
Truncated Back-propagation for Bilevel Optimization

Amirreza Shaban* Ching-An Cheng* Nathan Hatch Byron Boots
Georgia Institute of Technology *Equal contribution

Abstract

Bilevel optimization has been recently revis-
ited for designing and analyzing algorithms
in hyperparameter tuning and meta learn-
ing tasks. However, due to its nested struc-
ture, evaluating exact gradients for high-
dimensional problems is computationally chal-
lenging. One heuristic to circumvent this di�-
culty is to use the approximate gradient given
by performing truncated back-propagation
through the iterative optimization procedure
that solves the lower-level problem. Although
promising empirical performance has been re-
ported, its theoretical properties are still un-
clear. In this paper, we analyze the properties
of this family of approximate gradients and
establish su�cient conditions for convergence.
We validate this on several hyperparameter
tuning and meta learning tasks. We find that
optimization with the approximate gradient
computed using few-step back-propagation
often performs comparably to optimization
with the exact gradient, while requiring far
less memory and half the computation time.

1 INTRODUCTION

Bilevel optimization has been recently revisited as a
theoretical framework for designing and analyzing algo-
rithms for hyperparameter optimization [1] and meta
learning [2]. Mathematically, these problems can be
formulated as a stochastic optimization problem with
an equality constraint (see Section 1.1):

min
�

F (�) := ES [fS(ŵ
⇤
S(�),�)]

s.t. ŵ⇤
S(�) ⇡� argmin

w
gS(w,�)

(1)

where w and � are the parameter and the hyperpa-
rameter, F and fS are the expected and the sampled

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

upper-level objective, gS is the sampled lower-level ob-
jective, and S is a random variable called the context.
The notation ⇡� means that ŵ⇤

S(�) equals the unique
return value of a prespecified iterative algorithm (e.g.
gradient descent) that approximately finds a local min-
imum of gS . This algorithm is part of the problem
definition and can also be parametrized by � (e.g. step
size). The motivation to explicitly consider the approxi-
mate solution ŵ⇤

S(�) rather than an exact minimizer w⇤
S

of gS is that w⇤
S is usually not available in closed form.

This setup enables � to account for the imperfections
of the lower-level optimization algorithm.

Solving the bilevel optimization problem in (1) is chal-
lenging due to the complicated dependency of the
upper-level problem on � induced by ŵ⇤

S(�). This
di�culty is further aggravated when � and w are high-
dimensional, precluding the use of black-box optimiza-
tion techniques such as grid/random search [3] and
Bayesian optimization [4, 5].

Recently, first-order bilevel optimization techniques
have been revisited to solve these problems. These
methods rely on an estimate of the Jacobian r�ŵ⇤

S(�)
to optimize �. Pedregosa [6] and Gould et al. [7] assume
that ŵ⇤

S(�) = w⇤
S and compute r�ŵ⇤

S(�) by implicit
di↵erentiation. By contrast, Maclaurin et al. [8] and
Franceschi et al. [9] treat the iterative optimization
algorithm in the lower-level problem as a dynamical
system, and compute r�ŵ⇤

S(�) by automatic di↵eren-
tiation through the dynamical system. In comparison,
the latter approach is less sensitive to the optimality of
ŵ⇤

S(�) and can also learn hyperparameters that control
the lower-level optimization process (e.g. step size).
However, due to superlinear time or space complexity
(see Section 2.2), neither of these methods is applicable
when both � and w are high-dimensional [9].

Few-step reverse-mode automatic di↵erentiation [10,
11] and few-step forward-mode automatic di↵erentia-
tion [9] have recently been proposed as heuristics to
address this issue. By ignoring long-term dependencies,
the time and space complexities to compute approxi-
mate gradients can be greatly reduced. While exciting
empirical results have been reported, the theoretical
properties of these methods remain unclear.

Truncated Back-propagation for Bilevel Optimization

In this paper, we study the theoretical properties
of these truncated back-propagation approaches. We
show that, when the lower-level problem is locally
strongly convex around ŵ⇤

S(�), on-average convergence
to an ✏-approximate stationary point is guaranteed
by O(log 1/✏)-step truncated back-propagation. We
also identify additional problem structures for which
asymptotic convergence to an exact stationary point is
guaranteed. Empirically, we verify the utility of this
strategy for hyperparameter optimization and meta
learning tasks. We find that, compared to optimization
with full back-propagation, optimization with trun-
cated back-propagation usually shows competitive per-
formance while requiring half as much computation
time and significantly less memory.

1.1 Applications

Hyperparameter Optimization The goal of hy-
perparameter optimization [12, 13] is to find hyperpa-
rameters � for an optimization problem P such that the
approximate solution ŵ⇤(�) of P has low cost c(ŵ⇤(�))
for some cost function c. In general, � can parametrize
both the objective of P and the algorithm used to
solve P . This setup is a special case of the bilevel opti-
mization problem (1) where the upper-level objective
c does not depend directly on �. In contrast to meta
learning (discussed below), c can be deterministic [9].
See Section 4.2 for examples.

Many low-dimensional problems, such as choosing the
learning rate and regularization constant for training
neural networks, can be e↵ectively solved with grid
search. However, problems with thousands of hyperpa-
rameters are increasingly common, for which gradient-
based methods are more appropriate [8, 14].

Meta Learning Another important application of
bilevel optimization, meta learning (or learning-to-
learn) uses statistical learning to optimize an algorithm
A� over a distribution of tasks T and contexts S:

min
�

ET ES|T [cT (A�(S))] . (2)

It treats A� as a parametric function, with hyperpa-
rameter �, that takes task-specific context information
S as input and outputs a decision A�(S). The goal
of meta learning is to optimize the algorithm’s perfor-
mance cT (e.g. the generalization error) across tasks
T through empirical observations. This general setup
subsumes multiple problems commonly encountered
in the machine learning literature, such as multi-task
learning [15, 16] and few-shot learning [17, 18, 19].

Bilevel optimization emerges from meta learning when
the algorithm computes A�(S) by internally solving
a lower-level minimization problem with variable w.
The motivation to use this class of algorithms is that

the lower-level problem can be designed so that, even
for tasks T distant from the training set, A� falls
back upon a sensible optimization-based approach [20,
11]. By contrast, treating A� as a general function
approximator relies on the availability of a large amount
of meta training data [21, 22].

In other words, the decision is A�(S) = (ŵ⇤
S(�),�)

where ŵ⇤
S(�) is an approximate minimizer of some

function gS(w,�). Therefore, we can identify

ET |S [cT (ŵ
⇤
S(�),�)] =: fS(ŵ

⇤
S(�),�) (3)

and write (2) as (1).1 Compared with �, the lower-
level variable w is usually task-specific and fine-tuned
based on the given context S. For example, in few-shot
learning, a warm start initialization or regularization
function (�) can be learned through meta learning, so
that a task-specific network (w) can be quickly trained
using regularized empirical risk minimization with few
examples S. See Section 4.3 for an example.

2 BILEVEL OPTIMIZATION

2.1 Setup

Let � 2 RN and w 2 RM . We consider solving (1) with
first-order methods that sample S (like stochastic gra-
dient descent) and focus on the problem of computing
the gradients for a given S. Therefore, we will sim-
plify the notation below by omitting the dependency
of variables and functions on S and � (e.g. we write
ŵ⇤

S(�) as ŵ⇤ and gS as g). We use dx to denote the
total derivative with respect to a variable x, and rx

to denote the partial derivative, with the convention
that r�f 2 RN and r�ŵ⇤ 2 RN⇥M .

To optimize �, stochastic first-order methods use esti-
mates of the gradient d�f = r�f +r�ŵ⇤rŵ⇤f . Here
we assume that both r�f 2 RN and rŵ⇤f 2 RM

are available through a stochastic first-order oracle,
and focus on the problem of computing the matrix-
vector product r�ŵ⇤rŵ⇤f when both � and w are
high-dimensional.

2.2 Computing the hypergradient

Like [8, 9], we treat the iterative optimization algorithm
that solves the lower-level problem as a dynamical
system. Given an initial condition w0 = ⌅0(�) at t = 0,
the update rule can be written as2

wt+1 = ⌅t+1(wt,�), ŵ⇤ = wT (4)

1We have replaced ET ES|T with ESET |S , which is valid
since both describe the expectation over the joint distribu-
tion. The algorithm A� only perceives S, not T .

2For notational simplicity, we consider the case where wt is
the state of (4); our derivation can be easily generalized
to include other internal states, e.g. momentum.

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

Table 1: Comparison of the additional time and space
to compute d�f = r�f +r�ŵ⇤rŵ⇤f , where � 2 RN ,
w 2 RM , and c = c(M,N) is the time complexity
to compute the transition function ⌅. †Checkpointing
doubles the constant in time complexity, compared
with other approaches.

Method Time Space Exact

FMD O(cNT) O(MN) X
RMD O(cT) O(MT) X
Checkpointing O(cT †) O(M

p
T) X

every

p
T steps

†

K-RMD O(cK) O(MK)

in which ⌅t defines the transition and and T is the
number iterations performed. For example, in gradient
descent, ⌅t+1(wt,�) = wt � �t(�)rwg(wt,�), where
�t(�) is the step size.

By unrolling the iterative update scheme (4) as a com-
putational graph, we can view ŵ⇤ as a function of � and
compute the required derivative d�f [23]. Specifically,
it can be shown by the chain rule3

d�f = r�f +
PT

t=0 BtAt+1 · · ·ATrŵ⇤f (5)

where At+1 = rwt⌅t+1(wt,�), Bt+1 = r�⌅t+1(wt,�)
for t � 0, and B0 = d�⌅0(�).

The computation of (5) can be implemented either in
reverse mode or forward mode [9]. Reverse-mode di↵er-
entiation (RMD) computes (5) by back-propagation:

↵T = rŵ⇤f, hT = r�f,

ht�1 = ht +Bt↵t, ↵t�1 = At↵t
(6)

and finally d�f = h�1. Forward-mode di↵erentiation
(FMD) computes (5) by forward propagation:

Z0 = B0, Zt+1 = ZtAt+1 +Bt+1,

d�f = ZTrŵ⇤f +r�f
(7)

The choice between RMD and FMD is a trade-o↵ based
on the size of w 2 RM and � 2 RN (see Table 1 for
a comparison). For example, one drawback of RMD
is that all the intermediate variables {wt 2 RM}Tt=1

need to be stored in memory in order to compute At

and Bt in the backward pass. Therefore, RMD is only
applicable when MT is small, as in [20]. Checkpoint-
ing [24] can reduce this to M

p
T , but it doubles the

computation time. Complementary to RMD, FMD
propagates the matrix Zt 2 RM⇥N in line with the
forward evaluation of the dynamical system (4), and
does not require any additional memory to save the in-
termediate variables. However, propagating the matrix
Zt instead of vectors requires memory of size MN and
is N -times slower compared with RMD.
3Note that this assumes g is twice di↵erentiable.

3 TRUNCATED
BACK-PROPAGATION

In this paper, we investigate approximating (5) with
partial sums, which was previously proposed as a heuris-
tic for bilevel optimization ([10] Eq. 3, [11] Eq. 2). For-
mally, we perform K-step truncated back-propagation
(K-RMD) and use the intermediate variable hT�K to
construct an approximate gradient:

hT�K = r�f +
PT

t=T�K+1 BtAt+1 · · ·ATrŵ⇤f (8)

This approach requires storing only the last K iterates
wt, and it also saves computation time. Note that K-
RMD can be combined with checkpointing for further
savings, although we do not investigate this.

3.1 General properties

We first establish some intuitions about why using K-
RMD to optimize � is reasonable. While building up an
approximate gradient by truncating back-propagation
in general optimization problems can lead to large
bias, the bilevel optimization problem in (1) has some
nice structure. Here we show that if the lower-level
objective g is locally strongly convex around ŵ⇤, then
the bias of hT�K can be exponentially small in K.
That is, choosing a small K would su�ce to give a
good gradient approximation in finite precision. The
proof is given in Appendix A.

Proposition 3.1. Assume g is �-smooth, twice
di↵erentiable, and locally ↵-strongly convex in w
around {wT�K�1, . . . , wT }. Let ⌅t+1(wt,�) = wt �
�rwg(wt,�). For �  1

� , it holds

khT�K � d�fk  2T�K+1(1� �↵)Kkrŵ⇤fkMB (9)

where MB = maxt2{0,...,T�K} kBtk. In particular, if g
is globally ↵-strongly convex, then

khT�K � d�fk  (1��↵)K

�↵ krŵ⇤fkMB . (10)

Note 0  (1 � �↵) < 1 since �  1
�  1

↵ . Therefore,
Proposition 3.1 says that if ŵ⇤ converges to the neigh-
borhood of a strict local minimum of the lower-level
optimization, then the bias of using the approximate
gradient of K-RMD decays exponentially in K. This
exponentially decaying property is the main reason why
using hT�K to update the hyperparameter � works.

Next we show that, when the lower-level problem g is
second-order continuously di↵erentiable, �hT�K actu-
ally is a su�cient descent direction. This is a much
stronger property than the small bias shown in Proposi-
tion 3.1, and it is critical in order to prove convergence
to exact stationary points (cf. Theorem 3.4). To build
intuition, here we consider a simpler problem where
g is globally strongly convex and r�f = 0. These
assumptions will be relaxed in the next subsection.

Truncated Back-propagation for Bilevel Optimization

Lemma 3.2. Let g be globally strongly convex and
r�f = 0. Assume g is second-order continuously dif-
ferentiable and Bt has full column rank for all t. Let
⌅t+1(wt,�) = wt��rwg(wt,�). For all K � 1, with T
large enough and � small enough, there exists c > 0, s.t.
h>
T�Kd�f � ckrŵ⇤fk2. This implies hT�K is a su�-

cient descent direction, i.e. h>
T�Kd�f � ⌦(kd�fk2).

The full proof of this non-trivial result is given in Ap-
pendix B. Here we provide some ideas about why it is
true. First, by Proposition 3.1, we know the bias de-
cays exponentially. However, this alone is not su�cient
to show that �hT�K is a su�cient descent direction.
To show the desired result, Lemma 3.2 relies on the
assumption that g is second-order continuously di↵er-
entiable and the fact that using gradient descent to
optimize a well-conditioned function has linear con-
vergence [25]. These two new structural properties
further reduce the bias in Proposition 3.1 and lead to
Lemma 3.2. Here the full rank assumption for Bt is
made to simplify the proof. We conjecture that this
condition can be relaxed when K > 1. We leave this
to future work.

3.2 Convergence

With these insights, we analyze the convergence of
bilevel optimization with truncated back-propagation.
Using Proposition 3.1, we can immediately deduce that
optimizing � with hT�K converges on-average to an
✏-approximate stationary point. Let rF (�⌧) denote
the hypergradient in the ⌧th iteration.

Theorem 3.3. Suppose F is smooth and bounded be-
low, and suppose there is ✏ < 1 such that khT�K �
d�fk  ✏. Using hT�K as a stochastic first-order ora-
cle with a decaying step size ⌘⌧ = O(1/

p
⌧) to update

� with gradient descent, it follows after R iterations,

E
"

RX

⌧=1

⌘⌧krF (�⌧)k2PR
⌧=1 ⌘⌧

#
 eO

✓
✏+

✏2 + 1p
R

◆
.

That is, under the assumptions in Proposition 3.1,
learning with hT�K converges to an ✏-approximate sta-
tionary point, where ✏ = O((1� �↵)�K).

We see that the bias becomes small as K increases. As
a result, it is su�cient to perform K-step truncated
back-propagation with K = O(log 1/✏) to update �.

Next, using Lemma 3.2, we show that the bias term
in Theorem 3.3 can be removed if the problem is more
structured. As promised, we relax the simplifications
made in Lemma 3.2 into assumptions 2 and 3 below
and only assume g is locally strongly convex.

Theorem 3.4. Under the assumptions in Proposi-
tion 3.1 and Theorem 3.3, if in addition

1. g is second-order continuously di↵erentiable

2. Bt has full column rank around wT

3. r�f>(d�f + hT�K �r�f) � ⌦(kr�fk2)
4. the problem is deterministic (i.e. F = f)

then for all K � 1, with T large enough and � small
enough, the limit point is an exact stationary point, i.e.
lim⌧!1 krF (�⌧)k = 0.

Theorem 3.4 shows that if the partial derivative r�f
does not interfere strongly with the partial derivative
computed through back-propagating the lower-level op-
timization procedure (assumption 3), then optimizing �
with hT�K converges to an exact stationary point. This
is a very strong result for an interesting special case. It
shows that even with one-step back-propagation hT�1,
updating � can converge to a stationary point.

This non-interference assumption unfortunately is nec-
essary; otherwise, truncating the full RMD leads to con-
stant bias, as we show below (proved in Appendix E).

Theorem 3.5. There is a problem, satisfying all but
assumption 3 in Theorem 3.4, such that optimizing �
with hT�K does not converge to a stationary point.

Note however that the non-interference assumption is
satisfied when r�f = 0, i.e. when the upper-level prob-
lem does not directly depend on the hyperparameter.
This is the case for many practical applications: e.g.
hyperparameter optimization, meta-learning regular-
ization models, image desnosing [26, 14], data hyper-
cleaning [9], and task interaction [27].

3.3 Relationship with implicit di↵erentiation

The gradient estimate hT�K is related to implicit dif-
ferentiation, which is a classical first-order approach to
solving bilevel optimization problems [12, 13]. Assume
g is second-order continuously di↵erentiable and that its
optimal solution uniquely exists such that w⇤ = w⇤(�).
By the implicit function theorem [28], the total deriva-
tive of f with respect to � can be written as

d�f = r�f �r�,wgr�1
w,wgrŵ⇤f (11)

where all derivatives are evaluated at (w⇤(�),�) and
r�,wg = r�(rwg) 2 RN⇥M .

Here we show that, in the limit where ŵ⇤ converges to
w⇤, hT�K can be viewed as approximating the matrix
inverse in (11) with an order-K Taylor series. This can
be seen from the next proposition.

Proposition 3.6. Under the assumptions in Propo-
sition 3.1, suppose wt converges to a stationary point
w⇤. Let A1 = limt!1 At and B1 = limt!1 Bt. For
� < 1

� , it satisfies that

�r�,wgr�1
w,wg = B1

P1
k=0 A

k
1 (12)

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

By Proposition 3.6, we can write d�f in (11) as

d�f = r�f �r�,wgr�1
w,wgrŵ⇤f

= hT�K +B1

1X

k=K

Ak
1rŵ⇤f

That is, hT�K captures the first K terms in the Taylor
series, and the residue term has an upper bound as in
Proposition 3.1.

Given this connection, we can compare the use of hT�K

and approximating (11) using K steps of conjugate gra-
dient descent for high-dimensional problems [6]. First,
both approaches require local strong-convexity to en-
sure a good approximation. Specifically, let  = �

↵ > 0
locally around the limit. Using hT�K has a bias in
O((1 � 1

)
K), whereas using (11) and inverting the

matrix with K iterations of conjugate gradient has
a bias in O((1 � 1p


)K) [29]. Therefore, when w⇤ is

available, solving (11) with conjugate gradient descent
is preferable. However, in practice, this is hardly true.
When an approximate solution ŵ⇤ to the lower-level
problem is used, adopting (11) has no control on the
approximate error, nor does it necessarily yield a de-
scent direction. On the contrary, hT�K is based on
Proposition 3.1, which uses a weaker assumption and
does not require the convergence of wt to a stationary
point. Truncated back-propagation can also optimize
the hyperparameters that control the lower-level op-
timization process, which the implicit di↵erentiation
approach cannot do.

4 EXPERIMENTS

4.1 Toy problem

Consider the following simple problem for �, w 2 R2:

min
�

kŵ⇤k2 + 10k sin(ŵ⇤)k2 =: f(ŵ⇤,�)

s.t. ŵ⇤ ⇡ argmin
w

1
2 (w � �)>G(w � �) =: g(w,�)

where k · k is the `2 norm, sine is applied elementwise,
G = diag(1, 1

2), and we define ŵ⇤ as the result of
T = 100 steps of gradient descent on g with learning
rate � = 0.1, initialized at w0 = (2, 2). A plot of
f(·,�) is shown in Figure. 1. We will use this problem
to visualize the theorems and explore the empirical
properties of truncated back-propagation.

This deterministic problem satisfies all of the assump-
tions in the previous section, particularly those of The-
orem 3.4: g is 1-smooth and 1

2 -strongly convex, with

Bt+1 = r�[wt � �rwg(wt,�)] = �G

and B0 = 0. Although f is somewhat complicated, with
many saddle points, it satisfies the non-interference
assumption because r�f = 0.

Figure 1: Graph of f and visualization of Prop. 3.1.

Figure 2: The ratio h>
T�Kd�f/kd�fk2 at various �⌧ ,

for f and ef respectively.

Figure 1 visualizes Proposition 3.1 by plotting the
approximation error khT�K �d�fk and the theoretical

bound (1��↵)K

�↵ krŵ⇤fkMB at � = (1, 1). For this

problem, ↵ = 1
2 , MB = k�Gk = �, and rŵ⇤f can be

found analytically from ŵ⇤ = Cw0 + (I � C)�, where
C = (I � �G)T . Figure 4 (left) plots the iterates �⌧

when optimizing f using 1-RMD and a decaying meta-
learning rate ⌘⌧ = ⌘0p

⌧
.4 In comparison with the true

gradient d�f at these points, we see that hT�1 is indeed
a descent direction. Figure 2 (left) visualizes this in a
di↵erent way, by plotting h>

T�Kd�f/kd�fk2 for various
K at each point �⌧ along the K = 1 trajectory. By
Lemma 3.2, this ratio stays well away from zero.

To demonstrate the biased convergence of Theorem 3.3,
we break assumption 3 of Theorem 3.4 by changing
the upper objective to ef(ŵ⇤,�) := f(ŵ⇤,�) + 5k� �
(1, 0)k2 so that r�

ef 6= 0. The guarantee of Lemma
3.2 no longer applies, and we see in Figure 2 (right)
that h>

T�Kd�f/kd�fk2 can become negative. Indeed,

Figure 3 shows that optimizing ef with hT�1 converges
to a suboptimal point. However, it also shows that
using larger K rapidly decreases the bias.

For the original objective f , Theorem 3.4 guarantees
exact convergence. Figure 4 shows optimization tra-
jectories for various K, and a log-scale plot of their
convergence rates. Note that, because the lower-level
problem cannot be perfectly solved within T steps,
the optimal � is o↵set from the origin. Truncated
back-propagation can handle this, but it breaks the
assumptions required by the implicit di↵erentiation
approach to bilevel optimization.
4Because khT�Kk varies widely with K, we tune ⌘0 to
ensure that the first update ⌘1hT�K(�1) has norm 0.6.

Truncated Back-propagation for Bilevel Optimization

Figure 3: Biased convergence for ef . The red X marks
the optimal �.

Figure 4: Convergence for f .

4.2 Hyperparameter optimization problems

4.2.1 Data hypercleaning

In this section, we evaluate K-RMD on a hyperparam-
eter optimization problem. The goal of data hyper-
cleaning [9] is to train a linear classifier for MNIST [30],
with the complication that half of our training labels
have been corrupted. To do this with hyperparameter
optimization, let W 2 R10⇥785 be the weights of the
classifier, with the outer objective f measuring the
cross-entropy loss on a cleanly labeled validation set.
The inner objective is defined as weighted cross-entropy
training loss plus regularization:

g(W,�) =
P5000

i=1 ��(�i) log(e>yi
Wxi) + 0.001kWk2F

where (xi, yi) are the training examples, � denotes the
sigmoid function, �i 2 R, and k · kF is the Frobenius
norm. We optimize � to minimize validation loss, pre-
sumably by decreasing the weight of the corrupted
examples. The optimization dimensions are |�| = 5000,
|W | = 7850. Franceschi et al. [9] previously solved this
problem with full RMD, and it happens to satisfy many
of our theoretical assumptions, making it an interesting
case for empirical study.5

We optimize the lower-level problem g through T = 100
steps of gradient descent with � = 1 and consider how

5We have reformulated the constrained problem from [9] as
an unconstrained one that more closely matches our theo-
retical assumptions. For the same reason, we regularized
g to make it strongly convex. Finally, we do not retrain
on the hypercleaned training + validation data. This is
because, for our purposes, comparing the performance of
ŵ⇤ across K is su�cient.

Table 2: Hypercleaning metrics after 1000 hyperiters.

K Test Acc. Val. Acc. Val. Loss F1
1 87.50 89.32 0.413 0.85
5 88.05 89.90 0.383 0.89
25 88.12 89.94 0.382 0.89
50 88.17 90.18 0.381 0.89
100 88.33 90.24 0.380 0.88

Figure 5: kd�fk vs. hyperiteration for hypercleaning.

adjusting K changes the performance of K-RMD.6

Our hypothesis is that K-RMD for small K works
almost as well as full RMD in terms of validation and
test accuracy, while requiring less time and far less
memory. We also hypothesize thatK-RMD does almost
as well as full RMD in identifying which samples were
corrupted [9]. Because our formulation of the problem
is unconstrained, the weights �(�i) are never exactly
zero. However, we can calculate an F1 score by setting
a threshold on �: if �(�i) < �(�3) ⇡ 0.047, then the
hyper-cleaner has marked example i as corrupted.7

Table 2 reports these metrics for variousK. We see that
1-RMD is somewhat worse than the others, and that
validation loss (the outer objective f) decreases with K
more quickly than generalization error. The F1 score
is already maximized at K = 5. These preliminary
results indicate that in situations with limited memory,
K-RMD for small K (e.g. K = 5) may be a reasonable
fallback: it achieves results close to full backprop, and
it runs about twice as fast.

From a theoretical optimization perspective, we wonder
whether K-RMD converges to a stationary point of f .
Data hypercleaning satisfies all of the assumptions of
Theorem 3.4 except that Bt is not full column rank
(since M < N). In particular, the validation loss f is
deterministic and satisfies r�f = 0. Figure 5 plots the
norm of the true gradient d�f on a log scale at the
K-RMD iterates for various K. We see that, despite
satisfying almost all assumptions, this problem exhibits
biased convergence. The limit of kd�fk decreases slowly
with K, but recall from Table 2 that practical metrics
improve more quickly.

6See Appendix G.1 for more experimental setup.
7F1 scores for other choices of the threshold were very
similar. See Appendix G.1 for details.

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

4.2.2 Task interaction

We next consider the problem of multitask learning [27].
Similar to [9], we formulate this as a hyperparameter
optimization problem as follows. The lower-level objec-
tive g(w, {C, ⇢}) learns V di↵erent linear models with
parameter set w = {wv}Vv=1:

l(w) +
X

1i,jK

Cijkwi � wjk2 + ⇢
VX

v=1

kwvk2

where l(w) is the training loss of the multi-class linear
logistic regression model, ⇢ is a regularization constant,
and C is a nonnegative, symmetric hyperparameter
matrix that encodes the similarity between each pair
of tasks. After 100 iterations of gradient descent with
learning rate 0.1, this yields ŵ⇤. The upper-level ob-
jective c(ŵ⇤) estimates the linear regression loss of the
learned model ŵ⇤ on a validation set. Presumably, this
will be improved by tuning C to reflect the true simi-
larities between the tasks. The tasks that we consider
are image recognition trained on very small subsets of
the datasets CIFAR-10 and CIFAR-100.8

From an optimization standpoint, we are most inter-
ested in the upper-level loss on the validation set, since
that is what is directly optimized, and its value is a
good indication of the performance of the inexact gra-
dient. Figure 6 plots this learning curve along with
two other metrics of theoretical interest: norm of the
true gradient, and cosine similarity between the true
and approximate gradients. In CIFAR100, the valida-
tion error and gradient norm plots show that K-RMD
converges to an approximate stationary point with a
bias that rapidly decreases as K increases, agreeing
with Proposition 3.1. Also, we find that negative values
exist in the cosine similarity of 1-RMD, which implies
that not all the assumptions in Theorem 3.4 hold for
this problem (e.g. Bt might not be full rank, or the
the inner problem might not be locally strong convex
around ŵ⇤.) In CIFAR10, some unusal behavior hap-
pens. For K > 1, the truncated gradient and the full
gradient directions eventually become almost the same.
We believe this is a very interesting observation but
beyond the scope of the paper to explain.

In Table 3, we report the testing accuracy over 10
trials. While in general increasing the number of back-
propagation steps improves accuracy, the gaps are small.
A thorough investigation of the relationship between
convergence and generalization is an interesting open
question of both theoretical and practical importance.

4.3 Meta-learning: One-shot classification

The aim of this experiment is to evaluate the perfor-
mance of truncated back-propagation in multi-task,

8See Appendix G.2 for more details.

Table 3: Test accuracy for task interaction. Few-step
K-RMD achieves similar performance as full RMD.

Method Avg. Acc. Avg. Iter. Sec/iter.

C
IF
A
R
-1
0

1-RMD 61.11± 1.23 3300 0.8
5-RMD 61.33± 1.08 4950 1.3
25-RMD 61.31± 1.24 4825 1.4
Full RMD 61.28± 1.21 4500 2.2

C
IF
A
R
-1
0
0

1-RMD 34.37± 0.63 7440 1.0
5-RMD 34.34± 0.68 8805 1.4
25-RMD 34.51± 0.69 8660 1.6
Full RMD 34.70± 0.64 5670 2.8

0 20000 40000
.20

.25

Val Err.
1-RMD
5-RMD
25-RMD
FMD

0 20000 40000

10 5

10 3

||d f ||

0 20000 400000.0

0.5

1.0
Cosine Sim.

0 10000 20000

2.5

3.0

3.5
Val Err.

0 10000 20000

10 3

10 1 ||d f ||

0 10000 20000
0.0

0.5

1.0
Cosine Sim.

Figure 6: Upper-level objective loss (first column), norm
of the exact gradient (second column), and cosine similarity
(last column) vs. hyper-iteration on CIFAR10 (first row)
and CIFAR100 (second row) datasets.

stochastic optimization problems. We consider in par-
ticular the one-shot classification problem [20], where
each task T is a k-way classification problem and the
goal is learn a hyperparameter � such that each task
can be solved with few training samples.

In each hyper-iteration, we sample a task, a training set,
and a validation set as follows: First, k classes are ran-
domly chosen from a pool of classes to define the sam-
pled task T . Then the training set S = {(xi, yi)}ki=1

is created by randomly drawing one training example
(xi, yi) from each of the k classes. The validation set Q
is constructed similarly, but with more examples from
each class. The lower-level objective gS(w,�) is

P
(xi,yi)2S l(nn(xi;w,�), yi) +

PV
j=1 ⇢j ||wj � cj ||2

where l(·, ·) is the k-way cross-entropy loss, and
nn(·;w,�) is a deep neural network parametrized by
w = {w1, . . . , wV } and optionally hyperparameter �.
To prevent overfitting in the lower-level optimization,
we regularize each parameter wj to be close to center
cj with weight ⇢j > 0. Both cj and ⇢j are hyperpa-
rameters, as well as the inner learning rate �. The
upper-level objective is the loss of the trained network
on the sampled validation set Q. In contrast to other
experiments, this is a stochastic optimization prob-
lem. Also, A�(S)(xi) = nn(xi; ŵ⇤,�) depends directly
on the hyperparameter �, in addition to the indirect
dependence through ŵ⇤ (i.e. r�f 6= 0).

Truncated Back-propagation for Bilevel Optimization

Table 4: Results for one-shot learning on Omniglot
dataset. K-RMD reaches similar performance as full
RMD, is considerably faster, and requires less memory.

Method Accuracy iter. Sec/iter.
1-RMD 95.6 5K 0.4
10-RMD 96.3 5K 0.7
25-RMD 96.1 5K 1.3
Full RMD 95.8 5K 2.2

1-RMD 97.7 15K 0.4
10-RMD 97.8 15K 0.7
Short horizon 96.6 15K 0.1

We use the Omniglot dataset [31] and a similar neural
network as used in [20] with small modifications. Please
refer to Appendix G.3 for more details about the model
and the data splits. We set T = 50 and optimize over
the hyperparameter � = {�l1 ,�l2 , c, ⇢, �}. The average
accuracy of each model is evaluated over 120 randomly
sampled training and validation sets from the meta-
testing dataset. For comparison, we also try using
full RMD with a very short horizon T = 1, which is
common in recent work on few-shot learning [20].

The statistics are shown in Table 4 and the learning
curves in Figure 7. In addition to saving memory, all
truncated methods are faster than full RMD, some-
times even five times faster. These results suggest that
running few-step back-propagation with more hyper-
iterations can be more e�cient than the full RMD. To
support this hypothesis, we also ran 1-RMD and 10-
RMD for an especially large number of hyper-iterations
(15k). Even with this many hyper-iterations, the total
runtime is less than full RMD with 5000 iterations, and
the results are significantly improved. We also find that
while using a short horizon (T = 1) is faster, it achieves
a lower accuracy at the same number of iterations.

Finally, we verify some of our theorems in practice.
Figure 7 (fourth plot) shows that when the lower-level
problem is regularized, the relative `2 error between the
K-RMD approximate gradient and the exact gradient
decays exponentially as K increases. This was guar-
anteed by Proposition 3.1. However, this exponential
decay is not seen for the non-regularized model (⇢ = 0).
This suggests that the local strong convexity assump-
tion is essential in order to have exponential decay in
practice. Figure 7 (third plot) shows the cosine simi-
larity between the inexact gradient and full gradient
over the course of meta-training. Note that the cosine
similarity measures are always positive, indicating that
the inexact gradients are indeed descent directions. It
also seems that the cosine similarities show a slight
decay over time.

0 1000 2000 3000 4000

0.7

0.8

0.9

Mean Accuracy

0 1000 2000 3000 40000.2

0.4

0.6

0.8

1.0

Mean Error
1-RMD
10-RMD
25-RMD
Full RMD

0 1000 2000 3000 40000.0

0.2

0.4

0.6

0.8

1.0
Cosine Similarity

1-RMD
10-RMD
25-RMD
Full RMD

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

l_2 Error
Reg.
Non-Reg.

Figure 7: Omniglot results. Plots 1 and 2: Test accuracy
and val. error vs. number of hyper-iterations for di↵erent
RMD depths. K-RMD methods show similar performance
as the full RMD. Plot 3: Cosine similarity between inexact
gradient and full RMD over hyper-iterations. Plot 4: Rel-
ative `2 error of inexact gradient and full RMD vs. reverse
depth. Regularized version shows exponential decay.

5 CONCLUSION

We analyze K-RMD, a first-order heuristic for solving
bilevel optimization problems when the lower-level op-
timization is itself approximated in an iterative way.
We show that K-RMD is a valid alternative to full
RMD from both theoretical and empirical standpoints.
Theoretically, we identify su�cient conditions for which
the hyperparameters converge to an approximate or
exact stationary point of the upper-level objective. The
key observation is that when ŵ⇤ is near a strict local
minimum of the lower-level objective, gradient approx-
imation error decays exponentially with reverse depth.
Empirically, we explore the properties of this optimiza-
tion method with four proof-of-concept experiments.
We find that although exact convergence appears to
be uncommon in practice, the performance of K-RMD
is close to full RMD in terms of application-specific
metrics (such as generalization error). It is also roughly
twice as fast. These results suggest that in hyperparam-
eter optimization or meta learning applications with
memory constraints, truncated back-propagation is a
reasonable choice.

Our experiments use a modest number of parameters
M , hyperparameters N , and horizon length T . This is
because we need to be able to calculate both K-RMD
and full RMD in order to compare their performance.
One promising direction for future research is to use
K-RMD for bilevel optimization problems that require
powerful function approximators at both levels of opti-
mization. Truncated RMDmakes this approach feasible
and enables comparing bilevel optimization to other
meta-learning methods on di�cult benchmarks.

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

References

[1] Justin Domke. Generic methods for optimization-
based modeling. In Artificial Intelligence and
Statistics, pages 318–326, 2012.

[2] Luca Franceschi, Michele Donini, Paolo Frasconi,
and Massimiliano Pontil. A bridge between hy-
perparameter optimization and larning-to-learn.
NIPS 2017 Workshop on Meta-learning, 2017.

[3] James Bergstra and Yoshua Bengio. Random
search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(Feb):281–305,
2012.

[4] Niranjan Srinivas, Andreas Krause, Sham M
Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and
experimental design. In Proceedings of the 27th
International Conference on International Confer-
ence on Machine Learning, 2010.

[5] Jasper Snoek, Hugo Larochelle, and Ryan P
Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural
information processing systems, pages 2951–2959,
2012.

[6] Fabian Pedregosa. Hyperparameter optimization
with approximate gradient. In International Con-
ference on Machine Learning, pages 737–746, 2016.

[7] Stephen Gould, Basura Fernando, Anoop Cherian,
Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On di↵erentiating parameterized argmin
and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447,
2016.

[8] Dougal Maclaurin, David Duvenaud, and Ryan
Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International
Conference on Machine Learning, pages 2113–2122,
2015.

[9] Luca Franceschi, Michele Donini, Paolo Frasconi,
and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In
Proceedings of the 34th International Conference
on International Conference on Machine Learning,
2017.

[10] Jelena Luketina, Mathias Berglund, Klaus Gre↵,
and Tapani Raiko. Scalable gradient-based tuning
of continuous regularization hyperparameters. In
International Conference on Machine Learning,
pages 2952–2960, 2016.

[11] Atilim Gunes Baydin, Robert Cornish, David Mar-
tinez Rubio, Mark Schmidt, and Frank Wood. On-
line learning rate adaptation with hypergradient

descent. In International Conference on Learning
Representations, 2018.

[12] Jan Larsen, Lars Kai Hansen, Claus Svarer, and
M Ohlsson. Design and regularization of neural
networks: the optimal use of a validation set. In
Neural Networks for Signal Processing [1996] VI.
IEEE Signal Processing Society Workshop, pages
62–71. IEEE, 1996.

[13] Yoshua Bengio. Gradient-based optimization of
hyperparameters. Neural computation, 12(8):1889–
1900, 2000.

[14] Yunjin Chen, Rene Ranftl, and Thomas Pock.
Insights into analysis operator learning: From
patch-based sparse models to higher order mrfs.
IEEE Transactions on Image Processing, 23(3):
1060–1072, 2014.

[15] Rich Caruana. Multitask learning. In Learning to
learn, pages 95–133. Springer, 1998.

[16] Rajeev Ranjan, Vishal M Patel, and Rama Chel-
lappa. Hyperface: A deep multi-task learning
framework for face detection, landmark localiza-
tion, pose estimation, and gender recognition.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2017.

[17] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-
shot learning of object categories. IEEE transac-
tions on pattern analysis and machine intelligence,
28(4):594–611, 2006.

[18] Sachin Ravi and Hugo Larochelle. Optimization
as a model for few-shot learning. In International
Conference on Learning Representations, 2017.

[19] Jake Snell, Kevin Swersky, and Richard S Zemel.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems,
2017.

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on
Machine Learning (ICML), 2017.

[21] Marcin Andrychowicz, Misha Denil, Sergio Gomez,
Matthew W Ho↵man, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gra-
dient descent by gradient descent. In Advances
in Neural Information Processing Systems, pages
3981–3989, 2016.

[22] Ke Li and Jitendra Malik. Learning to optimize
neural nets. arXiv preprint arXiv:1703.00441,
2017.

[23] Atilim Gunes Baydin, Barak A Pearlmutter,
Alexey Andreyevich Radul, and Je↵rey Mark
Siskind. Automatic di↵erentiation in machine

Truncated Back-propagation for Bilevel Optimization

learning: A survey. Journal of Machine Learning
Research, 18:153:1–153:43, 2017.

[24] Laurent Hascoet and Mauricio Araya-Polo. En-
abling user-driven checkpointing strategies in
reverse-mode automatic di↵erentiation. arXiv
preprint cs/0606042, 2006.

[25] Elad Hazan et al. Introduction to online convex
optimization. Foundations and Trends R� in Opti-
mization, 2(3-4):157–325, 2016.

[26] Stefan Roth and Michael J Black. Fields of ex-
perts: A framework for learning image priors. In
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), volume 2, pages 860–
867. IEEE, 2005.

[27] Theodoros Evgeniou, Charles A Micchelli, and
Massimiliano Pontil. Learning multiple tasks with
kernel methods. Journal of Machine Learning
Research, 6(Apr):615–637, 2005.

[28] Walter Rudin. Principles of Mathematical Analy-
sis, volume 3. New York: McGraw-Hill, 1964.

[29] Jonathan Richard Shewchuk. An introduction
to the conjugate gradient method without the
agonizing pain, 1994.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Ha↵ner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[31] Brenden M Lake, Ruslan Salakhutdinov, and
Joshua B Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Sci-
ence, 350(6266):1332–1338, 2015.

[32] Roger A Horn and Charles R Johnson. Matrix
analysis. Cambridge University Press, 1990.

[33] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. In Interna-
tional Conference on Learning Representations,
2015.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778,
2016.

[35] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li,
Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 248–255. IEEE, 2009.

