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Abstract

In stochastic multi-armed bandits, the re-
ward distribution of each arm is assumed to
be stationary. This assumption is often vi-
olated in practice (e.g., in recommendation
systems), where the reward of an arm may
change whenever is selected, i.e., rested ban-
dit setting. In this paper, we consider the
non-parametric rotting bandit setting, where
rewards can only decrease. We introduce
the filtering on expanding window average
(FEWA) algorithm that constructs moving
averages of increasing windows to identify
arms that are more likely to return high re-
wards when pulled once more. We prove
that for an unknown horizon T , and with-
out any knowledge on the decreasing behav-
ior of the K arms, FEWA achieves problem-
dependent regret bound of eO(log (KT )), and
a problem-independent one of eO(

p
KT ). Our

result substantially improves over the algo-
rithm of Levine et al. (2017), which su↵ers
regret eO(K1/3T 2/3). FEWA also matches
known bounds for the stochastic bandit set-
ting, thus showing that the rotting bandits
are not harder. Finally, we report simulations
confirming the theoretical improvements of
FEWA.

1 Introduction

The multi-arm bandits framework (Bubeck and Cesa-
Bianchi, 2012; Lattimore and Szepesvári, 2019) for-
malizes the exploration-exploitation dilemma in online
learning, where an agent has to trade o↵ the explo-
ration of the environment to gather information and
the exploitation of the current knowledge to maximize
reward. In the stochastic setting (Thompson, 1933;
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Auer et al., 2002a), each arm is characterized by a
stationary reward distribution. Whenever an arm is
pulled, an i.i.d. sample from the corresponding distri-
bution is observed. Despite the extensive algorithmic
and theoretical study of this setting, the stationarity
assumption is often too restrictive in practice, e.g.,
the preferences of users may change over time. The
adversarial setting (Auer et al., 2002b) addresses this
limitation by removing any assumption on how the
rewards are generated and learning agents should be
able to perform well for any arbitrary sequence of re-
wards. While algorithms such as Exp3 (Auer et al.,
2002b) are guaranteed to achieve small regret in this
setting, their behavior is conservative as all arms are
repeatedly explored to avoid incurring too much re-
gret because of unexpected changes in arms’ values.
This behavior results in unsatisfactory performance
in practice, where arms’ values, while non-stationary,
are far from being adversarial. Garivier and Moulines
(2011) proposed a variation of the stochastic setting,
where the distribution of each arm is piecewise sta-
tionary. Similarly, Besbes et al. (2014) introduced an
adversarial setting where the total amount of change
in arms’ values is bounded. These settings fall into the
restless bandit scenario, where the arms’ value evolves
independently from the decisions of the agent. On the
other hand, for rested bandits, the value of an arm
changes only when it is pulled. For instance, the value
of a service may deteriorate only when it is actually
used, e.g., if a recommender system shows always the
same item to the users, they may get bored (Warlop
et al., 2018). Similarly, a student can master a fre-
quently taught topic in an intelligent tutoring system
and extra learning on that topic would be less e↵ec-
tive. A particularly interesting case is represented by
the rotting bandits, where the value of an arm may
decrease whenever pulled. Heidari et al. (2016) studied
this problem when rewards are deterministic (i.e., no
noise) and showed how a greedy policy (i.e., selecting
the arm that returned the largest reward the last time
it was pulled) is optimal up to a small constant factor
depending on the number of arms K and the largest
per-round decay in the arms’ value L. Boune↵ouf and
Féraud (2016) considered the stochastic setting when
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the dynamics of the rewards is known up to a constant
factor. Finally, Levine et al. (2017) considered both
non-parametric and parametric noisy rotting bandits,
for which they derive algorithms with regret guarantees.
In the non-parametric case, where the decrease in re-
ward is neither constrained nor known, they introduce
the sliding-window average (wSWA) algorithm, which
is shown to achieve a regret to the optimal policy of
order eO(K1/3T 2/3), where T is the number of rounds
in the experiment.

In this paper, we study the non-parametric rotting
setting of Levine et al. (2017) and introduce Filtering
on Expanding Window Average (FEWA) algorithm, a
novel method that constructs moving average estimates
of increasing windows to identify the arms that are more
likely to perform well if pulled once more. Under the
assumption that the reward decays are bounded, we
show that FEWA achieves a regret of eO(

p
KT ), thus

significantly improving over wSWA and matching the
minimax rate of stochastic bandits up to a logarithmic
factor. This shows that learning with non-increasing
rewards is not more di�cult than in the stationary case.
Furthermore, when rewards are constant, we recover
standard problem-dependent regret guarantees (up to
constants), while in the rotting bandit scenario with
no noise, the regret reduces to the one of Heidari et al.
(2016). Numerical simulations confirm our theoretical
results and show the superiority of FEWA over wSWA.

2 Preliminaries

We consider a rotting bandit scenario similar to the
one of Levine et al. (2017). At each round t, an agent
chooses an arm i(t) 2 K , {1, ...,K} and receives a
noisy reward ri(t),t. The reward associated to each
arm i is a �2-sub-Gaussian r.v. with expected value of
µi(n), which depends on the number of times n it was
pulled before; µi(0) is the initial expected value.1 Let
Ht ,

��
i(s), ri(s),s

 
, 8s < t

 
be the sequence of arms

pulled and rewards observed until round t, then

ri(t),t , µi(t)(Ni(t),t) + "t with E["t|Ht] = 0

and 8� 2 R, E
⇥
e�"t

⇤
 e

��2

2 ,

where Ni,t ,
Pt�1

s=1 I{i(t) = i} is the number of times
arm i is pulled before round t. We use ri(n) to denote
the random reward of arm i when pulled for the n+1-th
time, i.e., ri(t),t = ri(t)(Ni(t),t). We introduce a non-
parametric rotting assumption with bounded decay.

Assumption 1. The reward functions µi are non-
increasing with bounded decays �L  µi(n + 1) �

1Our definition slightly di↵ers from the one of Levine
et al. (2017). We use µi(n) for the expected value of arm i
after n pulls instead of when it is pulled for the n-th time.

µi(n)  0. The initial expected value is bounded as
µi(0) 2 [0, L]. We refer to this set of functions as LL.

The learning problem A learning policy ⇡ is a
function from the history of observations to arms, i.e.,
⇡(Ht) 2 K. In the following, we often use ⇡(t) , ⇡(Ht).
The performance of a policy ⇡ is measured by the
(expected) rewards accumulated over time,

JT (⇡) ,
TX

t=1

µ⇡(t)

�
N⇡(t),t

�
.

Since ⇡ depends on the (random) history observed over
time, JT (⇡) is also random. We define the expected
cumulative reward as JT (⇡) , E

⇥
JT (⇡)

⇤
. We now

restate a characterization of the optimal (oracle) policy.

Proposition 1 (Heidari et al., 2016). If the expected
value of each arm {µi(n)}i,n is known, the policy ⇡?

maximizing the expected cumulative reward JT (⇡) is
greedy at each round, i.e.,

⇡?(t) = argmax
i

µi(Ni,t). (1)

We denote by J? , JT (⇡?) = JT (⇡?), the cumulative
reward of the optimal policy.

The objective of a learning algorithm is to implement a
policy ⇡ with performance as close to ⇡?’s as possible.
We define the (random) regret as

RT (⇡) , J? � JT (⇡). (2)

Notice that the regret is measured against an optimal
allocation over arms rather than a fixed-arm policy as
it is a case in adversarial and stochastic bandits. There-
fore, even the adversarial algorithms that one could
think of applying in our setting (e.g., Exp3 of Auer
et al., 2002a) are not known to provide any guarantee
for our definition of regret. On the other hand, for
constant µi(n)-s, our problem and definition of regret
reduce to the one of standard stochastic bandits.

Let N?
i,T be the (deterministic) number of times that

arm i is pulled by the oracle policy ⇡? up to time T
(excluded). Similarly, for a policy ⇡, let N⇡

i,T be the
(random) number pulls of arm i. The cumulative re-
ward can be rewritten as

JT (⇡) =
TX

t=1

X

i2K
I{⇡(t)=i}µi

�
N⇡

i,t

�
=
X

i2K

N⇡
i,TX

s=0

µi(s).
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Then, we can conveniently rewrite the regret as

RT (⇡) =
X

i2K

0

@
N?

i,TX

s=0

µi(s)�
N⇡

i,TX

s=0

µi(s)

1

A

=
X

i2up

N?
i,TX

s=N⇡
i,T+1

µi(s)�
X

i2op

N⇡
i,TX

s=N?
i,T+1

µi(s), (3)

where we define up ,
�
i 2 K|N⇡?

i,T > N⇡
i,T

 
and like-

wise op ,
�
i 2 K|N⇡?

i,T < N⇡
i,T

 
as the sets of arms

that are respectively under-pulled and over-pulled by ⇡
w.r.t. the optimal policy.

Known regret bounds We report existing regret
bounds for two special cases. We start with the mini-
max regret lower bound for stochastic bandits.

Proposition 2. (Auer et al., 2002b, Thm. 5.1) For
any learning policy ⇡ and any horizon T , there exists

a stochastic stationary problem
n
µi(n) , µi

o

i
with K

�-sub-Gaussian arms such that ⇡ su↵ers a regret

E[RT (⇡)] �
�

10
min

⇣p
KT, T

⌘
.

where the expectation is w.r.t. both the randomization
over rewards and algorithm’s internal randomization.

Heidari et al. (2016) derived regret lower and upper
bounds for deterministic rotting bandits (i.e., � = 0).

Proposition 3. (Heidari et al., 2016, Thm. 3) For any
learning policy ⇡, there exists a deterministic rotting
bandits (i.e., � = 0) satisfying Assumption 1 with
bounded decay L such that ⇡ su↵ers an expected regret

E[RT (⇡)] �
L

2
(K � 1).

Let ⇡�0 be the greedy policy that selects at each round
the arm with the largest reward observed so far, i.e.,
⇡�0(t) , argmaxi(µi(Ni,t� 1)). For any deterministic
rotting bandits (i.e., � = 0) satisfying Assumption 1
with bounded decay L, ⇡�0 su↵ers an expected regret

E[RT (⇡
�0)]  L(K � 1).

Any problem in the two settings above is a rotting
problem with parameters (�, L). Therefore, the perfor-
mance of any algorithm on the general rotting problem
is also bounded by these two lower bounds.

3 FEWA: Filtering on expanding
window average

Since the expected rewards µi change over time, the
main di�culty in the non-parametric rotting bandits
is that we cannot rely on all samples observed until

Algorithm 1 FEWA

Input: �, K, �0, ↵
1: pull each arm once, collect reward, and initialize

Ni,K  1
2: for t K + 1,K + 2, . . . do
3: �t  �0/(Kt↵)
4: h 1 {initialize bandwidth}

5: K1  K {initialize with all the arms}

6: i(t) none
7: while i(t) is none do

8: Kh+1  Filter(Kh, h, �t)
9: h h+ 1

10: if 9i 2 Kh such that Ni,t = h then

11: i(t) argmini2Kh Ni,t

12: end if

13: end while

14: receive ri(Ni,t+1) ri(t),t
15: Ni(t),t  Ni(t),t�1 + 1
16: Nj,t  Nj,t�1, 8j 6= i(t)
17: end for

time t to predict which arm is likely to return the
highest reward in the future. In fact, the older a sample,
the less representative it is for future rewards. This
suggests constructing estimates using the more recent
samples. Nonetheless, discarding older rewards reduces
the number of samples used in the estimates, thus
increasing their variance. In Alg. 1 we introduce FEWA

(or ⇡F) that at each round t, relies on estimates using
windows of increasing length to filter out arms that are
suboptimal with high probability and then pulls the
least pulled arm among the remaining arms.

We first describe the subroutine Filter in Alg. 2, which
receives a set of active arms Kh, a window h, and a
confidence parameter � as input and returns an updated
set of arms Kh+1. For each arm i that has been pulled n
times, the algorithm constructs an estimate bµh

i (n) that
averages the h  nmost recent rewards observed from i.
The subroutine Filter discards all the arms whose
mean estimate (built with window h) from Kh is lower
than the empirically best arm by more than twice a
threshold c(h, �t) constructed by standard Hoe↵ding’s
concentration inequality (see Prop. 4).

The Filter subroutine is used in FEWA to incremen-
tally refine the set of active arms, starting with a
window of size 1, until the condition at Line 10 is met.
As a result, Kh+1 only contains arms that passed the
filter for all windows from 1 up to h. Notice that it is
important to start filtering arms from a small window
and to keep refining the previous set of active arms. In
fact, the estimates constructed using a small window
use recent rewards, which are closer to the future value
of an arm. As a result, if there is enough evidence that
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Algorithm 2 Filter

Input: Kh, h, �t
1: c(h,�, �t) 

p
(2�2/h) log (1/�t)

2: for i 2 Kh do

3: bµh
i (Ni,t) 1

h

Ph
j=1 ri(Ni,t � j)

4: end for

5: bµh
max,t  maxi2Kh bµh

i (Ni,t)
6: for i 2 Kh do

7: �i  bµh
max,t � bµh

i (Ni,t)
8: if �i  2c(h,�, �t) then
9: add i to Kh+1

10: end if

11: end for

Output: Kh+1

an arm is suboptimal already at a small window h, it
should be directly discarded. On the other hand, a
suboptimal arm may pass the filter for small windows
as the threshold c(h,�, �t) is large for small h (i.e., as
few samples are used in constructing bµh

i (Ni,t), the esti-
mation error may be high). Thus, FEWA keeps refining
Kh for larger windows in the attempt of constructing
more accurate estimates and discard more suboptimal
arms. This process stops when we reach a window as
large as the number of samples for at least one arm
in the active set Kh (i.e., Line 10). At this point, in-
creasing h would not bring any additional evidence
that could refine Kh further (recall that bµh

i (Ni,t) is
not defined for h > Ni,t). Finally, FEWA selects the
active arm i(t) whose number of samples matches the
current window, i.e., the least pulled arm in Kh. The
set of available rewards and the number of pulls are
then updated accordingly.

Runtime and memory usage At each round t,
FEWA needs to store and update up to t averages
per-arm. Since moving from an average computed on
window h to h+ 1 can be done incrementally at a cost
O(1), the worst-case time and memory complexity per
round is O(Kt), which amounts to a total O(KT 2)
cost. This is not practical for large T .2 We have a fix.

In App. E we detail EFF-FEWA, an e�cient variant of
FEWA. EFF-FEWA is built around two main ideas.3

First, at any time t we can avoid calling Filter for
all possible windows h starting from 1 with an incre-
ment of 1. In fact, the confidence interval c(h,�, �t)
decreases as 1/

p
h and we could select windows h with

an exponential increment so that confidence intervals

2This analysis is worst-case. In many cases, the number
of samples for the suboptimal arms may be much smaller
than O(t). For instance, in stochastic bandits it is as little
as O(log t), thus reducing the complexity to O(KT log T ).

3As pointed by a reviewer, a similar yet di↵erent ap-
proach has appeared independently in the context of stream-
ing mining (Bifet and Gavaldà, 2007).

between two consecutive calls to Filter have a constant
ratio. In practice, we replace the window increment
(Line 9 of FEWA) by a geometric window h , 2j . This
modification alone is not enough to reduce the compu-
tation. While we reduce the number of estimates that
we construct, updating bµh

i from h = 2j to h = 2j+1

still requires spanning over past samples, thus leading
to the same O(Kt) complexity in the worst-case. In
order to reduce the overall complexity, we avoid re-
computing bµh

i at each call of Filter and by replacing
it with precomputed estimates. Whenever Ni,t = 2j

for some j, we create an estimate bs c
i,j by averaging

all the last Ni,t samples. These estimates are then
used whenever Filter is called with h = 2j . Instead
of updating bs c

i,j at each new sample, we create an as-
sociated pending estimate bs p

i,j which averages all the
more recent samples. More formally, let t be the time
when Ni,t = 2j , then bs p

i,j is initialized at 0 and it then
stores the average of all the samples observed from t
to t0, when Ni,t0 = 2j+1 (i.e., bs p

i,j is averaging at most

2j samples). At this point, the 2j samples averaged
in bs c

i,j are outdated and they are replaced by the new
average bs p

i,j , which is then reinitialized to 0. The spo-
radic update of the precomputed estimates and the
small number of them drastically reduces per-round
time and space complexity to O(K log t). Furthermore,
EFF-FEWA preservers the same regret guarantees as
FEWA. In the worst case, bs c

i,j may not cover the last
2j�1 � 1 samples. Nonetheless, the precomputed esti-
mates with smaller windows (i.e., j0 < j) are updated
more frequently, thus e↵ectively covering the 2j�1 � 1
samples “missed” by bs c

i,j . As a result, the active sets
returned by Filter are still accurate enough to derive
regret guarantees that are only a constant factor worse
than FEWA (App. E).

4 Regret Analysis

We first give problem-independent regret bound for
FEWA and sketch its proof in Sect. 4.1. Then, we
derive problem-dependent guarantees in Sect. 4.2.

Theorem 1. For any rotting bandit scenario with
means {µi(n)}i,n satisfying Asm. 1 with bounded de-
cay L and any time horizon T , FEWA run with ↵ = 5
and �t = 1/(Kt5), su↵ers an expected regret 4 of

E[RT (⇡F)]  13�(
p
KT +K)

p
log(KT ) +KL.

Comparison to Levine et al. (2017) The regret

of wSWA is bounded by eO(µ1/3
maxK1/3T 2/3) for rotting

functions with range in [0, µmax]. In our setting, we do
not restrict rewards to stay positive but we bound the
per-round decay by L, thus leading to rotting functions
with range in [�LT,L]. As a result, when applying

4See Corollary 3 and 4 for the high-probability result.
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wSWA to our setting, we should set µmax = L(T + 1),
which leads to O(T ) regret, thus showing that accord-
ing to its original analysis, wSWA may not be able to
learn in our general setting. On the other hand, we
could use FEWA in the setting of Levine et al. (2017)
by setting L = µmax as the largest drop that could
occur. In this case, FEWA su↵ers a regret of eO(

p
KT ),

thus significantly improving over wSWA. The improve-
ment is mostly due to the fact that FEWA exploits
filters using moving averages with increasing windows
to discard arms that are suboptimal w.h.p. Since this
process is done at each round, FEWA smoothly tracks
changes in the value of each arm, so that if an arm
becomes worse later on, other arms would be recovered
and pulled again. On the other hand, wSWA relies on
a fixed exploratory phase where all arms are pulled in
a round-robin way and the tracking is performed using
averages constructed with a fixed window. Moreover,
FEWA is anytime, while the fixed exploratory phase
of wSWA requires either to know T or to resort to a
doubling trick, which often performs poorly in practice.

Comparison to deterministic rotting bandits

For � = 0, our upper bound reduces to KL, thus
matching the prior (upper and lower) bound of Heidari
et al. (2016) for deterministic rotting bandits. More-
over, the additive decomposition of regret shows that
there is no coupling between the stochastic problem
and the rotting problem as terms depending on the
noise level � are separated from the terms depending on
the rotting level L, while in wSWA these are coupled
by a L1/3�2/3 factor in the leading term.

Comparison to stochastic bandits The regret of
FEWA matches the worst-case optimal regret bound
of the standard stochastic bandits (i.e., µi(n)s are con-
stant) up to a logarithmic factor. Whether an algorithm
can achieve O(

p
KT ) regret bound is an open ques-

tion. On one hand, FEWA needs confidence bounds
to hold for di↵erent windows at the same time, which
requires an additional union bound and thus larger
confidence intervals w.r.t.UCB1. On the other hand,
our worst-case analysis shows that some of the di�cult
problems that reach the worst-case bound of Thm. 1 are
realized with constant functions, which is the standard
stochastic bandits, for which MOSS-like (Audibert and
Bubeck, 2009) algorithms achieve regret guarantees
without the log T factor. Thus, the necessity of the
extra log T factor for the worst-case regret of rotting
bandits remains an open problem.

4.1 Sketch of the proof

We now give a sketch of the proof of our regret bound.
We first introduce the expected value of the estimators

used in FEWA. For any n and 1  h  n, we define

µh
i (n) , E

⇥
bµh
i (n)

⇤
=

1

h

hX

j=1

µi(n� j).

Notice that at round t, if the number of pulls of arm i is
Ni,t, then µ1

i (Ni,t) = µi(Ni,t�1), which is the expected
value of arm i the last time it was pulled. We introduce
Hoe↵ding’s concentration inequality and the favorable
event that we leverage in the analysis.

Proposition 4. For any fixed arm i, number of pulls n,
and window h, we have that with probability 1� �,

��bµh
i (n)� µh

i (n)
��  c(h, �) ,

r
2�2

h
log

1

�
· (4)

For any round t and confidence �t , �0/(Kt↵), let

⇠t,
n
8i 2 K, 8n  t, 8h  n,

��bµh
i (n)� µh

i (n)
��c(h, �t)

o

be the event under which the estimates constructed by
FEWA at round t are all accurate up to c(h, �t). Taking
a union bound gives P(⇠t) � 1�Kt2�t/2.

Active set We derive an important lemma that pro-
vides support for the arm selection process obtained by
a series of refinements through the Filter subroutine.
Recall that at any round t, after pulling arms {N⇡F

i,t }i
the greedy (oracle) policy would select an arm

i?t

⇣�
N⇡F

i,t

 
i

⌘
2 argmax

i2K
µi

�
N⇡F

i,t

�
.

We denote by µ+
t (⇡F) , maxi2K µi(N

⇡F
i,t ), the reward

obtained by pulling i?t . The dependence on ⇡F in the
definition of µ+

t (⇡F) stresses the fact that we consider
what the oracle policy would do at the state reached
by ⇡F. While FEWA cannot directly match the perfor-
mance of the oracle arm, the following lemma shows
that the reward averaged over the last h pulls of any
arm in the active set is close to the performance of the
oracle arm up to four times c(h, �t).

Lemma 1. On the favorable event ⇠t, if an arm i
passes through a filter of window h at round t, i.e.,
i 2 Kh, then the average of its h last pulls satisfies

µh
i (N

⇡F
i,t ) � µ+

t (⇡F)� 4c(h, �t). (5)

This result relies heavily on the non-increasing assump-
tion of rotting bandits. In fact, for any arm i and any
window h, we have

µh
i (N

⇡F
i,t ) � µ1

i (N
⇡F
i,t ) � µi(N

⇡F
i,t ).

While the inequality above for i⇤t trivially satisfies Eq. 5,
Lem. 1 is proved by integrating the possible errors in-
troduced by the filter in selecting active arms due to
the error of the empirical estimates.
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Relating FEWA to the oracle policy While
Lem. 1 provides a link between the value of the arms
returned by the filter and the oracle arm, i?t is defined
according to the number of pulls obtained by FEWA up
to t, which may significantly di↵er from the sequence of
pulls of the oracle policy. In order to bound the regret,
we need to relate the actual performance of the optimal
policy to the value of the arms pulled by FEWA. Let
hi,t ,

��N⇡F
i,t �N⇡?

i,t

�� be the absolute di↵erence in the
number of pulls between ⇡F and the optimal policy
up to t. Since

P
i N

⇡F
i,t =

P
i N

⇡?

i,t = t, we have thatP
i2op

hi,t =
P

i2up
hi,t which means that there are

as many total overpulls as underpulls. Let j 2 up be
an underpulled arm5 with N⇡F

j,T < N⇡?

j,T , then, for all
s 2 {0, . . . , hj,t}, we have the inequality

µ+
T (⇡F) = max

i2K
µi(N

⇡F
i,T ) � µj(N

⇡F
j,T + s). (6)

As a result, from Eq. 3 we have the regret upper bound

RT (⇡F) 
X

i2op

hi,T�1X

h=0

⇣
µ+(⇡F)� µi(N

⇡?

i,T + h)
⌘
, (7)

where we have obtained the inequality by bounding
µi(t0)  µ+

T (⇡F) in the first summation and then usingP
i2op

hi,T =
P

i2up
hi,T . While the previous expres-

sion shows that we can just focus on over-pulled arms
in op, it is still di�cult to directly control the expected
reward µi(N⇡?

i,T + h), as it may change at each round
(by at most L). Nonetheless, we notice that its cumu-
lative sum can be directly linked to the average of the
expected reward over a suitable window. In fact, for
any i 2 op and hi,T � 2, we have

(hi,T � 1)µ
hi,T�1
i (Ni,T � 1) =

hi,T�2X

t0=0

µi(N
⇡?

i,T + t0).

At this point we can control the regret for each i 2 op

in Eq. 7 by applying the following corollary of Lem. 1.

Corollary 1. Let i 2 op be an arm overpulled by
FEWA at round t and hi,t , N⇡F

i,t � N⇡?

i,t � 1 be the
di↵erence in the number of pulls w.r.t. the optimal policy
⇡? at round t. On the favorable event ⇠t, we have

µ+
t (⇡F)� µ

hi,t

i (Ni,t)  4c(hi,t, �t). (8)

4.2 Problem-dependent guarantees

Since our setting generalizes the standard stochastic
bandit setting, a natural question is whether we pay any
price for this generalization. While the result of Levine
et al. (2017) suggested that learning in rotting bandits
could be more di�cult, in Thm. 1 we actually proved
that FEWA nearly matches the problem-independent
regret eO(

p
KT ). We may wonder whether this is true

for the problem-dependent regret as well.

5If such arm does not exist, then ⇡F su↵ers no regret.

Remark 1. Consider a stationary stochastic bandit
setting with expected rewards {µi}i and µ? , maxi µi.
Corollary 1 guarantees that for �t � 1/(KT↵),

µ? � µi  4c(hi,T � 1, �t) = 4

s
2↵�2 log(KT )

hi,T � 1

or equivalently, hi,T  1 +
32↵�2 log(KT )

(µ? � µi)2
· (9)

Therefore, our algorithm matches the lower bound
of Lai and Robbins (1985) up to a constant, thus show-
ing that learning in the rotting bandits are never harder
than in the stationary case. Moreover, this upper
bound is at most ↵ larger than the one for UCB1 (Auer
et al., 2002a).6 The main source of suboptimality is the
use of a confidence bound filtering instead of an upper-
confidence index policy. Selecting the less pulled arm
in the active set is conservative as it requires uniform
exploration until elimination, resulting in a factor 4 in
the confidence bound guarantee on the selected arm
(vs. 2 for UCB), which implies 4 times more overpulls
than UCB (see Eq. 9). We conjecture that this may
not be necessarily needed and it is an open question
whether it is possible to derive either an index policy
or a better selection rule. The other source of subopti-
mality w.r.t.UCB is the use of larger confidence bands
because of the higher number of estimators computed
at each round (Kt2 instead of Kt for UCB).

Remark 1 also reveals that Corollary 1 can be used
to derive a general problem-dependent result in the
rotting case. In particular, with Corollary 1 we upper-
bound the maximum number of overpulls by a problem
dependent quantity

h+
i,T , max

(
h  1 +

32↵�2 log(KT )

�2
i,h�1

)
, (10)

where �i,h , min
j2K

µj

�
N?

j,T � 1
�
� µh

i

�
N?

i,t + h
�
.

We then use Corollary 1 again to upper-bound the
regret caused by h+

i,T overpulls for each arm, leading
to Corollary 2 (see the full proof in App.D).

Corollary 2. For �t , 1/(Kt5) and C↵ , 32↵�2, the
regret of FEWA is bounded as

E[RT (⇡F)] 
X

i2K

 
C5 log(KT )

�i,h+
i,T�1

+
p

C5 log(KT ) + L

!
.

6To make the results comparable to the one of Auer et al.
(2002a), we need to replace 2�2 by 1/2 for sub-Gaussian
noise.
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5 Numerical simulations

2-arms We design numerical simulations to study the
di↵erence between wSWA and FEWA. We consider
rotting bandits with two arms defined as

µ1(n) = 0, 8n  T and µ2(n) =

(
L
2 if n < T

4
,

�L
2 if n � T

4 ·

The rewards are then generated by applying a Gaus-
sian i.i.d. noise N (0,� = 1). The single point of non-
stationarity in the second arm is designed to satisfy
Asm. 1 with a bounded decay L. It is important to
notice that in this specific case, L also plays the role of
defining the gap � between the arms, which is known
to heavily impact the performance both in stochastic
bandits and in the rotting bandits (Cor. 2). In particu-
lar, for any learning strategy, the gap between the two
arms is always � = |µ1(n1) � µ2(n2)| = L/2. Recall
that in stochastic bandits, the problem independent
bound O(

p
KT ) is obtained by the worst-case choice of

� ,
p
K/T . In the two-arm setting defined above, the

optimal allocation is N?
1,T = 3T/4 and N?

2,T = T/4.

Algorithms Both algorithms have a parameter ↵
to tune. In wSWA, ↵ is a multiplicative constant to
tune the window. We test four di↵erent values of ↵,
including the recommendation of Levine et al. (2017),
↵ = 0.2. In general, the smaller the ↵, the smaller the
averaging window and the more reactive the algorithm
is to large drops. Nonetheless, in stationary regimes,
this may correspond to high variance and poor regret.
On the other hand, a large value of ↵ may reduce
variance but increase the bias in case of rapidly rotting
arms. Thm. 3.1 of Levine et al. (2017) reveals this trade-
o↵ in the regret bound of wSWA, which has a factor
(↵µmax + ↵�1/2), where µmax is the largest arm value.

The best choice of ↵ is then µ�2/3
max , which reduces

the previous constant to µ1/3
max. In our experiment,

µmax = L and we could expected that for any fixed ↵,

wSWA may perform well in cases when ↵ ⇡ µ�2/3
max ,

while the performance may degrade for larger µmax.

In FEWA, ↵ tunes the confidence �t = 1/(t↵) used
in c(h, �t). While our analysis suggests ↵ = 5, the
analysis of confidence intervals, union bounds, and
filtering algorithms is too conservative. Therefore, we
use more aggressive values, ↵ 2 {0.03, 0.06, 0.1}.

Experiments In Fig. 1, we compare the performance
of the two algorithms and their dependence on L. The
first plot shows the regret at T for various values of L.
The second and the third plot show the regret as a
function of time for L = 0.2 and L = 4.24, which
corresponds to the worst empirical performance for
FEWA and to the L � � regime respectively. All

experiments have T = 10000 and are averaged over 500
runs.

Before discussing the results, we point out that in the
rotting setting, the regret can increase and decrease
over time. Consider two simple policies: ⇡1, which
first pulls arm 1 for N?

1,T times and then arm 2 for
N?

2,T times, and ⇡2 in reversed order (first arm 2 and
then arm 1). If we take ⇡2 as reference, ⇡1 has an
increasing regret for the first T/4 rounds, which then
would plateau from T/4 up to 3T/4 as both ⇡1 and ⇡2

are pulling arm 1. Then from 3T/4 to T , the regret
of ⇡1 would reverse back to 0 since ⇡2 would keep
selecting arm 1 and getting a reward of 0, while ⇡1

transitions to pulling arm 2 with a reward of L/2.

Results Fig. 2 shows that the performance of wSWA

depends on the proper tuning of ↵ w.r.t.µmax = L,
as predicted by Thm. 3.1 of Levine et al. (2017). In
fact, for small values of L, the best choice is ↵ = 0.2,
while for larger values of L a smaller ↵ is preferable. In
particular, when L grows very large, the regret tends to
grow linearly with L. On the other hand, FEWA seems
much more robust to di↵erent values of L. Whenever T
and � are large compared to L, Thm. 1 suggests that
the regret of FEWA is dominated by O(�

p
KT ), while

the term KL becomes more relevant for large values
of the drop L. We also notice that since L defines
the gap between the value of µ1 and µ2, the problem-
independent bound is achieved for the worst-case choice
of L ⇠ 2

p
K/T , when the regret of FEWA is indeed the

largest. Fig. 1 middle and right confirm these findings
for the extreme choice of the worst-case value of L and
the regime where the drop is much larger than the noise
level, i.e., where the term KL dominates the regret.
We conclude that FEWA is more robust than wSWA as
it almost always achieves the best performance across
di↵erent problems while being agnostic to the value
of L. On the other hand, wSWA’s performance is
very sensitive to the choice of ↵ and the same value of
the parameter may correspond to significantly di↵erent
performance depending on L. Finally, we notice that
EFF-FEWA has a regret comparable to FEWA when L
is large, while for a small value of L, EFF-FEWA su↵ers
the cost of the delay in the update of its statistics, which
is larger for the last filter.

10-arms We also tested a rotting setting with 10
arms. The mean of 1 arm is constant with value 0
while the means of 9 arms abruptly decrease after 1000
pulls from +�i to ��i. �i is ranging from 0.001 to 10
in a geometric sequence. In this setting, the regret can
be written as RT (⇡) =

P9
i=1 hi,T�i. Hence, the regret

per arm is Ri
T (⇡) , �ihi,T . In Fig. 2, we compare

the performance of di↵erent algorithms for their best
parameter. The left plot shows the average regret as a



Rotting bandits are not harder than stochastic ones

10−1 100 101

L
0

100

200

300

400

500

600
A
ve
ra
ge
 re
gr
eW
 a
W T
 
10

4
)(WA(α 0.03, δ0  2)
)(WA(α 0.06, δ0  2)
)(WA(α 0.1, δ0  2)
())_)(WA(α 0.06, δ0  2)
w6WA(α 0.02)
w6WA(α 0.06)
w6WA(α 0.2)

0 2000 4000 6000 8000 10000
5Rund (t)

0

50

100

150

200

250

300

A
ve
ra
ge
 re
gr
eW
 R
t

L 0.233
)(WA(α 0.03, δ0  2)
)(WA(α 0.06, δ0  2)
)(WA(α 0.1, δ0  2)
())_)(WA(α 0.06, δ0  2)
w6WA(α 0.02)
w6WA(α 0.06)
w6WA(α 0.2)

0 2000 4000 6000 8000 10000
5Rund (t)

0

50

100

150

200

250

300

A
ve
ra
ge
 re
gr
eW
 R
t

L 4.24
)(WA(α 0.03, δ0  2)
)(WA(α 0.06, δ0  2)
)(WA(α 0.1, δ0  2)
())_)(WA(α 0.06, δ0  2)
w6WA(α 0.02)
w6WA(α 0.06)
w6WA(α 0.2)

Figure 1: Comparison between FEWA and wSWA in the 2-arm setting. Left: Regret at T = 10000 for di↵erent
values of L. Middle-right: Regret over time for L = 0.2 (worst case for FEWA) and L = 4.24 (case of L� �).
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Figure 2: 10-arm setting. Left: Regret over time. Right: Regret per arm at the end of the experiment.

function of time. The right plot shows the regret per
arm (indexed by �i) at the end of the experiment.

Results On Fig. 2 left, we see that FEWA outper-
forms wSWA at the end of the game. We remark that
the best tuning for wSWA corresponds to a rather
small window which corresponds to a good choice for
L = 2 in the 2-arm settings. Similar results can be ob-
served on the right plot: wSWA slightly outperforms
FEWA for �i = 0.3 and �i = 1. However, this window
size is too large for �i = 3.2 and �i = 10. We also
remark that EFF-FEWA is penalized for arms with
small �i, for which the impact of the delay is more
significant.

We also tested SW-UCB and D-UCB (Garivier and
Moulines, 2011) with parameters tuned for this experi-
ment. While the two algorithms are known benchmarks
for non-stationary restless bandits, they are penalized
in our rested bandits problem. Indeed, they keep ex-
ploring arms that have not been pulled for many rounds
which is detrimental in our case as the arms stay con-
stant when they are not pulled. Hence, there is no good

choice for their forgetting parameters: A fast forget-
ting rate makes the policies repeatedly pull bad arms
(whose mean rewards do not change when they are not
pulled in the rested setting) while a slow forgetting rate
makes the policies not able to adapt to abrupt shifts.

6 Conclusion

We introduced FEWA, a novel algorithm for the non-
parametric rotting bandits. We proved that FEWA

achieves an eO(
p
KT ) regret without any knowledge of

the decays by using moving averages with a window
that e↵ectively adapts to the changes in the expected
rewards. This result greatly improves over the wSWA

algorithm by Levine et al. (2017), that su↵ers a regret
of order eO(K1/3T 2/3). Thus our result shows that the
rotting bandit scenario is not harder than the stochas-
tic one. Our technical analysis of FEWA hinges on the
adaptive nature of the window size. The most inter-
esting aspect of the proof technique is that confidence
bounds are used not only for the action selection but
also for the data selection, i.e., to identify the best win-
dow to trade o↵ the bias and the variance in estimating
the current value of each arm.
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