorem 3. If Algorithm 1 is allowed to run for n
queries, then the cumulative regret Rn accumulated is
bounded as,

Rn = O
(
n
d(ν,ρ)+1
d(ν,ρ)+2 (log n)1/(d(ν,ρ)+2)

)
.

The first step in the proof is equivalent to Lemma 14
in [3], which we provide below for completeness.

Lemma 2. Let (h, i) be a sub-optimal node. Let 0 ≤
k ≤ h − 1 be the largest height such that (k, i∗k) is on
the path from the root to (h, i). Then for all integers
u ≥ 0, we have,

E[Th,i(n)] ≤ u+
n∑

t=u+1

P
{

[Us,i∗s (t) ≤ f∗ for some s ∈ {k + 1, ..., t− 1}]

or [Th,i(t) > u,Uh,i(t) > f∗]}

Proof. It follows directly from Lemma 14 in [3].

Lemma 3. For all optimal nodes (h, i) and for all
integers n ≥ 1,

P {Uh,i(n) ≤ f∗} ≤ n−3.

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach

Proof. We only consider the case where Th,i(n) ≥ 1,
because otherwise the lemma is true trivially. Note
that by Assumption 1, we have that f∗ − f(x) ≤ νρh

for all x ∈ (h, i). Hence, we have the following,

n∑
t=1

(
f(Xt) + νρh − f∗

)
1(Ht,It)∈C(h,i) ≥ 0. (3)

We now have the following chain,

P {Uh,i(n) ≤ f∗}

= P

{
µ̂h,i(n) +

√
2σ2 log n

Th,i(n)
+ 2νρh ≤ f∗

}
= P

{
Th,i(n)µ̂h,i(n) + Th,i(n)(2νρh − f∗)

≤ −
√

2σ2Th,i(n) log n

}
(a)

≤ P

{
n∑
t=1

(Yt − fZt(Xt))1(Ht,It)∈C(h,i)

+

n∑
t=1

(
f(Xt) + νρh − f∗

)
1(Ht,It)∈C(h,i)

≤ −
√

2σ2Th,i(n) log n

}
≤ P

{
n∑
t=1

(Yt − fZt(Xt))1(Ht,It)∈C(h,i)

≤ −
√

2σ2Th,i(n) log n

}
.

Here, step (a) follows from the fact that ζ(Zt) ≤
ζ(zh) = νρh, and therefore f(Xt) − fZt(Xt) ≤ νρh.
The last term can be bounded by n−3 using an union
bound and Azuma-Hoeffding for martingale differ-
ences, similar to the last part of Lemma 15 in [3].

Lemma 4. For all integers t ≤ n, and for all sub-
optimal nodes (h, i) such that ∆h,i > νρh, and u ≥
8σ2 log n/(∆h,i − νρh)2, we have,

P {Uh,i(t) > f∗, Th,i(t) ≥ u} ≤ tn−4. (4)

Proof. Note that for these values of u we have,

√
2σ2 log t

u
+ νρh ≤ ∆h,i + νρh

2
.

Therefore, we have the following chain,

P {Uh,i(t) > f∗, Th,i(t) > u}

= P

{
µ̂h,i(t) +

√
2σ2 log t

Th,i(t)
+ 2νρh > f∗h,i + ∆h,i, Th,i(t) > u

}

≤ P
{
µ̂h,i(t) + νρh > f∗h,i +

∆h,i − νρh

2
, Th,i(t) > u

}
≤ P

{
Th,i(t)(µ̂h,i(t)− (f∗h,i − νρh)) >

∆h,i − νρh

2
Th,i(t), Th,i(t) > u

}
≤ P

{
t∑

s=1

(Ys − fZs(Xs))1(Hs,Is)∈C(h,i)

>
∆h,i − νρh

2
Th,i(t), Th,i(t) > u

}
.

Now, following the same techniques as in Lemma 3
(and also in Lemma-16 in [3]) it can be shown that
the last term is less than tn−4.

Combining Lemma 3 and 4 we get the following result.

Lemma 5. For all sub-optimal nodes (h, i) with
∆h,i > νρh we have,

E [Th,i(n)] ≤ 8σ2 log n

(∆h,i − νρh)2
+ 4.

Proof of Theorem 3. Let H be a fixed integer greater
than 1, which is to be chosen later. Let Ih be the nodes
at height h that are 2νρh optimal. Let τh be the set
of nodes at height h which are not in Ih but whose
parents are in Ih−1. We will partition the nodes of the
infinite tree into three subsets, T = T1 ∪ T2 ∪ T3. Let
T1 be all the descendants of IH and the nodes in IH .
Let T2 , ∪0≤h<HIh. Let T3 be the all descendants of
∪0≤h<Hτh, including the nodes themselves. We define
the following partitioned cumulative regret quantities,

Rn,i =

n∑
t=1

(f∗ − f(Xt))1{(Ht,It)∈Ti}, for i = 1, 2, 3.

(5)

Note that we have, Rn =
∑3
i=1 E[Rn,i].

(i) Let us first bound E[Rn,1]. Since, all nodes in T1

are 2νρH optimal, therefore by Assumption 1 all points
that lie in these cells are 3νρH optimal. Therefore, we
have that E[Rn,1] ≤ 3νρHn.

(ii) All nodes that belong to Ih are 2νρh optimal.
Therefore, all points belonging to Ih is 3νρh opti-
mal. Also, by Definition 1, we have that |Ih| ≤

Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai

C(ν, ρ)ρ−d(ν,ρ)h. Thus, we have the following,

E[Rn,2] ≤
H−1∑
h=0

3νρhC(ν, ρ)ρ−d(ν,ρ)h

≤ 3νC(ν, ρ)

H−1∑
h=0

ρh(1−d(ν,ρ)).

(iii) All nodes in τh have their parents in Ih−1. So, all
the points in these nodes are at least 2νρh−1 optimal.
Therefore, we have the following chain.

E[Rn,3] ≤
H∑
h=1

3νρh−1
∑

i:(h,i)∈τh

E[Th,i(n)]

≤
H∑
h=1

3νρh−12C(ν, ρ)ρ−d(ν,ρ)(h−1)

(
8σ2 log n

(νρh)2
+ 4

)

Combining the above three steps we arrive at,

Rn ≤ 3νρH + 3νC(ν, ρ)

H−1∑
h=0

ρh(1−d(ν,ρ))

+

H∑
h=1

6νρh−1C(ν, ρ)ρ−d(ν,ρ)(h−1)

(
8σ2 log n

(νρh)2
+ 4

)
≤ α1nρ

H + α2C(ν, ρ)ρ−H(1+d(ν,ρ))σ2 log n,

where α1 and α2 are universal constants.

Now, we choose H such that the two terms in the
above equations are order-wise equal. This gives us
the following regret bound,

Rn ≤ τC(ν, ρ)1/(d(ν,ρ)+2)n
d(ν,ρ)+1
d(ν,ρ)+2 (σ2 log n)1/(d(ν,ρ)+2),

(6)

where τ is an universal constant.

Now, we can combine the above results to arrive at
one of our main results.

Proof of Theorem 1. Note that in Step-22 of Algo-
rithm 1 one of the points seen so far is randomly cho-
sen. Therefore, if the algorithm has evaluated n points
so far and incurred a cumulative regret of Rn, then the
simple regret so far is given by Rn/n. Now, we have
the following chain,

S(Λ) ≤ E

[
E

[
Rn
n

∣∣∣∣∣N(Λ) = n

]]

≤ E

[
E

[
τC(ν, ρ)1/(d(ν,ρ)+2)n−

1
d(ν,ρ)+2 (σ2 log n)1/(d(ν,ρ)+2)

∣∣∣∣∣
N(Λ) = n]] .

Note, that the expression inside the conditional expec-
tation is decreasing with the value of n. Also, accord-
ing to Lemma 1 N(Λ) ≥ n(Λ) almost surely. There-
fore, we have

S(Λ) ≤ τC(ν, ρ)
1

d(ν,ρ)+2n(Λ)−
1

d(ν,ρ)+2 (σ2 log n(Λ))1/(d(ν,ρ)+2).

C Recovering optimal scaling with
unknown smoothness

In this section we will prove Theorem 2. The proof of
this theorem is very similar to the analysis in [11]. We
will first use a function lemma from [11] that will be
key in proving Theorem 2.

Lemma 6. Consider the parameters ν > ν∗ and ρ >
ρ∗. Let hmin , log(ν/ν∗) log(1/ρ). Then we have the
following,

Nh(2νρh) ≤ max
(
C(ν∗, ρ∗)2(log ρ∗+log ν∗−log ν)/ log ρ, 2hmin

)
× ρ−h[d(ν∗,ρ∗)+log 2(1/ log(1/ρ)−1/ log(1/ρ∗))]

Proof. It follows directly from the analysis of Theo-
rem 1 in appendix B.1 of [11].

Lemma 6 implies the following,

C(ν, ρ) ≤ max
(
C(ν∗, ρ∗)2(log ρ∗+log(ν∗/ν))/ log ρ, 2hmin

)
d(ν, ρ) ≤ d(ν∗, ρ∗) + log 2(1/ log(1/ρ)− 1/ log(1/ρ∗))

(7)

Proof of Theorem 2. Let S(Λ)(ν,ρ) the simple regret of
an MFHOO instance run with parameters (ν, ρ) sat-
isfying the condition in Theorem 2, given a budget of
Λ. Then from the proof of Theorem 2 we have the
following chain,

logS(Λ)(ν,ρ) ≤ log τ +
logC(ν, ρ)

2 + d(ν, ρ)
− log(n(Λ)/(σ2 log n(Λ)))

2 + d(ν, ρ)

≤ log τ +
logC(ν, ρ)

2 + d(ν, ρ)

− log(n(Λ)/(σ2 log n(Λ)))

2 + d(ν∗, ρ∗)

(
1− d(ν, ρ)− d(ν∗, ρ∗)

2 + d(ν∗, ρ∗)

)
.

The last inequality follows from Eq. (7). Recall that
MFPOO spawns N (defined in Algorithm 2) MFHOO
instances each with budget Λ/N . By Equation. (7),
we have that out of the N parameters ρ1, ..., ρN , there
is at least one say ρ̄ ≥ ρ∗ such that,

d(νmax, ρ̄)− d(ν∗, ρ∗) ≤ Dmax

N
.

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach

Thus we have that,

logS(Λ/N)(νmax,ρ̄) ≤ log τ +
logC(νmax, ρ̄)

2 + d(ν, ρ̄)

+ log

(
log n(Λ/N)

n(Λ/N)

)(
1

d(ν∗, ρ∗)
− Dmax/N

(2 + d(ν∗, ρ∗))2

)
.

(8)

Using Equation 7 and following the steps in B.3 on
page 12 in [11] it can be shown that,

logC(νmax, ρ̄)

2 + d(ν, ρ̄)
≤ β +

Dmax

2 + d(ν∗, ρ∗)
log(νmax/ν

∗) (9)

Finally using the fact that N = 0.5Dmax log(Λ/ log Λ)
and that n(Λ) ≤ Λ we have the following:

− log

(
log n(Λ/N)

n(Λ/N)

)
Dmax/N

(2 + d(ν∗, ρ∗))2
≤ 2. (10)

Putting together Equation (10),(9) and (8) we have
the following,

S(Λ/N)(νmax,ρ̄) ≤ τ exp(β + 2)
(
Dmax(νmax/ν

∗)Dmax

log n(Λ/ log(Λ))/(n(Λ/ log(Λ))))
1/(2+d(ν∗,ρ∗))

.

This proves that at least one of the MFHOO instances
spawned has the regret specified in Theorem 2.

D More on Experiments

D.1 Implementation Details

In this section, we provide the following implementa-
tion details about our algorithm:

Updating the Bias Function: As mentioned be-
fore, we assume that the bias function if of the form
ζ(z) = c(1 − z). The parameter c is estimated on-
line as follows: (i) We start by choosing a random
point x ∈ X , which is queried at z1 = 0.8 and
z2 = 0.2, giving observations Y1 and Y2. We initialize
c = 2|Y1 − Y2|/|z1 − z2|. We also set νmax = 2 ∗ c.
Note that this uses up a small portion of the bud-
get (λ(0.2) + λ(0.8)). The structure of MFPOO is
such that while running the parallel MFPOO instances
the sames cells (representative point in the cell) is
queried again at different fidelities say z1 and z2,
yielding function values Y1 and Y2. If at any point
|Y1 − Y2|/|z1 − z2| > c, we update c← 2c.

Saving on Parallel MFHOO’s: In practice we can
save significant portions of the cost budget by making
use of the fact that two MFHOO instances can query
the same cell at fidelities z1 and z2 which are very
close to each other. We set of tolerance τ = 0.01. If
an MFHOO (spawned by MFPOO) queries a cell at

a fidelity z2, and that cell had already been queried
before at z1, then we reuse the previous evaluation
if |z1 − z2| < τ . This provides significant gains in
practice.

Hierarchical Partitions: The hierarchical parti-
tioning scheme followed is similar to that of the DI-
RECT algorithm [9]. Each time when a cell needs to
be broken into children cells, the coordinate direction
in which the cell width is maximum is selected, and
the children are divided into halves in the direction of
that coordinate.

Real-Data Implementations: Our tree-search im-
plementations are python objects that can take in
as input a wrapper class which converts a classifica-
tion/regression problem into a black-box function ob-
ject with multiple fidelities. We implement our re-
gressors and classifiers (scikit-learn XGB) within the
black-box function objects. We use a 16 Core ma-
chine, where XGBoost can be run on parallel threads.
We set nthreads = 5 and the 5-Fold cross-validation
is also performed in parallel.

D.2 Description of Synthetic Functions

We use multi-fidelity versions of commonly used
benchmark functions in the black-box optimization lit-
erature. These multi-fidelity versions have been previ-
ously used in [17, 34].

Currin exponential function [6]: This is a two
dimensional function with domain [0, 1]2. The cost
function is λ(z) = 0.1 + z2 and the noise variance is
σ2 = 0.5. The multi-fidelity object as a function of
(x, z) is,

fz(x) =

(
1− 0.1(1− z) exp

(
−1

2x2

))
×(

2300x3
1 + 1900x2

1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
.

Hartmann functions [8]: We use two Hart-
mann functions in 3 and 6 dimensions. The func-
tional form of the multi-fidelity object is fz(x) =∑4
i=1(αi − α′(z)) exp

(
−
∑3
j=1Aij(xj − Pij)2

)
where

α = [1.0, 1.2, 3.0, 3.2] and α′(z) = 0.1(1 − z). In
the case of 3 dimensions, the cost function is λ(z) =
0.05 + (1− 0.05)z3, σ2 = 0.01 and,

A =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

 , P = 10−4×


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 .
Moving to the 6 dimensional case, the cost function is

Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai

λ(z) = 0.05 + (1− 0.05)z3, σ2 = 0.05 and,

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , P = 10−4×


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .
.

When z = 1, these functions reduce to the commonly
used Hartmann benchmark functions.

Branin function [8]: For this function the domain
is X = [[−5, 10], [0, 15]]2. The multi-fidelity object is
given by,

fz(x) = a(x2−b(z)x2
1+c(z)x1−r)2+s(1−t(z)) cos(x1)+s,

where a = 1, b(z) = 5.1/(4π2) − 0.01(1 − z) c(z) =
5/π − 0.1(1 − z), r = 6, s = 10 and t(z) = 1/(8π) +
0.05(1 − z). At z = 1, this becomes the standard
Branin function. The cost function is λ(z) = 0.05 + z3

and σ2 = 0.05 is the noise variance.

