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Abstract

In this paper, the problem of estimating the
level set of a black-box function from noisy
and expensive evaluation queries is consid-
ered. A new algorithm for this problem in
the Bayesian framework with a Gaussian Pro-
cess (GP) prior is proposed. The proposed
algorithm employs a hierarchical sequence of
partitions to explore different regions of the
search space at varying levels of detail de-
pending upon their proximity to the level set
boundary. It is shown that this approach re-
sults in the algorithm having a low complex-
ity implementation whose computational cost
is significantly smaller than the existing al-
gorithms for higher dimensional search space
X . Furthermore, high probability bounds on
a measure of discrepancy between the esti-
mated level set and the true level set for the
the proposed algorithm are obtained, which
are shown to be strictly better than the ex-
isting guarantees for a large class of GPs. In
the process, a tighter characterization of the
information gain of the proposed algorithm is
obtained which takes into account the struc-
tured nature of the evaluation points. This
approach improves upon the existing tech-
nique of bounding the information gain with
maximum information gain.

1 Introduction

Suppose f : X → R is an unknown black-box function
which can only be accessed through its noisy observa-
tions

y = f(x) + η. (1)
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For some τ > 0, we define the τ (super-)level set of
f as Sτ = {x ∈ X : f(x) ≥ τ}. Given a budget of n
function evaluations, our goal is to design an adaptive
query point selection strategy in order to efficiently
construct an estimate Ŝτ of the τ level set of f . The
accuracy of an estimate Ŝτ is measured by the term

L(Ŝτ , Sτ ) = sup
x∈Ŝτ4Sτ

|f(x)− τ |,

where Ŝτ∆Sτ =
(
Ŝτ \ Sτ

)⋃(
Sτ \ Ŝτ

)
denotes the

symmetric difference of the true and estiamted level
sets. This problem of estimating level sets of unknown
functions from noisy evaluations arises naturally in a
wide range of applications. These applications include
monitoring environmental parameters such as humid-
ity and solar radiation (Gotovos et al., 2013), analyz-
ing geospatial data and medical imaging (Willett and
Nowak, 2007).

In this paper, we propose a new algorithm for level
set estimation which utilizes ideas from existing al-
gorithms in the areas of global optimization (Bubeck
et al., 2011; Munos, 2011) and Bayesian Optimization
(Wang et al., 2014; Shekhar and Javidi, 2017). Com-
pared to the state of the art, we show that our pro-
posed algorithm has better computational complexity
as well as tighter convergence guarantees.

1.1 Related Work

Bryan et al. (2006) first considered the level set esti-
mation with a GP prior and studied several heuristics
for selecting the evaluation points based on variance,
classification probability, information gain and strad-
dle heuristic. They empirically compared the perfor-
mance of these methods and concluded that the strad-
dle heuristic outperformed other methods of selecting
evaluation points.

Gotovos et al. (2013) built upon the work of Bryan
et al. (2006) and proposed the LSE algorithm which
uses a search strategy inspired by the GP-UCB algo-
rithm of Srinivas et al. (2012) and derived theoretical
bounds on the convergence rate of the estimation er-
ror. Bogunovic et al. (2016) further highlighted the
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connection between Bayesian Optimization and level
set estimation by studying these problems in a uni-
fied framework. Their proposed algorithm, TruVAR,
can also deal with non-uniform observation costs and
heterostedastic noise. For the case of fixed noise and
cost model, their bounds match those of Gotovos et al.
(2013).

1.2 Contributions

For the case of X = [0, 1]D, all the algorithms men-
tioned above have two drawbacks: first, the computa-
tional cost of implementing them exactly increases ex-
ponentially with D, and second, their theoretical con-
vergence guarantees depend on the maximum mutual
information gain γn. Some recent results in Bayesian
Optimization literature (Scarlett et al., 2017; Scarlett,
2018) suggest that bounds based on γn can be quite
loose, especially for the Mátern family of kerenls. The
main contributions of this paper address these issues:

• We propose a new algorithm for level set estimation
which explores the search space by employing a hier-
archical sequence of partitions of X , and show that
the computational complexity of the algorithm with
a given evaluation budget n only has linear depen-
dence on the dimension D.

• We also derive theoretical guarantees on the estima-
tion error of the proposed algorithm which improve
upon the theoretical guarantees for existing algo-
rithms.

• Finally, by exploiting the structured nature of the
points evaluated by our algorithm, we obtain a more
refined characterization of the information gain of
our algorithm. In particular, we obtain a tighter
bound on the information gain for all members of
the widely used Mátern family of kernels.

2 Preliminaries

A Gaussian Process (GP) is a collection of random
variables whose finite subcollections are jointly Gaus-
sian, that is, all linear combinations of any finite sub-
collection are univariate Gaussian random variables.
Gaussian Processes with index set X are completely
specified by their mean function µ : X → R and co-
variance function k : X × X → R. We also note that
a zero mean Gaussian Process with a non-degenerate
covariance function k induces the canonical metric dk
on the index set defined as dk(x1, x2) =

(
k(x1, x1) +

k(x2, x2)− 2k(x1, x2)
)1/2

.

As mentioned earlier, in this paper we work under
the Bayesian framework in which we assume that the

black-box function f is a sample from a zero mean
Gaussian Process, GP (0, k), with known covariance
function k. Furthermore, we also assume that the ob-
servation noise η is distributed as N(0, σ2) and the
variance σ2 is known to the algorithm. Given obser-
vations Dt = {(xi, yi) | 1 ≤ i ≤ t}, the posterior dis-
tribution at any x ∈ X is again a univariate Gaussian
with parameters

µt(x) = k(x, xDt)J
−1
t yDt

σ2
t (x) = k(x, x) + k(x, xDt)J

−1
t k(xDt , x).

In the above display, xDt and yDt denote the vec-
tors of evaluation points and their corresponding ob-
servations. The terms k(x, xDt) and k(xDt , xDt) de-
note the vector and matrix of pairwise covariance val-
ues respectively. Finally, the term Jt is equal to(
k(xDt , xDt)+σ2Et

)
and Et is the t×t identity matrix.

Next, we introduce some definitions regarding the
properties of the index space X .

Definition 1. Given a set X with an associated metric
d, we define the metric dimension of X with respect
to d, denoted by Dm, as follows:

Dm := inf{a > 0 | ∃C <∞ : N(X , r, d) ≤ Cr−a ∀r ≥ 0}

where N(X , r, d) is the r−covering number of X with
respect to the metric d defined as:

N(X , r, d) := min{|Z| | Z ⊂ X , X ⊂ ∪z∈ZB(z, r, d)}.

A related notion is the r−packing number of a set
X with respect to a metric d, denoted by M(X , r, d),
which is defined as:

M(X , r, d) := max{|Z| | Z ⊂ X ,
d(z1, z2) ≥ r ∀z1, z2 ∈ Z}.

Finally, we introduce a local notion of dimensionality
of the metric space.

Definition 2. Suppose P(X ) denotes the power set
of X , and ζ : (0,∞) 7→ P (X ) represents a mapping
from the positive real numbers to subsets of X . Then
we define the dimension of (X , d) associated with the
mapping ζ(·) as

Dζ := inf{a > 0 | ∃C <∞ : M(ζ(r), r, d) ≤
Cr−a ∀r > 0}.

The above definition of dimension is a simple general-
ization of some existing definitions such as the near-
optimality dimension of (Bubeck et al., 2011; Munos,
2011; Shekhar and Javidi, 2017) and zooming dimen-
sion of (Kleinberg et al., 2013). For instance, the
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c-near-optimality dimension of (Bubeck et al., 2011)
is obtained by selecting ζ(r) = {x ∈ X | f(x) ≥
f(x∗) − cr} for some c > 0, where f(x∗) denotes the
maximum value of f .

3 Main Results

We begin by stating the assumptions on the metric
space (X , d) and the covariance function in Section 3.1,
followed by a high level description of our proposed
algorithm in Section 3.2 and then present the details
and the theoretical analysis in Section 3.3.

3.1 Assumptions

We assume that the set X is a compact metric space
with associated metric d, and that X has a finite met-
ric dimension, Dm, with respect to d. We also assume
that the metric space (X , d) admits a tree of partitions
(Bubeck et al., 2011) which is a sequence of finite sub-
sets (Xh)h≥0 of X such that

X1 |Xh| = 2h and the elements of Xh are denoted by
xh,i for 1 ≤ i ≤ 2h.

X2 To each xh,i is associated a cell Xh,i such that
∪iXh,i = X for all h and Xh+1,2i−1 ∪ Xh+1,2i =
Xh,i for all (h, i) pairs.

X3 There exist constants 0 < v2 ≤ 1 ≤ v1 and 0 <
ρ < 1 such that for all (h, i) pairs

B(xh,i, v2ρ
h, d) ⊂ Xh,i ⊂ B(xh,i, v1ρ

h, d)

Remark 1. As a concrete example, consider X =
[0, 1]D for some D > 0 and let d be the Euclidean
metric. In this case, the metric dimension Dm is equal
to D, the dimension of the space. Now, let X0 =
(0.5, 0.5, . . . , 0.5) and the associated cell X0,1 = X .
For any h ≥ 1 the cells are constructed by dividing
cells from the level h−1 equally along the longest side
(breaking ties arbitrarily), and the set Xh is defined
as the center points of the cells so obtained. This tree
of partitions satisfies the assumptions X1 − X3 with
parameters ρ = 2−1/D, v1 = 2

√
D and v2 = 1/2.

Next, we state our assumptions on the covariance func-
tion k and the metric dk it induces on X :

C1 There exists a non-decreasing continuous func-
tion g : R+ → R+, with g(0) = 0, such that
dk(x1, x2) ≤ g(d(x1, x2)) for all x1, x2 ∈ X .

C2 There exists a δk > 0 such that for all r ≤ δk,
we have for constants Ck > 0 and 0 < α ≤ 1
satisfying g(r) ≤ Ckrα.

Remark 2. These two assumptions are satisfied
by all commonly used covariance functions such as
Squared Exponential (SE), Mátern family and Ra-
tional Quadratic kernels. For example, for the
case of SE kernel with scale and length parame-
ters as and al respectively, we have dk(x1, x2) =√

2as
(
1− exp(−d(x1, x2)2/al)

)
≤
√

2as/ald(x1, x2)

which implies the assumptions C1 − C2 are satisfied
for δk = diam(X ) and α = 1.

Remark 3. It is easy to check that the class of co-
variance functions satisfying C1 and C2, denoted by
K, is closed under finite linear combinations. Hence it
includes various GP models useful in practical applica-
tions which are constructed by combining commonly
used covariance functions (Duvenaud, 2014).

3.2 General Outline

We now present a high level outline of the proposed
algorithm for level set estimation.

• At any time t, we maintain an active set of points
Xt, and their associated cells.

• For every point x ∈ Xt we compute bounds on
the maximum and minimum function value in the
associated cell.

• In each iteration, we choose a candidate point xt
from Xt which has the highest deviation from the
threshold τ .

• We take one of two actions:

– If the selected point has been explored
enough, we refine the cell.

– Otherwise, we evaluate the function at the
point xt.

In our proposed algorithm, the upper and lower
bounds on the function value in each cell consist of
two terms: an uncertainty term due to the observa-
tion noise and another term which estimates the vari-
ation of the function in the cell. When the uncertainty
due to observation noise is smaller than the variation,
it implies that the cell has been sufficiently explored
at the current scale, and we proceed to refine it into
smaller cells. On the other hand, if the uncertainty
due to noise is larger than variation, it means that the
cell requires more function evaluations at the current
scale.

3.3 Algorithm for GP level set estimation

The steps of our proposed algorithm for level set es-
timation with GP prior assumptions are shown in Al-
gorithm 1. Besides the budget n, the threshold τ and
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the tree of partitions (Xh)h≥0, the algorithm also re-
quires as input several other parameters βn, (Vh)h≥0

and hmax. The term βn is the scaling factor used in
computing the posterior confidence intervals, and Vh
is a high probability upper bound on the variation of
the unknwon function in any cell Xh,i. The term hmax
denotes the largest depth that the algorithm should
explore in the tree of partitions (Xh)h≥0.

At any time t, the algorithm maintains two sets, Ŝt and
R̂t, which contain points that do not require further
consideration. More specifically, set Ŝt contains points
whose lower bounds are greater than or equal to τ and
thus with high probability we have Ŝt ⊂ Sτ . Similarly,
we also have R̂t ⊂ Scτ for all values of t.

Algorithm 1: Level set estimation with GP prior

Input: n, τ , (Xh)h≥0, (Vh)h≥0, βn, hmax
Initialize t = 1, ne = 0, Ŝt = φ, R̂t = φ
while ne ≤ n do

for xh,i ∈ Xt do
if l̄t(xh,i) ≥ τ then

Ŝt ← Ŝt ∪ Xh,i;
Xt ← Xt \ {xh,i};

else if ūt(xh,i) < τ then

R̂t ← R̂t ∪ Xh,i;
Xt ← Xt \ {xh,i};

end
xht,it ∈
arg maxxh,i∈Xt max

(
ūt(xh,i)− τ, τ − l̄t(xh,i)

)
;

if βnσt−1(xht,it) < Vht AND ht ≤ hmax then
Xt ← Xt \ {xht,it} ;
Xt ← Xt ∪ {xht+1,j | p(xht+1,j) = xht,it};

else
evaluate yt = f(xht,it) + ηt;
update µt(·), σt(·);
ne ← ne + 1;

end
t← t+ 1 ;

end

Output: Ŝt

We now complete the description of the algorithm by
specifying the choice of the terms βn, (Vh)h≥0, hmax,
l̄t and ūt. The detailed reasoning for these choices are
provided in Appendix A.1.

• For any δ > 0, we select βn =√
2 log n

(
2n1+2/(2α log(1/ρ̄))

)
+ 2 log(1/δ), where

ρ̄ = min{ρ, 1/2}, and α is the parameter
introduced in Assumption C2. This choice
ensures that ∀t ≥ 1 and ∀x ∈ Xt, we have
|f(x) − µt−1(x)| ≤ βnσt−1(x) with probability
≥ 1− δ.

• For any δ > 0, we select

Vh = g(v1ρ
h)

((
C2 + 2 log(1/δh)

+ (4D′m) log(1/v1ρ
h)
)1/2

+ C3

)
where C2 and C3 are constants whose exact
expressions are given in Appendix A.1, δh =
δ/(2hhmax) where hmax is introduced below, and
D′m = Dm/α where Dm is the metric dimension
of (X , d) and α is the parameter introduced in
Assumption C2. With this choice of Vh, we have
with probability at least 1− δ,

sup
x∈Xh,i

|f(x)− f(xh,i| ≤ Vh ∀h, i

The expression for Vh is obtained by using classi-
cal chaining arguments(van Handel, 2014, § 5.3)
along with the assumptions on the covariance
function.

• We choose the value of hmax to be
log(n)/(2α log(1/ρ̄)) where ρ̄ = min{ρ, 1/2}.
This choice of hmax along with the finite metric
dimension assumption ensures that the size of Xt
for all t is at most polynomial in n which allows
us to construct tight confidence bounds on the
function values at all points in Xt.

It now remains to define the terms ūt and l̄t. To com-
pute the lower bound l̄t(xh,i) on the function value in
a cell Xh,i, we first obtain a lower bound on the func-
tion value at xh,i and then subtract Vh from it. The
lower bound on f(xh,i) is obtained by computing two
lower bounds and taking the maximum. The term ūt
is computed in a similar manner as well. The details
of the computations are as follows:

l̄t(xh,i) = max{l̄t−1(xh,i), lt(xh,i)},

where

lt(xh,i) = max{µt(xh,i)− βnσt(xh,i),
µt(p(xh,i))− βnσt(p(xh,i))− Vh−1} − Vh,

and
ūt(xh,i) = min{ūt−1(xh,i), ut(xh,i)},

where

ut(xh,i) = min{µt(xh,i) + βnσt(xh,i),

µt(p(xh,i)) + βnσt(p(xh,i)) + Vh−1}+ Vh.

In the above display, for any h ≥ 1 and 1 ≤ i ≤ 2h, we
use p(xh,i) to denote the parent node of xh,i in the tree
of partitions, i.e., p(xh,i) = arg minx∈Xh−1

d (x, xh,i).



Shubhanshu Shekhar, Tara Javidi

We now proceed to the theoretical analysis of Algo-
rithm 1 and begin by presenting a lemma which char-
acterizes the properties of the points which are evalu-
ated the algorithm.

Lemma 1. For the choice of parameters described
above, we have for any δ > 0, with probability at least
1− 2δ:

• If at time t a point xht,it is evaluated by the al-
gorithm, then the maximum deviation from τ of
the function value in the cell Xht,it can be upper
bounded as follows:

sup
x∈Xht,it

|f(x)− τ | ≤ 10Vht (2)

• If the evaluated point xht,it also satisfies the con-
dition that ht < hmax, then we can bound the max-
imum devitation from τ in another way using the
posterior standard deviation at xht,it :

sup
x∈Xht,it

|f(x)− τ | ≤ 4βnσt(xht,it) (3)

• A point xh,i, with h < hmax, may be evaluated no
more than qh times before it is expanded, where

qh =
σ2β2

n

V 2
h

.

and for h large enough so that v1ρ
h ≤ δk, we have

qh = O
(

σ2β2
n

(v1ρh)2α

)
Proof. We prove the three statements separately.

• We observe that if a point is evaluated by the
algorithm, then we must have l̄t(xht,it) ≤ τ ≤
ūt(xht,it). This implies that max{ūt(xht,it) −
τ, τ − l̄t(xht,it)} ≤ ūt(xht,it) − l̄t(xht,it). Now,
using the fact that ūt(xht,it) ≤ µt(p(xht,it)) +
βnσt(p(xht,it)) + Vht−1 + Vht , and l̄t(xht,it) ≥
µt(p(xht,it)) − βnσt(p(xht,it)) − Vht−1 − Vht we
get for any x ∈ Xht,it .

|f(x)− τ | ≤ ūt(xht,it)− l̄t(xht,it)
≤ 2βnσt(p(xht,it)) + 2Vht−1 + 2Vht
(a)

≤ 4Vht−1 + 2Vht
(b)

≤ 10Vht

where (a) follows from the fact that
βnσt (p(xht,it)) must be smaller than Vht−1

for the cell associated with p(xht,it) to be refined
and (b) follows from the fact that Vht−1 ≤ 2Vht
(see Remark 5 in Appendix A.1).

• Assume that a point xht,it is evaluated by the
algorithm at time t. Then for any x ∈ Xht,it we
have

|f(x)− τ | ≤ max{ūt(xht,it)− τ, τ − l̄t(xht,it)}
≤ ūt(xht,it)− l̄t(xht,it)
(a)

≤ 2βnσt(xht,it) + 2Vht
(b)

≤ 4βnσt(xht,it)

where (a) follows from the fact that by defini-
tion ūt(xht,it) ≤ µt(xht,it) + βnσt(xht,it) + Vht
and l̄t(xht,it) ≥ µt(xht,it)− βnσt(xht,it)− Vht
and (b) follows from the condition for function
evaluation at the point xht,it .

• We observe that from the first part of Proposi-
tion 3 of (Shekhar and Javidi, 2017), if a point
xh,i has been evaluated nh,i times by the algo-
rithm, then we must have σt(xh,i) ≤ σ/(

√
nh,i)).

Using this fact, we can obtain an upper bound
on the number of times the algorithm evaluates a
point xh,i before refining, denoted by qh, as fol-
lows:

qh = min{m : βn
σ√
m
≤ Vh}.

On simplifying, we get the required result qh ≤(
σ2β2

n

)
/V 2

h .

The first statement in the above lemma tells us that
the points evaluated by the algorithm which lie deeper
in the tree of partitions have smaller deviation from the
threshold τ , or alternatively, the algorithm discretizes
the search space coarsely in the regions far from the
threshold an constructs finer partitions in the regions
close to the threshold. The second statement provides
a bound on the deviation of the evaluated points in
terms of the posterior standard deviation, and thus
combined with the first statement described how the
algorithm balances exploration (evaluating points with
high σt(·)) and exploitation. Finally, the last satement
of Lemma 1 tells us that the algorithm evaluates more
points in the deeper parts of the tree of partitions.

Before proceeding to the convergence analysis of Al-
gorithm 1, we need to introduce some definitions. For
any r > 0, define hr := max{h ≥ 0 : v1ρ

h ≥ r}.
Then we define the dimensionality of the region of X
at which the function f takes values close to τ , as
D̃ := Dζ , where ζ(r) = {x ∈ X | |f(x)− τ | ≤ 10Vhr}
and Dζ was introduced in Definition 2.
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We note that by definition, the random variable D̃ is
almost surely bounded by the metric dimension Dm of
the metric space (X , d). More specifically for the case
of X ⊂ [0, 1]D, we have D̃ ≤ D almost surely.

Finally, we introduce the term Jn which is the sum of
the posterior variance of the points evaluated by the
algorithm, defined as

Jn :=
∑
t∈Qn

σ2
t (xht,it),

where Qn is the set of times at which the algorithm
performed function evaluations.

We can now state the main result of this section, which
bounds the approximation error of our proposed algo-
rithm in two ways with high probability. The first
bound is in terms of D̃, while the second bound is in
terms of Jn.

Theorem 1. Assuming that f is a sample from
GP (0, k) with k ∈ K, the following two statements are
true have with probability at least 1− 2δ,

L(Ŝτ , Sτ ) = Õ
(
n
− α
D̃+2α

)
(4)

L(Ŝτ , Sτ ) = Õ
(
βn
√
Jn/n

)
(5)

where Õ suppresses the polylogarithmic factors. The
term Jn in (5) can be further upper bounded by a con-
stant times I(yDn ; fDn), the mutual information be-
tween the function and the observations at the points
of evaluation Dn.

Proof Outline. The proof of this theorem combines
ideas from the proofs of (Gotovos et al., 2013, The-
orem 1) and from results in global optimization lit-
erature such as (Munos, 2011). More specifically, by
definition of the terms ūt(·) and l̄t(·), the upper bound
on the deviation of the points chosen by the algorithm,
ūt(xht,it) − l̄t(xht,it), is monotonically non-increasing
in t. Thus the maximum deviation from τ at any time
t can be upper bounded by the average of the devia-
tions of all the points evaluated by the algorithm up
to that time. Lemma 1 gives us two ways of bounding
the maximum deviation from τ of the evaluated points,
one in terms of the posterior standard deviation of the
evaluated points, and another in terms of the variation
Vht , the variation in the function value in the cell. Us-
ing the standard deviation bounds, and proceeding as
in (Srinivas et al., 2012; Gotovos et al., 2013), we can
obtain the bound given in (5). Finally, combining the
Vht based bound with our assumption on the metric
space (X , d), we can obtain the dimension type bound
given in (4) by using counting arguments similar to
those used in (Munos, 2011; Wang et al., 2014). The
details of the proof are given in Appendix A.2

Remark 4. The standard approach of obtaining ex-
plicit bounds in terms of n for I(yDn ; fDn), as laid
out in (Srinivas et al., 2012), consists of two steps:
first bound I(yDn ; fDn) by γn, the maximum infor-
mation gain with n observations, defined as γn :=
supG⊂X :|G|=n I(yG; f), and then employ the bounds
on γn derived in (Srinivas et al., 2012, Theorem 5) for
some commonly used covariance functions to get the
required bounds on the estimation error of the algo-
rithm. This is also the approach followed to obtain the
existing convergence guarantees for GP level set esti-
mation (Gotovos et al., 2013; Bogunovic et al., 2016).
In Section 3.3.1 we provide a more refined approach to
bounding the term Jn for Algorithm 1.

Low Complexity Implementation: The compu-
tational complexity of Algorithm 1 in the worst case

can be O(nαD̃+3) which can be infeasible for large D̃.
However, we can construct a low complexity version of
Algorithm 1 with slightly weaker theoretical guaran-
tees by the following modifications:

• Replace Line 11 in Algorithm 1 with the follow-
ing selection rule: xht,it ∈ arg maxxh,i∈Xt |τ −
µt(xh,i)|+ βnσt(xh,i) + Vh

• Remove the refinement rules in Lines 12-15 and
refine a cell Xh,i if xh,i has been evaluated qh
times, where qh is given in Lemma 1.

For this modified algorithm, it is easy to show that
we can obtain dimension-type bounds on the estima-
tion error given by (4). However, since we do not take
the posterior standard deviation into account in the
selection rule, we cannot obtain the information-type
bound for this algorithm. On the other hand, the size
of the active set at time t for this algorithm satisfies
|Xt| ≤ t. Hence the computational cost of implement-
ing this algorithm is dominated by the posterior calcu-
lation step which is a O(t3) operation for any time t.
Furthermore, since the cost of refining a cell is O(D)
and there can be no more than n cell refinements, the
total cost of implementing this algorithm isO(n4+Dn)

Comparison with existing algorithms: Compared
to the existing algorithms for level set estimation in the
Bayesian framework, our algorithm has lower compu-
tational complexity as well as tighter guarantees on
the estimation error.

The existing level set estimation algorithms with theo-
retical guarantees on their performance such (Gotovos
et al., 2013; Bogunovic et al., 2016) assume that the
search space is finite. They can, however, be easily ex-
tended to continuous search spaces by selecting query
points from a sequence of increasing finite subsets of
the search space X as suggested by Srinivas et al.
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(2012). More specifically, if X ⊂ [0, 1]D, then the ex-
isting algorithms at any time t, select a query point
by solving an optimization problem over a uniform
grid of size O(t2D). Thus with a budget of n function
evaluations, the computational cost of implementing
these algorithms is at least O

(
n2D+3

)
. The exponen-

tial dependence on D makes the application of these
algorithms to higher dimensions infeasible. Practical
implementations of these algorithms in higher dimen-
sions must employ certain heuristics and approxima-
tions, which do not come with theoretical guarantees.
In contrast, our algorithm admits a low complexity
version with theoretical guarantees on the estimation
error for which the cost of implementation has only a
linear dependence on the dimension of the search space
X . Thus for larger values of D, the cost of implement-
ing the low complexity version of our algorithm can be
significantly smaller than the state of the art.

In addition to the computational benefits, the con-
vergence guarantees presented in Theorem 1 for Algo-
rithm 1 also improve upon results of (Gotovos et al.,
2013) for the Mátern family of kernels in two ways:

• The bounds provided by (Gotovos et al., 2013)
are only valid for ν > 1 since no explicit bounds
on γn are known for the Mátern kernel with ν =
1/2. The dimension type bound of Theorem 1, in
contrast, is valid for all ν ≥ 1/2. Thus by putting
α = 1/2 for the Mátern 1/2 kernel, we obtain an
explicit upper bound on the estimation error of
the form O(n−1/(2D+2)) when X ⊂ [0, 1]D.

• For the case of ν > 1, a sufficient condition un-
der which the dimension type bounds given in (4)
are tighter than those of (Gotovos et al., 2013) is
when D ≥ ν − 1. This implies that for the two
most commonly used kernels in machine learning
applications, Mátern kernels with ν = 3/2 and
ν = 5/2, the bounds of Theorem 1 are tighter
than prior work for almost all dimensions. In Sec-
tion 3.3.1, we will further relax this condition, by
obtaining tighter bounds for all values of ν and
D.

3.3.1 Tighter bounds on Information Gain

As mentioned earlier, the standard approach of bound-
ing the information gain of the n evaluation points, as
proposed by Srinivas et al. (2012), is to first bound it
with γn, and then use the explicit bounds on γn de-
rived in Theorem 5 of Srinivas et al. (2012). This ap-
proach does not utlize any knowledge about the distri-
bution of the evaluation points in the space X . In the
case of Algorithm 1, however, since we know the eval-
uation points are only selected from the set ∪h≥0Xh,

we can use this to provide a more fine grained charac-
terization of the information gain.

Theorem 2. Suppose Qn denotes the times at which
the algorithm performns function evaluations. Then
for Jn =

∑
t∈Qn σ

2
t (xht,it), we have the following with

probability at least (1− δ):

Jn ≤
∑
h≥0

(
Ih(nh, Th) +O(1)

)
(6)

where nh is the number of function evaluations per-
formed by Algorithm 1 on points in Xh, Th ∈
{1, 2, . . . , nh} and the term Ih(nh, Th) is defined as fol-
lows:

Ih(nh, Th) = max
1≤s≤nh

(
Th log(smh/σ

2)+

σ−2(nh − s)
mh∑

i=Th+1

λ̂i

)
. (7)

In the above display, mh = 2h
(

log
(

2hhmax

δ

))
and

λ̂i denotes the ith largest eigenvalue of the empirical
covariance matrix computed at mh points uniformly
sampled from the set Zh :=

⋃
xh,i∈Xh B(xh,i, εh, d) for

εh = min{v2ρ
h, 1/nh}.

Proof Outline. The proof of this theorem proceeds
similarly to the proof of Theorem 8 of Srinivas et al.
(2012) by relating the information gain to the spec-
trum of the covariance matrix computed at some fi-
nite subset of X and then further approximating it the
spectrum of the corresponding Hilbert-Schmidt opera-
tor associated with the covariance function. However,
one key difference is that instead of computing the
covariance matrix over a uniform grid over X (as in
Lemma 7.7 of (Srinivas et al., 2012)), we construct a
sequence of uniform discretiztions by sampling points
uniformly from sets of the form ∪x∈XhB(x, εh, d) for
all h ≥ 0 and appropriate choice of εh. Due to this,
we can replace the approximation error term (the last
term in the statement of (Srinivas et al., 2012, The-
orem 8)) with a O(1) term in the statement of our
Theorem. The details are given in Appendix A.3

We now instantiate the bound described in Theorem 2
for the special case of Matern kernels with ν > 1.

Theorem 3. Suppose X ⊂ [0, 1]D and I(yDn ; fDn)
denotes the information gain for the set of points eval-
uated by Algorithm 1. Then if f is sampled from
GP (0, k) where k is a Mátern kernel with smoothness
parameter ν > 1, we have

I(yDn ; fDn) = Õ
(
na
)

(8)

where

a =
D2 + 3D

4ν +D2 + 5D
.
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Proof Outline. For proving the above theorem, we
partition the evaluated points into two sets depend-
ing on whether their depth is more than some value
H ≤ hmax or not. For the set of points with h ≤ H,
we bound the corresponding Ih values by making ap-
propriate choice of the parameter Th which balances
the two terms of Ih. The term nh can be upper
bounded by a O

(
ρ−h(2α+D)

)
term, and mh can be

upper bounded by a O
(
2h log(n)

)
term. For the set

of points with h > H we use a bound on posterior
standard deviation using Lemma 1 and the cell refin-
ing rule of Algorithm 1. Finally, the depth H is chosen
to balance the contributions of the terms with h ≤ H
and h > H. The details are given in Appendix A.4.

The bound given by the above theorem is tighter than
the existing bound on γn provided in Theorem 5 of
(Srinivas et al., 2012) for all values of ν > 1 and D ≥ 1.
Thus, in addition to the dimension dependent bound
for ν = 1/2, by employing the above result we have
obtained tighter characterization of the estimation er-
ror of our algorithm for all Mátern kernels with half
integer values of ν and for all values of D.

With some small modifications to the result of Theo-
rem 3, similar bounds on the information gain can be
derived for the Gaussian Process bandit algorithms in
(Shekhar and Javidi, 2017), thus proving tighter char-
acterization of the cumulative regret for all Mátern
kernels.

4 Conclusion and Future work

In this paper we considered the problem of level set
estimation of a black-box function from noisy obser-
vations. We proposed an algorithm for this problem
in the Bayesian framework with GP prior and ana-
lyzed its performance. We showed that our proposed
algorithm has lower computational complexity as well
as tighter theoretical guarantees than existing algo-
rithms. In the process, we also obtained tighter char-
acterization of the information gain from n function
evaluations for our proposed algorithm. Finally, we
also considered the problem of level set estimation in
the non-Bayesian framework with certain smoothness
assumptions, and proposed an algorithm which does
not require the knowledge of the smoothness parame-
ters.

There are several directions along which the work pre-
sented in this paper can be extended. We conjecture
that the bounds on the information gain of our algo-
rithm obtained in Theorem 3 can be further improved
by employing more careful counting arguments. An-
other important direction is to study the problem of
level set estimation in the non-Bayesian setting, for ex-

ample under Hölder continuity assumptions, and de-
sign computationally efficient algorithms which can
automatically adapt to the unknown smoothness pa-
rameters.
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Appendix A

A.1 Details of Algorithm 1

We now provide the detials of the parameters βn and (Vh)h≥0 of Algorithm 1.

Choice of parameter βn. Define the event E1 =
⋂
t≥1E1,t where we have E1,t := {|f(xh,i) − µt(xh,i)| ≤

βnσt(xh,i) | ∀xh,i ∈ Xt∀t ≥ 1}.

Suppose tn denotes the (random) time at which the algorithm performs its nth function evaluation. Then we
have the following sequence of inequalities:

Pr(Ec1) = E
[
E
[
1{Ec1} | Xt

]]
(a)

≤ E

[
tn∑
t=1

E
[
1{Ec1,t} | Xt

]] (b)

≤ E

 tn∑
t=1

∑
xh,i∈Xt

2 exp
(
−β2

n/2
)

≤ E

[
tn∑
t=1

2|Xt| exp
(
−β2

n/2
)] (c)

≤ E
[
2tn|Xhmax | exp

(
−β2

n/2
)]

(d)

≤ E
[
2n|Xhmax

|2 exp
(
−β2

n/2
)]

= 2n|Xhmax
|2 exp

(
−β2

n/2
)
.

In the above display, (a) follows from union bound, (b) uses the Gaussian tail inequality, (c) employs the fact
that all realizations of Xt must have cardinality smaller than or equal to Xhmax

, and (d) follows from the fact
that tn must be smaller than |Xhmax

| + n ≤ |Xhmax
|n. Thus for restricting the probability of Ec1 to less than δ,

an appropriate choice of βn is
√

2 log(2n22hmax/δ) =

√
2 log

(
2n1+ 2

2α log(1/ρ)

)
+ 2 log(1/δ).

Choice of the parameter Vh. For describing the choice of Vh, we define the event E2 =⋂
0≤h≤hmax

⋂
1≤i≤2h E

(h,i)
2 , where we have E

(h,i)
2 := {supx1,x2∈Xh,i |f(x1)− f(x2)| ≤ Vh ∀1 ≤ i ≤ 2h}. Then, we

have the following

Pr (Ec2) ≤
hmax∑
h=0

2h∑
i=1

Pr

(
sup

x1,x2∈Xh,i
|f(x1)− f(x2)| ≤ Vh

)

Now, by assumptions C1 and X3, we know that Xh,i ⊂ B(xh,i, g(v1ρ
h), dk), and thus we have

Pr

(
sup

x1,x2∈Xh,i
|f(x1)− f(x2)| > Vh

)

≤Pr

(
sup

x1,x2∈B(xh,i,g(v1ρh),dk)

|f(x1)− f(x2)| > Vh

)
:=Pr(F ch,i)

Now, using Proposition 1 of (Shekhar and Javidi, 2017), we have for Vh =

g(v1ρ
h)
(√

C2 + 2 log(1/δh) + (4D′m) log(1/v1ρh) + C3

)
, Pr(F ch,i) ≤ δh. In obtaining this expression, we

have used the fact that the metric dimenison of (X , dk), denoted by D′m, is finite (see Lemma 2 at the end of

this section for details). The constant C2 is equal to 2 log
(

2C ′2D′mπ
2/6
)

where C ′2D′m is the leading constant

corresponding to the exponent 2D′m for computing the bounds on the covering numbers of (X , dk). The term

C3 is equal to
(∑

n≥1 2−(n−1)
√

log n
)

+
(∑

n≥1 2−(n−1)
√
n2D′m log(2)

)
.

Finally, with this choice of Vh and with δh = δ/(2hhmax) for all values of 0 ≤ h ≤ hmax, we get that Pr(Ec2) ≤ δ.
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Remark 5. Without loss of generality, we can assume that the sequence (Vh)h≥0 is such that for all h ≥ 0, we
have Vh ≤ 2Vh+1. This is because

sup
x1,x2∈Xh,i

|f(x1)− f(x2)| ≤ sup
x1,x2∈Xh,i

|f(x1)− f(z1)|+ f(x2)− f(z2)|+ |f(z1)− f(z2)|

for any z1, z2 by triangle inequality. If we select z1 ∈ Xh+1,2i−1 and z2 ∈ Xh+1,2i and d(z1, z2) ≤ ε for arbitrary
ε > 0, we get that

sup
x1,x2∈Xh,i

|f(x1)− f(x2)| ≤ Vh+1 + Vh+1 + ε

Thus 2Vh+1 is a valid upper bound on supx1,x2∈Xh,i |f(x1) − f(x2)|, and given any sequence of (Vh)h≥0 we can
replace Vh ← min{Vh, 2Vh+1} for h = hmax, hmax − 1, . . . , 0 to impose the condition.

Finally, we end this section by stating and proving the result about the metric dimension of the space (X , dk).

Lemma 2. Suppose the metric space (X , d) has a finite metric dimension Dm and suppose k is a covariance
function satisfying the conditions C1 and C2. Then, the metric dimension of (X , dk), denoted by D′m is upper
bounded by Dm/α.

Proof. By the assumption of the finite metric dimension of (X , d), we know that for any a > Dm, there exists
a constant 0 < Ca < ∞ such that for all r > 0, we have N(X , r, d) ≤ Car

−a. Now, for an r > 0, consider the
packing number N(X , r, dk). We have the following two cases:

• If r < Ckδ
α
k then we claim that N(X , r, dk) ≤ N

(
X ,
(
r
Ck

)1/α

, d

)
≤ Ca

(
r
Ck

)−a/α
. To see this, let C

denote any
(
r
Ck

)1/α

-covering set of (X , d). Then, by definition, for any x ∈ X , there exists a z ∈ C such

that d(x, z) ≤
(
r
Ck

)1/α

, which by the assumption C1 implies that dk(x, z) ≤ r. This implies that C is an

r-covering set for (X , dk). Thus we conclude that for any a > Dm, we have N(X , r, dk) ≤ CaCa/αk r−a/α for
all r ≤ Ckδαk .

• For the case of r > Ckδ
α
k we use the fact that the packing number N(X , r, dk) is monotonically nonincreasing

in r, and thus for such values of r, we have N(X , r, dk) ≤ N(X , Ckδαk , dk). The term N(X , Ckδαk , dk) can be

upper bounded by Caδ
−a
k for all a > Dm, which implies that N(X , r, dk) ≤ Ca

(
diam(X )

δαk

)a/α
r−a/α.

Combining the above two observations, we see that for all a > Dm, we have N(X , r, dk) ≤ C ′ar−a/α for all r > 0,

where we can choose C ′a = Ca

(
C
a/α
k + diam(X )

δαk

)a/α
<∞. This implies that the metric dimension of (X , dk) can

be no larger than Dm/α.
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A.2 Proof of Theorem 1

Throughout this proof, we make all the arguments under the assumption that the events E1 and E2 defined in
Appendix A.1 hold true. We introduce the notation At = max{ūt(xh,i) − τ, τ − l̄t(xh,i)} for the index used in
selecting the point xht,it . Then similar to (Gotovos et al., 2013), we first observe that by construction, the term

At(xh̄t ,̄it) is non-increasing in t. Furthermore, since for all t, the set Ŝt ⊂ Sτ , for all x ∈ X \ (Ŝt ∪ R̂t), we have
with high probability

L(Ŝt, Sτ ) ≤ sup
x∈X\(Ŝt∪R̂t)

|f(x)− τ | ≤ At.

The inequality in the above display follows from the fact that with high probability, at any time t, Ŝt ⊂ Sτ and

R̂t ⊂ Scτ . Thus the ambiguous region is X \
(
Ŝt ∪ R̂t

)
and the term L

(
Ŝt, Sτ

)
can be upper bounded by the

maximum possible deviation from τ for points in this region. Thus at the end of n function evaluations, using
the monotonicity of At, we have

L(Ŝn, Sτ ) ≤ An(xhtn ,itn ) ≤ 1

n

n∑
j=1

Atj

(
xxh̄tj ,̄itj

)
where tj denote the time at which the jth function evaluation is performed by the algorithm.

From Lemma 1, we can upper bound the above in two ways

Lt(Ŝτ , Sτ ) ≤ 4βn
n

∑
t∈Qn

σt(xht,it)

Lt(Ŝτ , Sτ ) ≤ min
t∈Qn

10Vht

where Qn = {t1, t2, . . . , tn} represents the set of times t at which Algorithm 1 performs function evaluations.

To obtain the dimension type bound (4), it suffices to obtain a lower bound on the largest value ht for t ∈ Qn,
which gives us an upper bound on mint∈Qn Vht .

We proceed according to the arguments used in Munos (2011). We have

n =

hmax∑
h=0

nh

where nh is the number of times the algorithm evaluated points in Xh. We now observe that nh ≤ qh|Xh ∩Wh|,
where we use the notation Wh = {x ∈ X | |f(x) − τ | ≤ 10Vh} and qh is the upper bound on the number of
times a point at level h of the tree is evaluated by the algorithm. By assumption X3, we know that the points
in Xh are at least 2v2ρ

h separated from each other. Thus we can bound |Xh
⋂
Wh| with the packing number

M
(
Wh, 2v2ρ

h, d
)
, which by the definition of the dimension term D̃ can be further upper bounded by O

(
ρ−hD̃

)
.

Next, we define h0 to be the largest depth such that we have

n ≥
h0∑
h=0

qhO(ρ−hD̃)

Now, using the value on qh = O(ρ−2hα) given in Lemma 1, we can conclude that a suitable value of h0 is
log(n)/(D̃ + 2α) log(1/ρ) (Here we assumed that n is large enough so that v2ρ

h0 ≤ δk). Finally, the fact that
maxt∈Qn ht ≥ h0, we have that

Lt(Ŝτ , Sτ ) ≤ 10Vh0
= Õ(n−α/(D̃+2α))

where the equality follows by plugging in the value of h0 in the expression for Vh. For obtaining the information
type bounds, we partition the set Qn into Qn,1∪Qn,2, where Qn,1 = {t ∈ Qn | ht < hmax} and Qn,2 = Qn \Qn,1.
Then we have

L(Ŝτ , Sτ ) ≤ 1

n

( ∑
t∈Qn,1

4βnσt(xht,it) +
∑

t∈Qn,2

10Vhmax

)
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Now, using the fact that hmax ≥ logn
2α log(1/ρ) we get that the second term on the right side above is

Õ(1/
√
n) In the first term, we can now use Cauchy-Schwarz inequality to upper bound

∑
t∈Qn,1 σt(xht,it) ≤√

|Qn,1|
∑
t∈Qn,1 σ

2
t (xht,it). Combining these two results, we get

L(Ŝτ , Sτ ) ≤ 1

n

(
4βn

√
nJn + Õ(

√
n)

)
which gives us the required inequality (5).

A.3 Proof of Theorem 2

Recall that Jn =
∑
t∈Qn σt

(
x2
ht,it

)
, where Qn is the set of times at which the algorithm performs a func-

tion evaluation. By introducing the notation Qn,h := {t ∈ Qn | ht = h}, we can rewrite Jn as Jn =∑hmax

h=0

∑
t∈Qn,h σ

2
t (xht,it) :=

∑hmax

h=0 Jn,h, where the term Jn,h is defined implicitly.

Next we consider the term Jn,h. Introduce the notation Dj = {(xht,it , yt) | t ∈ Qn, t < tj} and Dj,h =
{(xht,it , yt) | t ∈ Qn,h, t < tj}. Then for any t = tj ∈ Qn,h, we have σ2

t (xht,it) = var (f (xht,it) | Dj), which can
be upper bounded by σ̃2

t (xht,it) := var (f (xht,it) | Dj,h). This follows from the observation that the posterior
variance at any point conditioned on Dj,h must be greater than or equal to the posterior variance conditioned
on Dj . The proof of this statement follows from the first part of Proposition 3 of (Shekhar and Javidi, 2017).

Thus we have Jn ≤
∑hmax

h=0 J̃n,h.

Since σ−2σ2
t (xht,it) ≤ σ−2

log(1+σ−2) log
(
1 + σ−2σ2

t (xht,it)
)

:= C4 log
(
1 + σ−2σ2

t (xht,it)
)
, we get that J̃n,h ≤

C4I
(
fSn,h ; ySn,h

)
where Sn,h = {xht,it | t ∈ Qn,h}.

We now define Zh =
⋃
x∈Xh B(x, εh, d) with εh = min{v2ρ

h, 1/nh}. Since we have Sn,h ⊂ Zh, we can further

upper bound J̃n,h with the term γ
(h)
n := maxS⊂Zh ,|S|=nh I (fS ; yS). Let X̂h represent the set consisting of mh

samples drawn uniformly from the set Zh.

The rest of the proof follows the steps in the proof of Theorem 5 of (Srinivas et al., 2012) with some modifications.

• For a given δ > 0, for mh = 2h log
(

2hhmax

δ

)
with probablitiy at least 1− δ/hmax, every point xh,i ∈ Xh has

an εh neighbor in the set X̂h.

Proof. Consider a fixed point xh,i ∈ Xh .Then the probability that a point sampled uniformly over Zh does

not lie in the B(xh,i, εh, d) is 1−1/2h. Then the probability that no point in X̂h lies in B(xh,i, εh, d) is equal
to
(
1− 2−h

)mh . Finally, by union bound over the elements of Xh, we get that that the probability that there

exists a point xh,i ∈ X with no εh neighbor in X̂h is upper bounded by 2h
(
1− 2−h

)mh ≤ 2h exp
(
−2hmh

)
.

Setting this equal to δ/hmax gives us the required value of mh.

• Similar to (Srinivas et al., 2012), a restricted version of the maximum information gain can be defined as

γ̃
(h)
n := maxS⊂X̂h, |S|=nh I (fS ; yS). Using the Lipschitz property of information gain (Srinivas et al., 2012,

Lemma 7.4) and the fact that with high probabilty X̂h contains εh neighbors of every point in Xh, we can

conclude that γ
(h)
n ≤ γ̃(h)

n + nhεh = γ̃
(h)
n +O(1) since εh ≤ 1/nh.

• Finally, by application of Lemma 7.8 of (Srinivas et al., 2012), we can get an upper bound on γ̃
(h)
n as follows

for any Th ∈ {1, 2, . . . , nh}:

γ̃(h)
n ≤ max

1≤s≤nh

(
Th log

(
smh/σ

2
)

+ (nh − s)σ−2
mh∑

i=Th+1

λ̂i

)
:= Ih (nh, Th) .
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To conclude the proof, we combine the above results to observe that the following sequence of inequlities hold
with probability at least (1− δ),

Jn =

hmax∑
h=0

Jn,h ≤
hmax∑
h=0

J̃n,h

≤ C4

hmax∑
h=0

I
(
fSn,h , ySn,h

)
≤ C4

hmax∑
h=0

γ(h)
n ≤ C4

hmax∑
h=0

(
γ̃(h)
n +O(1)

)
≤ C4

hmax∑
h=0

(Ih (nh, Th) +O(1)) .

A.4 Proof of Theorem 3

We first note that to upper bound I (yDn ; fDn), it suffices to get an upper bound on Jn. This is because

I (yDn ; fDn) =
∑
t∈Qn log

(
1 + σ−2σ2

t (xht,it)
) (a)

≤
∑
t∈Qn σ

−2σ2
t (xht,it) = σ−2Jn, where (a) uses the fact that for

all z ≥ 0, we have log(1 + z) ≤ z.

To upper bound Jn, we first partition the evaluated points into two sets depending on whether their depth is
smaller or larger than some value H ≤ hmax (to be decided later). For points with h ≤ H, we proceed as follows:

• Using Lemma 7.7 of (Srinivas et al., 2012), for all h ≥ 0, we can select X̂h such that the following inequality
holds:

mh∑
i=Th+1

λ̂i ≤ mh

 ∑
i≥Th+1

λi +
δ

hmax

 ,

where λi is the ith largest eigenvalue of the Hilbert- Schmidt operator associated with the kernel k and the
uniform measure on the set Zh.

• On simplification, we get

Ih(nh, Th) ≤ max
s

(
Th log(smh/σ

2) + (1− s/nh)mhnh
( ∑
i≥Th+1

λi
))

+mhnh
δ

hmax
. (9)

By selecting δ = n−2D and using the fact that h ≤ hmax, the last term of (9) is O (log n).

For the sequel, we focus on the first term of (9). We set s = nh in the first part of the first term of (9) and
use the fact that 1− s/nh ≤ 1 for all choices of s to get the following upper bound.

Ih (nh, Th) ≤ Th log
(
smh/σ

2
)

+mhnhR(Th) +O(log n), (10)

where we have R(Th) =
∑
i≥Th+1 λi denotes of the tail sum of the eigenvalues (λi)i≥0.

For the operator associated with the Mátern kernel with smoothness parameter ν, we have R(Th) =

O(T
1−(2ν+D)/D
h ) (Seeger et al., 2008; Srinivas et al., 2012). Furthermore, we have mh = 2h log(2hhmax/δ) ≤

2h (4D log(n)), and nh = O
(
ρ−h(D̃+2α)

)
as derived in the proof of Theorem 1.

An appropriate choice of Th is (mhnh)
D/(D+2ν)

which balances the two components up to logarithmic factors.
Thus, by pluggin this value of Th, we get the following upper bound on Ih (nh, Th)

Ih (nh, Th) = Õ
(

(mhnh)
D/(D+2ν

)
= Õ

(1

ρ̄

)h(D+2α+1)D
D+2ν

 , (11)

where ρ̄ = min{ρ, 1/2} and Õ hides polylogarithmic factors.
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• With this choice of Th for all h ≤ H, and summing these terms for 0 ≤ h ≤ H, we get an upper bound of
the form

H∑
h=0

Ih (nh, Th) = Õ

(1

ρ̄

)H(D+1+2α)D
D+2ν

 . (12)

For the evaluated points xh,i with h > H, we use the fact that σt(xh,i) ≤ VH
βh

by the rule used by Algorithm 1
for refining cells at level H. The number of such evaluations can be trivially upper bounded by n, thus providing
an upper bound on the contribution of such evaluations to Jn of the form Õ(nρ2H) where we used the fact that
VH = Õ

(
ρHα

)
and α = 1 for Mátern kernels with ν > 1.

Thus by balancing the two contributions, an appropriate choice of H is given by

H =

(
2ν +D

4ν +D2 + 5D

)
log n

log (1/ρ̄)

which is smaller than hmax for all values of ν and D. Thus, with this choice of H, we get the required bound of
Theorem 3.


