Robust Matrix Completion from Quantized Observations

A Technical Lemmas

Lemma 4 (Theorem 1.1 in [40]). There exists a constant K such that, for any n, m any h < 2log max{m,n}
and any m x n matriz A = (a;;) where a;; are i.i.d. symmetric random variables, the following inequality holds:

h h h h h
. : < < . : .
s o2 o, } < 1A < 1 (2, ol 4 e .

Lemma 5 (Symmetrization, Lemma 6.3 in [30]). Let F : Ry — Ry be convex. Then, for any finite sequence
{t;} of independent mean zero random variables in B such that for every i E [F(||t;||,)] < oo, then

F(AIseal,)| <5 (S <= [ (IS el,))

where {&;} are i.i.d. Rademacher random variables.

E

Lemma 6 (Contraction, Theorem 4.12 in [30]). Let F: Ry — Ry be convex and increasing. Let b, : R — R be
1
E|F (— sup
24ty |2

contraction such that 1;(0) = 0. Then it holds that
where {&;} are i.i.d. Rademacher random variables.

N
Z &ii(ts)
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Lemma 7 (Lemma 2 in [I7]). Let f be a differentiable function and assume max{ M|l H]/W\H } < a. Then

N
D &t
=1

F | sup
t1,...tn |5

12
. ()2 M- M
di (100, $0D) = inf, 8f<:v()f(1( —))f(w)) | drds £

Lemma 8 (Lemma 4 in [I7]). Suppose that x,y € (0,1). Then
(x—y)’
y(1 =)

Lemma 9 (Lemma 3 in [I7]). Let K be the set of matrices that satisfy|(A2)| and|(A3)l Let 0 < v <1 be a scalar
such that rv=2 is an integer that is not larger than dy. Then there exists a subset X C K with the following
properties:

D(zlly) <

1. |X| > exp (1T6dy22).

2.VXelX, |XU| = av.

~ ~ ~ 112
3vaexmmX¢X,X—ﬂL>@%%@.

B Proof for Main Results

Recall the observation model: M € R%*% is the true low-rank matrix and Q C [d1] x [da] is the index set of
entries we observed. Y € R%1%4 is the binary matrix determined by M: for all (i,75) € €,

v _ +1, with probability f(M;;),
Y] =1, with probability 1 — J(Miy).

!’

In the setting of symmetric noise, the observation Y;; = d;;Y;; where d;; are i.i.d. and

5 +1, with probability 1 — 7,
Y] =1, with probability 7,
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where 7 € (0,1/2) itself can be a random variable. Therefore, conditioning on 7, we observe

Pr (Y =1]7) = (1—7)f(Mi) +7(1 = f(Mi;)).

Case 1. If 7 is a discrete random variable, say

then it is easy to see that

r (Y, =1) ZPr Y =1, r=m)
:ZPI'(Y;-/J-:1|T:T]€)'PY(T:T]€)
k=1

=> {(1 =) f (Mij) + (1 = f(Mij))]-
Denote
2) =Y pe[(1=m)f(@) + 7e(1 = f())] = (1 = 2Elr]) f(2) + B[],
k=1

We have

v = +1, with probability g(M;;),
| =1, with probability 1 — g(M;;).

Case 2. If 7 is a continuous random variable with probability density function (pdf) h;(t), then we have
Pr(Y),=1)= /thy,T(Y/j =1,t)dt
- / hyis (V] = 1| ), (t)dt
= [ =070 + ¢ = £,
where hy - (y,t) is the joint pdf of Y; and 7, and hy|,(y | ) is the conditional pdf. Thus, define
@) = [ hr(®)[(1 = (@) +40 = )]t = (1 = 2B (o) + B,

We again have

v = +1, with probability g(M;;),
7 ] =1, with probability 1 — g(M;;).

Hence, the maximum likelihood estimator is given as follows:
M =argmax Loy (X), st. || X|, <avrdids, || X <7,
X

where

Loy/(X):= Z (v, =13 log 9(Xi5) + Ly, ——1y log(1 — g(Xi;))) -
(3,5)€Q
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For the sake of a principled analysis, we will treat g(z) as a general function at this point. Associated with the
function g(x) are two quantities:

b @ @) - g@)

o<y 9@ —g@)" 77T psy (9@)°
We will use several kinds of distances in the proof. The first one is Hellinger distance that is given by

dy(pa) =(Vp— V)’ +(V1-p+/1-¢? VO0<p ¢<1.

Extending it to the matrix, we write

dis (P, Q) = mj§ﬁ2ap@»

where P, Q € R%“*% and the entries therein are between 0 and 1.
For two probability distributions P and Q on a finite set A, the Kullback-Leibler (KL) divergence is defined as
DPIQ) = Y P(x) %
z€A

With a slight abuse, we write for two scalars p, ¢ € [0, 1]

P l-p
D(pllq) :ploga + (1 - p)log 7—
and for two matrices P, Q € [0, 1]%xd2,
D(P||Q) = ddZDmmm
Throughout the proof, we will work with a shifted MLE, i.e.
- Xi; 1—g(Xi;
LQ7y/ (X) = LQ,Y’ (X) — LQ7y/ (0) = Z (1{)/”._1} log g( OJ) + 1{Yij:*1} log 1#07))
i pea 9(0) —9(0)
9(Xi5) 1—g(Xij)
=Y 1s;. 1oy -2l liyv.—_ylog————= ). (12
ZJ {G.d)en) ( tviy=1ylog = 5 + 1=y log 57— (12)

B.1 Proof for Lemma [3]

Proof. Using the Markov’s inequality, we have for any 6 > 0,

Pr ()S(UI?S‘LQY’(X)_ELQ,Y’( )| > Coapdv/ry/n(dy +d2)+d1d210g(d1d2))
S

- - 9
E [supXeS Lo,y (X) — E Loy (X)] }

—_ 9 .
(Coap:yk\/ﬂ/n(dl + dg) + dids IOg(dldg))

We bound the numerator above. Recall that

B 9(Xi;) 1 —g(Xy)
B (30) = 2 Lpen (10 o0 St 2oy ton 0T ).

Let the random variable

) 9(Xi)) 1 - 9(Xij)
ti; = g, j)eq} (1{)/1/]__1} log g((); + iy, ——1y log T g((); )
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and let

Then
Eny/ (X) —E Eny/ (X) = Z tij .

Note that {t;;} are i.i.d. random variables with zero mean. The function F(t) = supt? is convex for § > 1, and
E F(|t;;]) is finite for all (4, ) € [d1] % [d2]. Hence, we can apply Lemma [ to obtain

= 0
]E|:SU.p ’LQy/(X)—ELQ7y/(X)’ i|
Xes
[
9(X4j) 1 —g(Xy))
<2°E il 1yl 1y - gy log — 22 ,
- lféép 25 R ”EQ}( D=1 08 Ty = )

Where {&,} are iid Rademacher random variables. Now observe that due to the construction of pj , both

+ log %3 and + log 1= 1-g % 3 are contractions and vanish at x = 0. Thereby, using Lemma [0l we have

E [ sup |Lo,y/(X) — E Loy (X)ﬂ

Xes
) 4
< (4p)°E sup Zgijl{(i,j)eﬂ} (1{%.:1}Xij —1{16-;:*1}Xij) ]
- ;
= (o)) E | sup |} &l (eaen Xy ]
L ]

With a simple algebra, we have

Pr(E Yy = 1) = Pr(gy = 1Y) = 1)+ Pr(y = —1, Y} = 1) = 5 (Pr(¥}y = 1) 4 Pr(¥}; = ~1)) = .

71 Y]

which implies that the distribution of &;;Y}; is the same as that of §;; for all (i, j) € [d1] x [da]. Thus, by denoting
Agq the matrix such that its (4, j)-th element is 1 if (¢, j) € Q and 0 otherwise, and = = (&;;), it follows that

0

- 0
’ — ’ < )0 ;s . ;s
E {)s{lg)s ‘LQ v (X)—ELqy (X)| } < (4p,y) E _)s{tg; ;j §ij Ly, peay Xij 1

= (493)"E [ sup (A 0 Z, X))’ |
-XeS

[ -0 0
< (4p])"E [ sup 180 o 3" X[

< (a\/rdidy)’ E |:||AQ o EHO] (14)

Above, the last inequality follows from the nuclear norm constraint we imposed in the MLE estimator. Note that
the (i, j)-th entry of the matrix Ag o E is given by 1¢(; j)e0}&ij, which are i.i.d. symmetric random variables.
Thus, Lemma [ implies that

d 6/2 4 6/2
— 10 2 2
= < m A m A
E |:||AQ o &l } <C Elgi?él jgl(fZ]AU) +E1§ja§)§2 (;1 (& 0ij) )

d 6/2 d 6/2
2 1
=C Ellgniégél ;A” + Elénjaé)ég (; Alj) . (15)
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Fix i. By Bernstein’s inequality, for all ¢ > 0,

do 2

n —t2/2
P Ay — —— t] <2 — 1= ).
([ (a-am)| ) <20 (i)
When t > 3—711, the above reduces to
d2 n
Pr ; <AZ—J— - m) >t | <2exp(—t).

Suppose that W1, ..., Wy, are i.i.d. exponential random variables with pdf exp(—t). Then it follows that

do
n
=1

On the other hand, we have

o/2\ 1/9 0/2\ 1/¢
ds n &2 n
. < 4\/= g T
By (8] | sy B - g)

0/2 1/6

0 d o/2 He
n 6n\ %2 oo P 2 A n J
<., /— - ii— —— >t | dt
Vo ! < 1> +/(6n/d1)9/2 g Z( ’ d1d2) -
j=1
6/2 +oo 1/6
6
< ﬁ—i— (_n) +2/ Pr(max Wf/QZt)dt
dl 1 (6n/d1)9/2 1<i<d1
1/6
¢ 9/2
§2’/£+<<6—n> + 2E max W/2>
dy 1 1<i<dy

1/6
< 1+v6), /= +2Y (E max Wo'?) .
dy 1<i<dy

Here, (1 and (> use the identity Ex = 0+°O Pr(z > t)dt for any positive random variable z. It remains to bound

E maxi<i<d, W;)/ 2 Using the fact that W; is exponential, we have

6/2
E max W < +1log”/ % dy < 2((6/2)!) + log” di < 2(6/2)"/* + log”/* d,

< | max W; —logd;
1<i<d,

1<i<d;

where we apply Stirling’s approximation in the last inequality. Thus,
1<i<d,

1/6
21/0 (E max Wi9/2> < 91/0 ( log d; + 21/0 9/2) .

Picking 6 = 2log(d; + d2) gives

1/6
21/9 (IE max Wf/Q) < (24 V2)y/log(dy + dy).

1<i<d;
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Putting pieces together, we obtain
a2\ 1/0

do
E max ZAU <(1+ \/6)\/?—1— (2 + V2)\/log(d1 + da).
=1 !

1<i<d;

Likewise, we can show that

02\ 1/9

dy
E max <Z Aij) <1+ \/6)\/?24- (24 V2)\/log(dy + da).

Note that /z is a concave function. Hence, Jensen’s inequality implies that (5] can be bounded as follows:

10 2n(d; +d
(E[I1aa 0= ]) " < e { (14 V6) %Hzm@) log(dy + d)

< CYo2(1 + \/6)\/"(611 +dz) +5152 log(d +d>)
162

Plugging this back to (Idl), we have

1/6
- - 0
(IE Ls(lg; Loy (X) = E Loy (X)) D < CY°8(1 + VB)apt iy/n(dr + da) + dids log(dy + da).

Therefore, (I3) is upper bounded by

2lo d1+d2)
o (8014 V0) . __cC
Co ~di+dy’

as soon as we choose Cg > 8(1 + \/6)\/5 O

B.2 Proof for Theorem [i]

We need the following result in our proof.

Proposition 10. Assume same conditions as in Theorem [1 but with a slightly more general assumption that
|M|| . <7 in place of | M|, < «. Then, with probability at least 1 — Cy/(dy + d2), the follows holds:

4 (g(M), g(M)) < czpia\/ r(d n+ d2) \/1 L (ditdo) Tiog(dldﬂ

3

where C1 and Co are absolute constants.

Proof. For any matrix X € R4*2 we have

E [Eg,y/(X) — Loy (M)} =E [Lg,y/ (X)— Loy (M)}

9(Xij) 1 - 9(Xiy)
=k [Z REHES! (1{34-;—1} log g(M,j,) + L=y log %
i,j 1] )

2| (e iy + - a0 =45 |

J

= —nD(g(M)||g(X))- (16)
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On the other hand, for the optimum M , it holds that

o~

Loy (M) — Loy/(M) = E [La,y (J\//T) — Loy (M)] + (EQ,Y/(]/VT) —E[Lay (1\/4\)})
+ (E [flsz,Y/ (M) — Lq.y (M))
< E Lo,y (X) — Loy (M)] + 2;1;% ‘EQ,Y’ (X) —E Loy (X)] ‘ )

where we recall that S was defined in Lemma Bl Since M also maximizes Lo,y (X), we obtain

—E[Lay/(X) = Loy (M)] < 2)8(12‘)9 |Lay/ (X) —E [La,y/(X)]] .

This together with (I6]) and Lemma Blimply that

D(g(M)||g(M)) < QCOaOpj\/r(dlsdﬂ\/l (1 + o) log(d1do)

n

holds with probability at least 1 — C;/(dy + dz2). Since the Hellinger distance is upper bounded by the KL
divergence, we complete the proof. [l

Now we are in the position to prove Theorem [l In fact, Theorem [l follows immediately from Prop. 10 and
Lemma [7}

B.3 Proof for Theorem

Proof. Without loss of generality, suppose that d; < ds. Let

. 1 [ Po.75aTd2
2 _ 0.75a
€ —mln{1024,Ca - }

Pick
4+/2
V2e <v< %
@
It is easy to see that
ro? <. rao?
64€2 — 12 T 32¢2

The length of this interval is %, which is larger than 1 since a > 1, r > 16 and €2 < 1/1024. Hence, it is possible
to pick a proper v such that - is an integer. Also, the assumption that €2 > O(ra?/d;) suggests r/v? < d;.

2
Hence we have found an appropriate v for Lemma

Let X(;/2 ,, be a set that satisfies all the properties in Lemma [0 with parameter «/2. Let

= {X'+a(1-2)U:X eXlp,},

where all the entries of U equal one.

First, we verify that each component in X satisfies |(A2)| and |(A3)] It is easy to see that for any X € X, |X,;]
either equals v or (1 —v)e, ie., | X||, < a since v < 1. In addition,

HX'—i—a(l—g)U

<X +a(1=2) 0l < S Vidids +a (1= 5) U],

Since v € (0,1) and r > 16, we have 2—v < /r, which together with ||U|| . = v/d1dz imply that || X||, < av/rdid;
for all X € X.
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We prove the theorem by showing that its converse is false. That is, suppose that there exists an algorithm such
that for any M € X (which satisfies|(42)| and , with probability at least 1/4, its output X satisfies

1
dids

~ 2
X - M| <éi (17)
F

Let X* € X be the closest member to X. For any X # M € X, it follows that

H)N( - XHF > H)N( - MHF - HX - MHF > 2e\/dvds — e/dids = e\/drda, (18)

where the last inequality follows from (7)) and the fact that for any X, Xex ,

~ 112 22d.d
-]} 2 A > dna

The first inequality above uses the third property in Lemma [9 and the second inequality follows from our choice
of v.

On the other hand, since X* is the closest one to X , we have
oo, = -], = v o
Combining (I8)) and ([I9), we obtain
|x =% <[x-%| . vE-a
F F
which implies X* = M. Since (7)) holds with probability at least 1/4,

Pr(X* # M) <

o

: (20)

From a variant of Fano’s inequality,

1+ didymax, g D(Y4|X || Y4|X)
B log |X|

Pr(X* # M) > 1

Denote

D =did; DYH|X [| Y4IX) = > D(Y|Xi; || Vi1 Xi5).
(i,5)€Q

For each (i, j) € Q, D(Y};|Xi; || YZ’]|)~(U) is either 0, D(g(a)||g(a)) or D(g(a)||g(e)), where o = (1 — v)a and

we recall that X,;, X;; can only take value from {«, ¢’}. It thus follows from Lemma [§ that

(g(a) — g(a))?
g9(a)(1 —g(a))’

since o < a. Now using the mean value theorem, we obtain

D(Y}j|Xi; || Y| Xiy) <

/ , (a _ 0/)2
D<nld ) N a o)

As we assumed that Vg(x) is decreasing in (0, +00), we get

, for some 0 € [/, a].

n(va)? < 64ne>

D <

pa’ pa’
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Due to the construction, the cardinality of X' equals to that of X 2,00 Hence, combining (20)) and (2I]), we can
show

2 2 2 2
lg D+1 < 16v 64726 1) < 1024¢ 64726 ‘1) (22)
4 ~ log|X| = rdo o o?rdy \ po,
Note that when 64ne? < Pos, We have
1 < 1024204862
4~ a?rdy’

implying a?rds < 8 due to the definition of e. This contradicts our assumption that a?rdy > Cg if we specify
Co > 8.

When 64ne® > p_,, then ([22) suggests

1 < 1024 x 128 x net
4~ P 02rds ’

N Por [rd
2 raz
=020 Vo

Picking Cy = 1/1024 in the definition of € and noting p_, > pg 75, vields a contradiction.
Therefore, (7)) fails to hold with probability at least 3/4.

which gives




