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Abstract

Games with continuous strategy sets arise in
several machine learning problems (e.g. ad-
versarial learning). For such games, simple
no-regret learning algorithms exist in several
cases and ensure convergence to coarse corre-
lated equilibria (CCE). The efficiency of such
equilibria with respect to a social function,
however, is not well understood. In this pa-
per, we define the class of valid utility games
with continuous strategies and provide effi-
ciency bounds for their CCEs. Our bounds
rely on the social function being a monotone
DR-submodular function. We further refine
our bounds based on the curvature of the so-
cial function. Furthermore, we extend our ef-
ficiency bounds to a class of non-submodular
functions that satisfy approximate submod-
ularity properties. Finally, we show that
valid utility games with continuous strate-
gies can be designed to maximize monotone
DR-~submodular functions subject to disjoint
constraints with approximation guarantees.
The approximation guarantees we derive are
based on the efficiency of the equilibria of
such games and can improve the existing ones
in the literature. We illustrate and validate
our results on a budget allocation game and
a sensor coverage problem.

1 Introduction

Game theory is a powerful tool for modelling many
real-world multi-agent decision making problems [7].
In machine learning, game theory has received sub-
stantial interest in the area of adversarial learning
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(e.g. generative adversarial networks [14]) where mod-
els are trained via games played by competing mod-
ules [2]. Apart from modelling interactions among
agents, game theory is also used in the context of dis-
tributed optimization. In fact, specific games can be
designed so that multiple entities can contribute to
optimizing a common objective function [24, 22].

A game is described by a set of players aiming to max-
imize their individual payoffs which depend on each
others’ strategies. The efficiency of a joint strategy
profile is measured with respect to a social function,
which depends on the strategies of all the players.
When the strategies for each player are uncountably
infinite, the game is said to be continuous.

Continuous games describe a broad range of prob-
lems where integer or binary strategies may have lim-
ited expressiveness. In market sharing games [13],
for instance, competing firms may invest continuous
amounts in each market, or may produce an infinitely
divisible product. Also, several integer problems can
be generalized to continuous domains. For example, in
budget allocation problems continuous amounts can be
allocated to each media channel [4]. In machine learn-
ing, many games are naturally continuous [21].

1.1 Related work

Although continuous games are finding increasing ap-
plicability, from a theoretical viewpoint they are less
understood than games with finitely many strategies.
Recently, no-regret learning algorithms [7] have been
proposed for continuous games under different set-ups
[32, 30, 25]. Similarly to finite games [7], these no-
regret dynamics converge to coarse correlated equi-
libria (CCEs) [30, 2|, the weakest class of equilibria
which includes pure Nash equilibria, mixed Nash equi-
libria and correlated equilibria. However, CCEs may
be highly suboptimal for the social function. A cen-
tral open question is to understand the (in)efficiency of
such equilibria. Differently from the finite case, where
bounds on such inefficiency are known for a large va-
riety of games [28], in continuous games this question
is not well understood.
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To measure the inefficiency of CCEs arising from no-
regret dynamics, [6] introduces the price of total anar-
chy. This notion generalizes the well-established price
of anarchy (PoA) of [19] which instead measures the
inefficiency of the worst pure Nash equilibria of the
game. There are numerous reasons why players may
not reach a pure Nash equilibrium [6, 29, 28]. In con-
trast, regret minimization can be done by each player
via simple and efficient algorithms [6]. Recently, [28]
generalizes the price of total anarchy defining the ro-
bust PoA which measures the inefficiency of any CCE
(including the ones arising from regret minimization),
and provides examples of games for which it can be
bounded.

In the context of distributed optimization, where a
game is designed to optimize a given objective [24],
bounds on the robust price of anarchy find a similar
importance. In this setting, a distributed scheme to
optimize the social function is to let each player imple-
ment a no-regret learning algorithm based only on its
payoff information. A bound on the robust PoA pro-
vides an approximation guarantee to such optimiza-
tion scheme.

Bounds on the robust PoA provided by [28] mostly
concern games with finitely many actions. A class of
such games are the valid utility games introduced by
[31]. In such games, the social function is a submodu-
lar set function and, using this property, [28] showed
that the PoA bound derived in [31] indeed extends
to all CCEs of the game. This class of games covers
numerous applications including market sharing, facil-
ity location, and routing problems, and were used by
[24] for distributed optimization. Strategies consist of
selecting subsets of a ground set, and can be equiva-
lently represented as binary decisions. Recently, au-
thors in [23] extend the notion of valid utility games
to integer domains. By leveraging properties of sub-
modular functions over integer lattices, they show that
the robust PoA bound of [28] extends to the integer
case. The notion of submodularity has recently been
extended to continuous domains, mainly in order to
design efficient optimization algorithms [1, 4, 16]. To
the best of author’s knowledge, such notion has not
been utilized for analyzing efficiency of equilibria of
games over continuous domains.

1.2 Our contributions

We bound the robust price of anarchy for a subclass
of continuous games, which we denote as valid utility
games with continuous strategies. They are the con-
tinuous counterpart of the valid utility games intro-
duced by [31] and [23] for binary and integer strategies,
respectively. Our bounds rely on a particular game
structure and on the social function being a monotone

DR-submodular function [4, Definition 1]. Hence, we
define the curvature of a monotone DR-submodular
function on continuous domains, analyze its proper-
ties, and use it to refine our bounds. We also show that
our bounds can be extended to non-submodular func-
tions which have ‘approximate’ submodularity prop-
erties. This is in contrast with [31, 23] where only
submodular social functions were considered. Finally,
employing the machinery of [24], we show that valid
utility games with continuous strategies can be de-
signed to maximize non convex/non concave functions
in a distributed fashion with approximation guaran-
tees. Depending on the curvature of the function, the
obtained guarantees can improve the ones available in
the literature.

1.3 Notation

We denote by e;, 0, and 1, the i*" unit vector, null vec-
tor, and vector of all ones of appropriate dimensions,
respectively. Given n € N, with n > 1, we define
[n] :={1,...,n}. Given vectors x,y, we use [x]; and
x; interchangeably to indicate the i** coordinate of x,
and (x,y) to denote the vector obtained from their
concatenation, i.e., (x,y) :=[x',y']". Moreover, for
vectors of equal dimension, x < y means x; < y; for
all i. Given x € R™ and j € {0,...,n}, we define
x|} == (z1,...,2;,0,...,0) € R" with [x]? = 0. A
function f : X C R™ — R is monotone if, for all
x<yeX, f(x) < f(y). Moreover, f is affine if for

all x,y € X, f(x+y)— f(x) = f(y) — f(0).

2 Problem formulation and examples

We consider a class of non-cooperative continuous
games, where each player ¢ chooses a vector s; in its
feasible strategy set S; C ]Ri. We let N be the num-
ber of players, s = (s1,...,sn) be the vector of all the
strategy profiles, i.e., the outcome of the game, and
S =TI, S € RY? be the joint strategy space. For
simplicity, we assume each strategy s; is d-dimensional,
although different dimensions could exist for different
players. Each player aims to maximize her payoff func-
tion m; : & — R, which in general depends on the
strategies of all the players. We let the social function
be v : Rfd — R,.. For the rest of the paper we assume
~v(0) = 0. We denote such games with the tuple G =
(NASHN {7} 1,v). Given an outcome s we use
the standard notation (s;,s_;) to denote the outcome
where player i chooses strategy s; and the other play-

ers select strategies s_; = (S1,...,8i—1,Si+1,---SN)-

A pure Nash equilibrium is an outcome s € 8 such
that

mi(s) > mi(s}, s-4),
for every player i and for every strategy s, € S;. A
coarse correlated equilibrium (CCE) is a probability
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distribution ¢ over the outcomes S that satisfies
Esmo[mi(s)] > Esuo[mi(s],5-)]

for every player i and for every strategy s; € S;. CCE’s
are the weakest class of equilibria and they include
pure Nash, mixed Nash, and correlated equilibria [28].

Since each player selfishly maximizes her payoff, the
outcome s € S of the game is typically suboptimal
for the social function . To measure such subop-
timality, [28] introduced the robust price of anarchy
(robust PoA) which measures the inefficiency of any
CCE. Given G, we let A be the set of all the CCEs of
G and define the robust PoA as the quantity

maxses Y(8)
minaGA ESNU[’V(S)] .

POACCE =

It can be easily seen that PoAccr > 1. As discussed
in the introduction, PoAcc g has two important impli-
cations. In multi-agent systems, PoAccg bounds the
efficiency of no-regret learning dynamics followed by
the selfish agents. In fact, these dynamics converge to
a CCE of the game [30, 2]. In the context of distributed
optimization, no-regret learning algorithms can be im-
plemented distributively to optimize a given function
and PoAcc g certifies the overall approximation guar-
antee. Bounds for PoAccr, however, were obtained
mostly for games with finitely many actions [28].

In this paper, we are interested in upper bounding
PoAccg for continuous games G defined above. To
motivate our results, we present two relevant examples
of such games. The first one is a budget allocation
game, while in the second example a continuous game
can be designed for distributed maximization in the
spirit of [24]. We will come back to these examples in
Section 3 and derive upper bounds for their respective
POACCE ’s.

Ezample 1 (Continuous budget allocation game).
A set of N advertisers enters a market consisting of a
set of d media channels. By allocating (or investing)
part of their budget in each advertising channel, the
goal of each advertiser is to maximize the expected
number of activated customers, i.e., customers who
purchase her product. The market is described by a
bipartite graph G = (RUT, &), where the left vertices
R denote channels and the right vertices 7 denote cus-
tomers, with d = |R|. For each advertiser ¢ and edge
(r,t) € &, pi(r,t) € [0,1] is the probability that ad-
vertiser i activates customer ¢ via channel r. Each ad-
vertiser chooses a strategy s; € R‘j_, which represents
the amounts allocated (or invested) to each channel,
subject to budget constraints S; = {s; € RY . c;'—sl- <
b;,0 < 's; < §;}. This generalizes the set-up in [23],
where strategies s; are integer. Hence, we consider the
continuous version of the game modeled by [23]. For

every customer ¢t € 7 and advertiser ¢ € [N], we define
L(t)={reR:(rt) € £} and the quantity

Pisit) =1-]] (1= pi(r, ),

which is the probability that i activates ¢ when the
other advertisers are ignored. For each customer ¢, a
permutation p € Py is drawn uniformly at random,
where Py is the set of all permutations of [N]. Then,
according to p each advertiser sequentially attempts
to activate customer t. Hence, for a given allocation
s = (s1,...,sny) €S = Hf\il S;, the payoff of each
advertiser can be written in closed form as [23]:

mi(s) = O Sy Pl t) [ (1= Pitss,0),

J=pt

rel'(t)

where j <, ¢ indicates that j precedes 7 in p. The term
m;(s) represents the expected number of customers ac-
tivated by advertiser ¢ in allocation s. The goal of the
market analyst, which assumes the role of the game
planner, is to maximize the expected number of cus-
tomers activated. Hence, for any s, the social function

v is
N

v(s) = Zi:l mis) = ZtGT (I_Hj\;(l_Pi(si’t») ’

Ezample 2 (Sensor coverage with continous as-
signments). Given a set of N autonomous sensors,
we seek to monitor a finite set of d locations in order
to maximize the probability of detecting an event. For
each sensor, a continuous variable x; € Ri indicates
the energy assigned (or time spent) to each location,
subject to budget constraints X; := {x; € R% : ¢/ x; <
b;,0 < x; < X;}. This generalizes the well-known
sensor coverage problem studied in [24] (and previous
works), where x;’s are binary and indicate the loca-
tions sensor 7 is assigned to. The probability that sen-
sor i detects an event in location 7 is 1 — (1 — py)[®ilr,
with 0 < pI < 1, and it increases as more energy
is assigned to the location. Hence, given a strategy
x = (x1,...,Xn), the joint probability of detecting an
event in location r is

Plrx) =10 -p)"

The goal of the planner is to maximize the probability
of detecting an event

v(x) = Zre[d] w, P(r,x),

where w,.’s represent the a priori probability that an
event occurs in location r. As in [24], we can set up
a continuous game G = (N, {S;} ¥, {m}¥,,~) where
S; = A, for each i, and m;’s are designed so that good
monitoring solutions can be obtained when each player
selfishly maximizes her payoff.

Proofs of the upcoming propositions and remarks are
presented in Appendiz A.



Bounding Inefficiency of Equilibria in Continuous Actions Games using Submodularity and Curvature

3 Main results

We derive PoAccg bounds for a sublass of continu-
ous games G by extending the valid utility games con-
sidered in [31] and [23] to continuous strategy sets.
Hence, in Definition 3 we will define the class of valid
utility games with continuous strategies. As will be
seen, the two problems described above and several
other examples fall into this class. At the end of the
section, we will show that valid utility games can be
designed to maximize non-convex/non-concave objec-
tives in a distributed fashion with approximation guar-
antees.

3.1 Robust PoA bounds

As in [31, 23], the PoAccg bounds obtained rely on
the social function  experiencing diminishing returns
(DR). Differently from set functions, in continuous
(and integer) domains, different notions of DR exist.
Similarly to [23], our first main result relies on ~y sat-
isfying the strongest notion of DR, also known as DR
property [4], which we define in Definition 1. More-
over, as in [31] our bound can be refined depending
on the curvature of v. While DR properties have been
recently studied also in continuous domains, notions
of curvature of a submodular function were only ex-
plored for set functions [10, 17] (see [3, Appendix C]
for a comparison of the existing notions). Hence, in
Definition 2 we define the curvature of a monotone
DR-submodular function on continuous domains.

Definition 1 (DR property). A function f : X =
[T, X — R with X; C R is DR-submodular if for
all x <y € X, Vi € [n],Vk € Ry such that (x + ke;)
and (y + ke;) are in X,

f(x+kei) = f(x) = f(y + kei) = f(y).

When restricted to binary sets £ = {0,1}", Defini-
tion 1 coincides with the standard notion of submodu-
larity for set functions. An equivalent characterization
of the DR property for a twice-differentiable function is
that all the entries of its Hessian are non-positive [4]:

0%f(x)
8.%‘i8.%‘j
Definition 2 (curvature). Given a monotone DR-

submodular function f : X C R} — R, and a set
Z C X with 0 € Z, we define the curvature of f with

respect to Z by ( ) )
N . . f X + kei — f X
a(Z)=1- inf lim o) — 7(0)

x€Z,i€[n]: k—0t
x+ke; €2

Remark 1. For any monotone function f : R® — R

and VZ C R" with 0 € Z, o(Z) € [0,1].

Vx € X,

<0, Vi,j.

When restricted to binary sets £ = {0,1}", Defini-
tion 2 coincides with the total curvature defined in
[10]. Moreover, if f is montone DR-submodular and

differentiable, its curvature with respect to a set Z can
be computed as:

g 0(Z) = 1 — infyeg I

= x .
it [VF(0)):

Based on the previous definitions, we define the class
of valid utility games with continuous strategies.
Definition 3. A game G = (N, {S;}¥,, {m:}¥,,7) is
a valid utility game with continuous strategies if:

i) The function «y is monotone DR-submodular.
ii) For each player i and for every outcome s, m;(s) >
V(S) - ’Y(Ov S—i)'
iii) For every outcome s, y(s) > Ziil mi(8).

Intuitively, the conditions above ensure that the payoff
for each player is at least her contribution to the social
function and that optimizing ~ is somehow bind to the
goals of the players. Defining the set 8 := {xe Rfd |
0 < x < Spmax}, With S;40 such that Vs, s’ € 8, s+s’ <
Smaz, We can establish the following main theorem.
Theorem 1. Let G = (N, {S;}Y,, {m}¥,,7) be a
valid utility game with continuous strategies with so-
cial function v : RYY — R having curvature a(8) <
a. Then, PoAccr < (1 + «).

We will prove Theorem 1 in Section 4.2.

Remark 2. If G is a valid utility game with continuous
strategies, then PoAccp < 2.

Remark 3. The notion of valid utility games above
is an exact generalization of the one by [23] for inte-
ger strategy sets. Leveraging recent advances in ‘ap-
proximate’ submodular functions, in Section 5 we relax
condition i) and derive PoAccp bounds for a strictly
larger class of games.

Using Theorem 1, the following proposition upper
bounds PoAgcg of Example 1. Our bound depends
on the activation probabilities p;(r, t)’s and on the con-
nectivity of the market G.

Proposition 1. The budget allocation game defined
in Example 1 is a valid utility game with continuous
strategies. Moreover, PoAcop < 1+ a < 2 with
a:=1-

> (1 —pi(rt)) T (1 - Pj(28;,1))

min teT:rel(t) JE[N]
i€[N],reld] S In(1 = pi(r,t))
teT:rel(t)

In our more general continuous actions framework, the
obtained bound strictly improves the bound of 2 by
[23], since the curvature of the social function was not
considered in [23]. We will visualize our bound in the
experiments of Section 6.

Using Theorem 1, we now generalize Example 2 and
show that valid utility games with continuous strate-
gies can be designed to maximize monotone DR-
submodular functions subject to decoupled constraints
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with approximation guarantees. The proposed opti-
mization scheme will be used in Section 6 to solve an
instance of the sensor coverage problem (Example 2).

3.2 Game-based monotone DR-submodular
maximization

Consider the general problem of maximizing a mono-
tone DR-submodular function v : R® — R, subject

to decoupled constraints X = Hi\il X; C R™. We can
assume X; C R, without loss of generality [4], since
otherwise one could optimize 7y over a shifted version of
its constraints. Moreover, we assume ~(0) = 0 for ease
of exposition. Note that the class of monotone DR-
submodular functions includes non concave functions.
To find approximate solutions, we set up a game

Q = (ZV7 {Sz}ivzl, {frz}f\;b 7) )
where for each player ¢, Si = Xi, and 7;(s) := 7y(s) —

~v(0,s_;) for every outcome s € & = X. By using
DR-submodularity of v, we can affirm the following.

Fact 1. G is a valid utility game with continuous
strategies.

Assume there exists X4z € R’ such that Vx, x' €
X, x4 X' < Xpaz. Then, we denote with a(X) the
curvature of y with respect to X := {x € R? | 0 <
X < Xmag} and let o € [0,1] be an upper bound for
a(i’). If such X4 does not exist, we let @« = 1. More-
over, assume that for each player ¢ € [IN] there exists
a no-regret algorithm [27, Sec. 3] to play G. That is,
when G is repeated over time, player ¢ can ensure that
7 Mmax, g Zthl Ti(s,st;) — % Zthl mi(st,st,) — 0
as T — oo, for any sequence {s*,}T . We let D-
NOREGRET be the distributed algorithm where such
no-regret algorithms are simultaneously implemented
for each player. We can establish the following corol-
lary of Theorem 1 !

Corollary 1. Let x* = argmax,c 5 7(x). Then,
D-NOREGRET converges to a distribution o over X
such that Ex,[v(x)] > 1/(1 + a)y(x*).

Note that the FRANK-WOLFE variant of [4] can also be
used to maximize v with (1—e~!) approximations, un-
der the additional assumption that X is down-closed.
For small «’s, however, our guarantee can strictly im-
prove the one by [4].

If X is convex compact and - is concave in each Xj,
then 7;’s are concave in each x; and the online gradi-
ent ascent algorithm by [32] ensures no-regret for each
player [12]. Using Corollary 1, we show that the sen-
sor coverage problem of Example 2 falls into this class

L A similar version of the corollary can be obtained when
no-a-regret [18, Definition 4] algorithms exist for each
player, such as the ones by [9, 8] for online submodular
maximization.

and D-NOREGRET has approximation guarantees that
depend on the sensing probabilities P(r,-)’s.
Proposition 2. Consider the sensor coverage prob-
lem of Example 2 and assume we set-up the game G.
Then, online gradient ascent [32] is a no-regret algo-
rithm for each player. Moreover, D-NOREGRET has
an expected approximation ratio of 1/(1 + «), where
@ 1= max,¢[q P(r,2X) and X = (X1,...,XN).

Note that the obtained approximation ratio is strictly
larger than % and it increases when the number of sen-
sors N or the detection probabilities decrease, a fact
also noted in [24] for the binary setting. We compare
the performance of D-NOREGRET and the FRANK-
WOLFE variant of [4] in Section 6.

A decentralized maximization scheme for submodular
functions is also proposed in [26], albeit in a different
setting. In [26], v consists of a sum of local functions
subject to a common down-closed convex contraint set,
while we considered a generic objective v subject to
local constraints.

4 Analysis

In order to prove Theorem 1 and its extension to non-
submodular functions (Section 5), we first review the
main properties of submodularity in continuous do-
mains and show a fundamental property of the curva-
ture of a monotone DR-submodular function.

4.1 Submodularity and curvature on
continuous domains

Submodularity in continuous domains has received
recent attention for approximate maximization and
minimization of non convex/non concave functions
[4, 16, 1]. Submodular continuous functions are de-
fined on subsets of R™ of the form X = [[_, A;,
where each X; is a compact subset of R. A function
f: X = R is submodular if for all x € X, Vi # j and
aj,a; >0s.t. x; +a; € X, x5+ a; € Xj, [1]

f(x+ae;)— f(x) > f(x+ae;+aje;) — f(x+aje;).

The above property also includes submodularity of set
functions, by restricting X;’s to {0, 1}, and over integer
lattices, by restricting &;’s to Z;.. We are interested,
however, in submodular continuous functions, where
X;’s are compact subsets of R. As thoroughly studied
for set functions, submodularity is related to diminish-
ing return properties of f. However, differences exist
when considering functions over continuous (or inte-
ger) domains. In particular, submodularity is equiva-
lent to the following weak DR property [4].
Definition 4 (weak DR property). A function f : X C
R™ — R is weakly DR-submodular if, for all x <y €
X, Vist. x; =y;, VE € Ry s.t. (x+ke;) and (y+ke;)
are in X,

fx+ke) = f(x) = fy + kei) — f(y).
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The DR property, which we defined in Definition 1 char-
acterizes the full notion of diminishing returns and
indentifies a subclass of submodular continuous func-
tions. While weak DR and DR properties coincide for
set functions, this is not the case for functions on inte-
ger or continuous lattices. As the next section reveals,
the weak DR property of 7 is indeed not sufficient to
prove Theorem 1. However, it will be useful in Sec-
tion 5 when we extend our results to non-submodular
functions. In Appendix A.7 we provide equivalent
characterizations of weak DR and DR properties and
discuss submodularity for differentiable functions in
Appendix A.8. The following proposition is key for
the proof of Theorem 1.

Proposition 3. Consider a monotone DR-
submodular function f X C R} — R, and a
set Z:={x €R":0 < x < Zpar} CX. Then, for
any X,y € Z such that x+y € Z,

fx+y) = f(x) = (1 - a(2)[f(y) - F(O)],

where a(Z) is the curvature of f with respect to Z.

4.2 Proof of Theorem 1

The proof uses submodularity of the social function
similarly to [28, Example 2.6] and [23, Proposition 4].
However, it allows us to consider the curvature of 7.
Differently from [23, Proposition 4], our proof does
not rely on the structure of the strategy sets S;’s. The
weak DR and DR properties are used separately in the
proof, to show that the weak DR property of v is not
sufficient to obtain the results. This fact was similarly
noted in [23] for the integer case.

To upper bound PoAccg, we first prove that for any
pair of outcomes s,s* € S,
N

S msts ) 2 () —an(s).

In the framework of [28], this means that G is a (1, a)-
smooth game. Then, few inequalities from [28] show
that PoAccr < (14 a).

The smoothness proof is obtained as follows. Consider
any pair of outcomes s,s* € 8. For i € {0,...,N}
with a slight abuse of notation we define [s } =
(st,...,85,0,...,0) with [s*]) = 0, where s; is the
strategy of player 7 in the outcome s*

. We have
N ) > 0
S yS—i Zz 1 Sz )y S— Z - PY( ) Sfi)

>l

> sz i) —(s)
>3 A+ ) s+ Y
=(s+s") —(s)

> (L= a)y(s) +7(s") —7(s) =(s) —an(s).
The first inequality follows from condition ii) of valid

(sF +s;,s_

utility games as per Definition 3. The second inequal-
ity from 7 being DR-submodular (and using Proposi-
tion 5 in Appendix A.7). The third inequality from
v being weakly DR-submodular (and using Proposi-
tion 4 in Appendix A.7). The last inequality follows
since, by Proposition 3,

V(s +s8") — (%) =

and a(S) < a.

(1 - a(8))(s) — 20,

=0

For completeness we report the steps of [28] to prove
that PoAccr < (14 «). Let s* = argmaxg,cg y(S).
Then, for any CCE o of G we have

N
s~0’ > ZESNU 7T1 )] > ZESNU["TZ'(S;’ S*i)]
i=1

> 7(5 ) — aEsus[v(s)],

where the first inequality is due to condition iii) of
valid utility games as per Definition 3, the second
inequality holds from o being a CCE, and the last
one since G is (1,a)-smooth. Moreover, linearity
of expectation was used throughout. From the in-
equalities above it holds that for any CCE o of G,
v(8*)/Esmo[v(8)] < 1+ . Hence PoAccr <1+ a.
Remark 4. Although Theorem 1 requires DR-
submodularity of v over Rfd (for simplicity), only
DR-submodularity over 8 was used. In case v is DR~
submodular only over &, one could consider 7 : Rf d_
R, defined as ¥(s) = 7(min(s, S;4,)) which is DR-
submodular over RY?. This can be proved using DR-
submodularity and monotonicity of 4 over 8. The
same smoothness proof is obtained with ¥ in place of
v since the two functions are equal over §. However,
the curvature of 4 with respect to 8 is 1 and therefore
a bound of 2 for PoAccEg is obtained.

5 Extension to the non-submodular
case

In many applications [3], functions are close to being
submodular, where this closedness has been measured
in term of submodularity ratio [11] (for set functions)
and weak-submodularity [16] (on continuous domains).
Accordingly, in this section we relax condition i) of
valid utility games (Definition 3) and provide bounds
for PoAccg when the social function -y is not neces-
sarily DR-submodular. This case was never considered
for the valid utility games of [31, 23]. We relax the
weak DR property of v with the following definition.

Definition 5. Given a game g =
(NASHN {7} 1,v) with v monotone, we de-
fine generalized submodularity ratio of 7y as the largest
scalar 7 such that for any pair of outcomes s,s’ € S,

S st s ) = 2(s) 2 (s +8) — (s)]
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It is straightforward to show that n € [0, 1]. Moreover,
as stated in Appendix B (Proposition 8), if v is weakly
DR-submodular then ~ has generalized submodularity
ratio n = 1. When strategies s; are scalar (i.e., d = 1),
Definition 5 generalizes the submodularity ratio by [11]

to continuous domains?.

In addition, we relax the DR property of v as follows.

Definition 6. Given a game G =
(NASHY {7}, v), we say that v is player-
wise DR-submodular if for every player i and vector
of strategies s_;, y(+,s_;) is DR-submodular.

Analogously to Definition 1, if «y is twice-differentiable,
it is playwerwise DR-submodular iff for every i € [IV]

2
)

Vs € S, 78[51-]18[51}7” <0,

Vi,m e [d].
While Definition 5 concerns the interactions among
different players, Definition 6 requires that v is DR-
submodular with respect to each individual player.
When the social function v is DR-submodular, then
it is also playerwise DR-submodular. Moreover, since
the DR property is stronger than weak DR, v has gen-
eralized submodularity ratio n = 1. If v is not DR-
submodular, however, the notions of Definition 5 and
Definition 6 are not related. We visualize their differ-
ences in the following example.

Example 3. Consider a game with N = 2, d = 2,
and v twice-differentiable. Let 1 be the generalized
submodularity ratio of . Assume the Hessian of ~
satisfies one of the three cases below, where with ‘4’
or ‘—’ we indicate the sign of its elements:

e O

1. 2. 3.

From the previous definitions, the function v is play-
erwise DR-submodular iff all the entries highlighted
in red are non-positive, while 77 depends on all the off-
diagonal entries. In case 1., all the entries are negative,
hence 7 is DR-submodular. Thus, it is playerwise DR-
submodular and has generalized submodularity ratio
n = 1. In case 2., all off-diagonal entries are negative,
hence 7 is weakly DR-submodular (see Appendix A.8)
and thus n = 1. However, v is not playerwise DR-
submodular since some highlighted entries are posi-
tive. In case 3., v is playerwise DR-submodular and
its generalized submodularity ratio depends on its pa-
rameters.

[
I+
1+

+ 11
+ 10

Note that only case 1. of the previous example satisfies
the conditions of Theorem 1. However, the following

2In Appendix B we define an exact generalization of the
submodularity ratio by [11] to continuous domains. We
relate it to Definition 5 and compare it to the ratio by [16].

Theorem 2 is applicable also to a subset of functions
which fall in case 3. The proof can be found in Ap-
pendix B.

Theorem 2. Let G = (N, {S;} Y, {m}¥,,7) be a
game where 7 is monotone, playerwise DR-submodular
and has generalized submodularity ratio n > 0. Then,
if conditions ii) and iii) of Definition 3 are satisfied,
PoAccr < (1+n)/n.

In light of the previous comments, when ~ is DR-
submodular Theorem 2 yields a bound of 2 which is
always higher than (1 + «) from Theorem 1. This is
because the notion of curvature in Definition 2 cannot
be used in the more general setting of Theorem 2 since
~ may not be DR-submodular.

In Appendix B we show that examples of functions
with generalized submodularity ratio 1 > n > 0 are
products of monotone weakly DR~submodular func-
tions and monotone affine functions. As a conse-
quence, the following generalization of Example 2 falls
into the set-up of Theorem 2.

Sensor coverage problem with non-submodular
objective. Consider the sensor coverage problem de-
fined in Example 2, where the weights w,.’s are mono-
tone affine functions w, : Rf d_ R . rather than con-
stants. For instance, the probability that an event oc-
curs in location 7 can increase with the average amount
of energy allocated to that location. That is, v(x) =
2 refa Wr(x) P(r,x) with w,(x) = arw—i—br. To
maximize 7y one could set up a game G where condition
ii) of Definition 3 is satisfied with equality, as shown in
Section 3.2. In Appendix B.4 we show that v has gen-
eralized submodularity ratio 1 > n > 0, it is playerwise
DR-submodular, and that v(x) > 3 Zfil m;(x) for ev-
ery x, which is a weaker version of condition iii). Nev-
ertheless, using Theorem 2 and the last proof steps of
Section 4.2 we prove that PoAccr < (14 0.51)/0.51.
We also show that v is concave in each &;. Therefore
a distributed implementation of online gradient ascent
maximizes v up to 0.57/(1 4 0.5n) approximations.

We remark that our definitions of curvature, submod-
ularity ratio, and Theorems 1-2 can also be applied
to games and optimizations over integer domains, i.e.,
when §; C Zi and + is defined on integer lattices.

6 Experimental results

In this section we analyze the examples defined in Sec-
tion 2 using the developed framework.

6.1 Continuous budget allocation game

We consider N = 10 advertisers in a market with
d = 100 channels and |7 = 10’000 customers. For the
budget constraints we select b; = 1, s; = 1 and each
entry of ¢; is sampled uniformly at random from [0, 1].
For each i € [N],r € R,t € T, p;(r,t) is drawn uni-
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(a) Budget allocation game

(b) Sensor coverage problem

Figure 1: a) Bounds for PoAccg, as a function of py,q, and the number of edges connected to each customer.
The bounds strictly improve the bound of 2 provided by [23] which does not depend on any of such parameters.
b) Performance of FRANK-WOLFE variant and D-NOREGRET for K = 3000 iterations. Left: v(xx) as function
of K. Right: v(xk) as function of the budgets b, with K = 3000. D-NOREGRET shows faster convergence, but

for K = 3000 the two algorithms perform equally.

formly at random in [0.8, 1]pmas. In Figure 1a we visu-
alize the bound for PoAcc g obtained in Proposition 1
for different values of P4, and the number of random
edges connected to each customer. The chosen ranges
ensure that a sufficient fraction of customers will be
activated. For instance, for p,,., = 0.01 and drawing
20 random edges for each customer, we obtained ® an
expected number of 2270 activated customers. This
is in line with [23], where problem parameters were
chosen such that % of the customers are activated. As
visible, the bound decreases when the activation prob-
abilities decrease or when less edges are connected to
each customer and can strictly improve the bound of
2 provided by [23].

6.2 Sensor coverage with continous
assignments

To maximize the probability v of detecting an event,
we compare the performance of D-NOREGRET with
the FRANK-WOLFE variant by [4] and a hit-and-run
sampler [20] RANDOM10000 which samples 10’000
random feasible points. We choose N = 5 sensors
and d = 30 locations. For each budget constraint
X;, entries of c; are chosen uniformly at random in
1[1,3], b; = 1, and X; = 1. For each i € [N] and
r € [d], we select pf = p = 0.05 and w, uniformly
at random in [0,1] such that Zle w, = 1. Un-
der this choice, a ~ 0.4, and D-NOREGRET has ap-
proximation guarantee ~ 0.71 which is greater than
(1 —e!) ~ 0.63. We initialize both FRANK-WOLFE
and D-NOREGRET at xg = 0 and run them for K €
{10, 20, 50, 100, 500, 3000} iterations. Since the con-
straints are decoupled, also the FRANK-WOLFE vari-
ant can be implemented distributively. Step sizes for

3Since v is monotone DR-submodular and 8 is down-
closed, we used the FRANK-WOLFE variant by [4] to max-
imize v up to (1 — e~ ') approximations.

both algorithms are chosen costant and proportional
to 1/K and 1/vK as per [4] and [12, Lemma 3.2],
respectively. In Figure 1b we compare the values of
v(xk) as a function of the number of iterations K
(left plot). Moreover, for K = 3000, we compare
the performance of the algorithms when we enlarge
the constraints A; by choosing b; = b for each 1,
with b € {1,1.1,1.2,...,2} (right plot). As visible,
D-NOREGRET shows faster convergence than FRANK-
WOLFE variant. However, for K = 3000 the two algo-
rithms return the same values. Average computation
times per iteration are 0.019 s and 0.009 s for FRANK-
WOLFE and D-NOREGRET, respectively, on a 16 Gb
machine at 3.1 GHz using Matlab.

7 Conclusions and future work

We bounded the robust price of anarchy for a subclass
of continuous games, denoted as valid utility games
with continuous strategies. Our bound relies on a par-
ticular structure of the game and on the social func-
tion being monotone DR-submodular. We introduced
the notion of curvature of a monotone DR-submodular
function and refined the bound using this notion. In
addition, we extended the obtained bounds to a class of
non-submodular functions. We showed that valid util-
ity games can be designed to maximize monotone DR~
submodular functions subject to disjoint constraints.
For a subclass of such functions, our approximation
guarantees improve the ones in the literature. We
demonstrated our results numerically via a continuous
budget allocation game and a sensor coverage prob-
lem. In light of the obtained approximation guaran-
tees, we believe that the introduced notion of curvature
of a monotone DR-submodular function can be used
to tighten existing guarantees for constrained maxi-
mization. Currently, we are studying the tightness of
the obtained bounds and their applicability to several
continuous games such as auctions.
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