
Robust Matrix Completion from Quantized Observations

A Technical Lemmas

Lemma 4 (Theorem 1.1 in [40]). There exists a constant K such that, for any n, m any h ≤ 2 logmax{m,n}
and any m× n matrix A = (aij) where aij are i.i.d. symmetric random variables, the following inequality holds:

max
{
E max

1≤i≤m
‖ai·‖h2 ,E max

1≤j≤n

∥∥ah·j
∥∥
2

}
≤ E ‖A‖h ≤ K

(
E max

1≤i≤m
‖ai·‖h2 + E max

1≤j≤n

∥∥ah·j
∥∥
2

)
.

Lemma 5 (Symmetrization, Lemma 6.3 in [30]). Let F : R+ → R+ be convex. Then, for any finite sequence
{ti} of independent mean zero random variables in B such that for every i E

[
F (‖ti‖2)

]
<∞, then

E

[
F

(
1

2

∥∥∥
∑

ξiti

∥∥∥
2

)]
≤ E

[
F
(∥∥∥
∑

ti

∥∥∥
2

) ]
≤ E

[
F
(
2
∥∥∥
∑

ξiti

∥∥∥
2

) ]
,

where {ξi} are i.i.d. Rademacher random variables.

Lemma 6 (Contraction, Theorem 4.12 in [30]). Let F : R+ → R+ be convex and increasing. Let ψi : R→ R be
contraction such that ψi(0) = 0. Then it holds that

E

[
F

(
1

2
sup

t1,...tN

∣∣∣∣∣
N∑

i=1

ξiψi(ti)

∣∣∣∣∣

)]
≤ E

[
F

(
sup

t1,...tN

∣∣∣∣∣
N∑

i=1

ξiti

∣∣∣∣∣

) ]
,

where {ξi} are i.i.d. Rademacher random variables.

Lemma 7 (Lemma 2 in [17]). Let f be a differentiable function and assume max
{
‖M‖∞ ,

∥∥∥M̂
∥∥∥
∞

}
≤ α. Then

d2H

(
f(M), f(M̂)

)
≥ inf

|x|≤α

(f ′(x))2

8f(x)(1 − f(x))

∥∥∥M − M̂
∥∥∥
2

F

d1d2
.

Lemma 8 (Lemma 4 in [17]). Suppose that x, y ∈ (0, 1). Then

D(x||y) ≤ (x− y)2
y(1− y) .

Lemma 9 (Lemma 3 in [17]). Let K be the set of matrices that satisfy (A2) and (A3). Let 0 < ν ≤ 1 be a scalar
such that rν−2 is an integer that is not larger than d1. Then there exists a subset X ⊂ K with the following
properties:

1. |X | ≥ exp
(

rd2

16ν2

)
.

2. ∀ X ∈ X , |Xij | = αν.

3. ∀ X, X̃ ∈ X with X 6= X̃,
∥∥∥X − X̃

∥∥∥
2

F
> 1

2α
2ν2d1d2.

B Proof for Main Results

Recall the observation model: M ∈ R
d1×d2 is the true low-rank matrix and Ω ⊂ [d1] × [d2] is the index set of

entries we observed. Y ∈ R
d1×d2 is the binary matrix determined by M : for all (i, j) ∈ Ω,

Yij =

{
+1, with probability f(Mij),

−1, with probability 1− f(Mij).

In the setting of symmetric noise, the observation Y ′
ij = δijYij where δij are i.i.d. and

δij =

{
+1, with probability 1− τ,
−1, with probability τ,
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where τ ∈ (0, 1/2) itself can be a random variable. Therefore, conditioning on τ , we observe

Pr
(
Y ′
ij = 1 | τ

)
= (1− τ)f(Mij) + τ(1 − f(Mij)).

Case 1. If τ is a discrete random variable, say

Pr (τ = τk) = pk, 1 ≤ k ≤ s,

then it is easy to see that

Pr
(
Y ′
ij = 1

)
=

s∑

k=1

Pr
(
Y ′
ij = 1, τ = τk

)

=

s∑

k=1

Pr
(
Y ′
ij = 1 | τ = τk

)
· Pr (τ = τk)

=

s∑

k=1

pk

[
(1− τk)f(Mij) + τk(1− f(Mij))

]
.

Denote

g(x) =

s∑

k=1

pk

[
(1− τk)f(x) + τk(1− f(x))

]
= (1− 2E[τ ])f(x) + E[τ ].

We have

Y ′
ij =

{
+1, with probability g(Mij),

−1, with probability 1− g(Mij).

Case 2. If τ is a continuous random variable with probability density function (pdf) hτ (t), then we have

Pr
(
Y ′
ij = 1

)
=

∫

t

hY,τ (Y
′
ij = 1, t)dt

=

∫

t

hY |τ (Y
′
ij = 1 | t)hτ (t)dt

=

∫

t

hτ (t)
[
(1− t)f(Mij) + t(1 − f(Mij))

]
dt,

where hY,τ (y, t) is the joint pdf of Yij and τ , and hY |τ (y | t) is the conditional pdf. Thus, define

g(x) =

∫

t

hτ (t)
[
(1− t)f(x) + t(1 − f(x))

]
dt = (1− 2E[τ ])f(x) + E[τ ].

We again have

Y ′
ij =

{
+1, with probability g(Mij),

−1, with probability 1− g(Mij).

Hence, the maximum likelihood estimator is given as follows:

M̂ = argmax
X

LΩ,Y ′(X), s.t. ‖X‖∗ ≤ α
√
rd1d2, ‖X‖∞ ≤ γ,

where

LΩ,Y ′(X) :=
∑

(i,j)∈Ω

(
1{Yij=1} log g(Xij) + 1{Yij=−1} log(1− g(Xij))

)
.
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For the sake of a principled analysis, we will treat g(x) as a general function at this point. Associated with the
function g(x) are two quantities:

ρ+γ := sup
|x|≤γ

|g′(x)|
g(x)(1 − g(x)) , ρ−γ := sup

|x|≤γ

g(x)(1 − g(x))
(g′(x))2

.

We will use several kinds of distances in the proof. The first one is Hellinger distance that is given by

d2H(p, q) := (
√
p−√q)2 + (

√
1− p+

√
1− q)2, ∀ 0 ≤ p, q ≤ 1.

Extending it to the matrix, we write

d2H(P,Q) :=
1

d1d2

∑

i,j

d2H(Pij , Qij),

where P,Q ∈ R
d1×d2 and the entries therein are between 0 and 1.

For two probability distributions P and Q on a finite set A, the Kullback-Leibler (KL) divergence is defined as

D(P||Q) =
∑

x∈A

P(x) log P(x)Q(x) .

With a slight abuse, we write for two scalars p, q ∈ [0, 1]

D(p||q) = p log
p

q
+ (1− p) log 1− p

1− q ,

and for two matrices P,Q ∈ [0, 1]d1×d2 ,

D(P ||Q) =
1

d1d2

∑

i,j

D(Pij ||Qij).

Throughout the proof, we will work with a shifted MLE, i.e.

L̄Ω,Y ′(X) := LΩ,Y ′(X)− LΩ,Y ′(0) =
∑

(i,j)∈Ω

(
1{Yij=1} log

g(Xij)

g(0)
+ 1{Yij=−1} log

1− g(Xij)

1− g(0)

)

=
∑

i,j

1{(i,j)∈Ω}

(
1{Yij=1} log

g(Xij)

g(0)
+ 1{Yij=−1} log

1− g(Xij)

1− g(0)

)
. (12)

B.1 Proof for Lemma 3

Proof. Using the Markov’s inequality, we have for any θ > 0,

Pr

(
sup
X∈S

∣∣L̄Ω,Y ′(X)− E L̄Ω,Y ′(X)
∣∣ ≥ C0αρ

+
γ

√
r
√
n(d1 + d2) + d1d2 log(d1d2)

)

≤
E

[
supX∈S

∣∣L̄Ω,Y ′(X)− E L̄Ω,Y ′(X)
∣∣θ
]

(
C0αρ

+
γ
√
r
√
n(d1 + d2) + d1d2 log(d1d2)

)θ . (13)

We bound the numerator above. Recall that

L̄Ω,Y ′(X) =
∑

i,j

1{(i,j)∈Ω}

(
1{Y ′

ij=1} log
g(Xij)

g(0)
+ 1{Y ′

ij=−1} log
1− g(Xij)

1− g(0)

)
.

Let the random variable

t̃ij = 1{(i,j)∈Ω}

(
1{Y ′

ij=1} log
g(Xij)

g(0)
+ 1{Y ′

ij=−1} log
1− g(Xij)

1− g(0)

)
,
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and let

tij = t̃ij − E t̃ij .

Then

L̄Ω,Y ′(X)− E L̄Ω,Y ′(X) =
∑

i,j

tij .

Note that {tij} are i.i.d. random variables with zero mean. The function F (t) = sup tθ is convex for θ ≥ 1, and
EF (|tij |) is finite for all (i, j) ∈ [d1]× [d2]. Hence, we can apply Lemma 5 to obtain

E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− E L̄Ω,Y ′(X)
∣∣θ
]

≤ 2θ E

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}

(
1{Y ′

ij=1} log
g(Xij)

g(0)
+ 1{Y ′

ij=−1} log
1− g(Xij)

1− g(0)

)∣∣∣∣∣∣

θ ]
,

where {ξij} are i.i.d. Rademacher random variables. Now observe that due to the construction of ρ+γ , both
1
ρ+
γ
log g(x)

g(0) and 1
ρ+
γ
log 1−g(x)

1−g(0) are contractions and vanish at x = 0. Thereby, using Lemma 6 we have

E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− E L̄Ω,Y ′(X)
∣∣θ
]

≤ (4ρ+γ )
θ
E

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}

(
1{Y ′

ij=1}Xij − 1{Y ′

ij=−1}Xij

)
∣∣∣∣∣∣

θ ]

= (4ρ+γ )
θ
E

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}Y
′
ijXij

∣∣∣∣∣∣

θ ]
.

With a simple algebra, we have

Pr(ξijY
′
ij = 1) = Pr(ξij = 1, Y ′

ij = 1) + Pr(ξij = −1, Y ′
ij = −1) =

1

2

(
Pr(Y ′

ij = 1) + Pr(Y ′
ij = −1)

)
=

1

2
,

which implies that the distribution of ξijY ′
ij is the same as that of ξij for all (i, j) ∈ [d1]× [d2]. Thus, by denoting

∆Ω the matrix such that its (i, j)-th element is 1 if (i, j) ∈ Ω and 0 otherwise, and Ξ = (ξij), it follows that

E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− E L̄Ω,Y ′(X)
∣∣θ
]
≤ (4ρ+γ )

θ
E

[
sup
X∈S

∣∣∣∣∣∣
∑

i,j

ξij1{(i,j)∈Ω}Xij

∣∣∣∣∣∣

θ ]

= (4ρ+γ )
θ
E

[
sup
X∈S
|〈∆Ω ◦ Ξ, X〉|θ

]

≤ (4ρ+γ )
θ
E

[
sup
X∈S
‖∆Ω ◦ Ξ‖θ ‖X‖θ∗

]

≤ (α
√
rd1d2)

θ
E

[
‖∆Ω ◦ Ξ‖θ

]
. (14)

Above, the last inequality follows from the nuclear norm constraint we imposed in the MLE estimator. Note that
the (i, j)-th entry of the matrix ∆Ω ◦ Ξ is given by 1{(i,j)∈Ω}ξij , which are i.i.d. symmetric random variables.
Thus, Lemma 4 implies that

E

[
‖∆Ω ◦ Ξ‖θ

]
≤ C


E max

1≤i≤d1




d2∑

j=1

(ξij∆ij)
2




θ/2

+ E max
1≤j≤d2

(
d1∑

i=1

(ξij∆ij)
2

)θ/2



= C


E max

1≤i≤d1




d2∑

j=1

∆ij




θ/2

+ E max
1≤j≤d2

(
d1∑

i=1

∆ij

)θ/2

 . (15)
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Fix i. By Bernstein’s inequality, for all t > 0,

Pr



∣∣∣∣∣∣

d2∑

j=1

(
∆ij −

n

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2 exp

( −t2/2
n/d1 + t/3

)
.

When t ≥ 6n
d1

, the above reduces to

Pr



∣∣∣∣∣∣

d2∑

j=1

(
∆ij −

n

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2 exp(−t).

Suppose that W1, . . . ,Wd1
are i.i.d. exponential random variables with pdf exp(−t). Then it follows that

Pr



∣∣∣∣∣∣

d2∑

j=1

(
∆ij −

n

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2Pr(Wi ≥ t).

On the other hand, we have


E max

1≤i≤d1




d2∑

j=1

∆ij




θ/2



1/θ

≤
√
n

d1
+


E max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(∆ij −
n

d1d2
)

∣∣∣∣∣∣

θ/2



1/θ

ζ1
=

√
n

d1
+



∫ +∞

0

Pr


 max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(∆ij −
n

d1d2
)

∣∣∣∣∣∣

θ/2

≥ t


 dt




1/θ

≤
√
n

d1
+



(
6n

d1

)θ/2

+

∫ +∞

(6n/d1)θ/2
Pr


 max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(∆ij −
n

d1d2
)

∣∣∣∣∣∣

θ/2

≥ t


 dt




1/θ

≤
√
n

d1
+

((
6n

d1

)θ/2

+ 2

∫ +∞

(6n/d1)θ/2
Pr

(
max

1≤i≤d1

W
θ/2
i ≥ t

)
dt

)1/θ

ζ2
≤
√
n

d1
+

((
6n

d1

)θ/2

+ 2E max
1≤i≤d1

W
θ/2
i

)1/θ

≤ (1 +
√
6)

√
n

d1
+ 21/θ

(
E max

1≤i≤d1

W
θ/2
i

)1/θ

.

Here, ζ1 and ζ2 use the identity E x =
∫ +∞

0
Pr(x ≥ t)dt for any positive random variable x. It remains to bound

Emax1≤i≤d1
W

θ/2
i . Using the fact that Wi is exponential, we have

E max
1≤i≤d1

W
θ/2
i ≤

∣∣∣∣ max
1≤i≤d1

Wi − log d1

∣∣∣∣
θ/2

+ logθ/2 d1 ≤ 2((θ/2)!) + logθ/2 d1 ≤ 2(θ/2)θ/2 + logθ/2 d1,

where we apply Stirling’s approximation in the last inequality. Thus,

21/θ
(
E max

1≤i≤d1

W
θ/2
i

)1/θ

≤ 21/θ
(√

log d1 + 21/θ
√
θ/2
)
.

Picking θ = 2 log(d1 + d2) gives

21/θ
(
E max

1≤i≤d1

W
θ/2
i

)1/θ

≤ (2 +
√
2)
√
log(d1 + d2).
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Putting pieces together, we obtain


E max

1≤i≤d1




d2∑

j=1

∆ij




θ/2



1/θ

≤ (1 +
√
6)

√
n

d1
+ (2 +

√
2)
√

log(d1 + d2).

Likewise, we can show that


E max

1≤j≤d2

(
d1∑

i=1

∆ij

)θ/2



1/θ

≤ (1 +
√
6)

√
n

d2
+ (2 +

√
2)
√

log(d1 + d2).

Note that
√
x is a concave function. Hence, Jensen’s inequality implies that (15) can be bounded as follows:

(
E

[
‖∆Ω ◦ Ξ‖θ

])1/θ
≤ C1/θ


(1 +

√
6)

√
2n(d1 + d2)

d1d2
+ (2 +

√
2)
√
log(d1 + d2)




≤ C1/θ2(1 +
√
6)

√
n(d1 + d2) + d1d2 log(d1 + d2)

d1d2
.

Plugging this back to (14), we have

(
E

[
sup
X∈S

∣∣L̄Ω,Y ′(X)− E L̄Ω,Y ′(X)
∣∣θ
])1/θ

≤ C1/θ8(1 +
√
6)αρ+γ

√
r
√
n(d1 + d2) + d1d2 log(d1 + d2).

Therefore, (13) is upper bounded by

C

(
8(1 +

√
6)

C0

)2 log(d1+d2)

≤ C

d1 + d2
,

as soon as we choose C0 ≥ 8(1 +
√
6)
√
e.

B.2 Proof for Theorem 1

We need the following result in our proof.

Proposition 10. Assume same conditions as in Theorem 1 but with a slightly more general assumption that
‖M‖∞ ≤ γ in place of ‖M‖∞ ≤ α. Then, with probability at least 1− C1/(d1 + d2), the follows holds:

d2H(g(M̂), g(M)) ≤ C2ρ
+
γ α

√
r(d1 + d2)

n

√
1 +

(d1 + d2) log(d1d2)

n
,

where C1 and C2 are absolute constants.

Proof. For any matrix X ∈ R
d1×d2 , we have

E
[
L̄Ω,Y ′(X)− L̄Ω,Y ′(M)

]
= E

[
LΩ,Y ′(X)− LΩ,Y ′(M)

]

= E

[∑

i,j

1{(i,j)∈Ω}

(
1{Y ′

ij=1} log
g(Xij)

g(Mij)
+ 1{Y ′

ij=−1} log
1− g(Xij)

1− g(Mij)

)]

= E

[∑

i,j

n

d1d2

(
g(Mij) log

g(Xij)

g(Mij)
+ (1 − g(Mij)) log

1− g(Xij)

1− g(Mij)

)]

= −nD(g(M)||g(X)). (16)
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On the other hand, for the optimum M̂ , it holds that

L̄Ω,Y ′(M̂)− L̄Ω,Y ′(M) = E
[
L̄Ω,Y ′(M̂)− L̄Ω,Y ′(M)

]
+
(
L̄Ω,Y ′(M̂)− E

[
L̄Ω,Y ′(M̂)

])

+
(
E
[
L̄Ω,Y ′(M)− L̄Ω,Y ′(M)

)

≤ E
[
L̄Ω,Y ′(X)− L̄Ω,Y ′(M)

]
+ 2 sup

X∈S

∣∣L̄Ω,Y ′(X)− E
[
L̄Ω,Y ′(X)

]∣∣ ,

where we recall that S was defined in Lemma 3. Since M̂ also maximizes L̄Ω,Y ′(X), we obtain

−E
[
L̄Ω,Y ′(X)− L̄Ω,Y ′(M)

]
≤ 2 sup

X∈S

∣∣L̄Ω,Y ′(X)− E
[
L̄Ω,Y ′(X)

]∣∣ .

This together with (16) and Lemma 3 imply that

D(g(M)||g(M̂)) ≤ 2C0α0ρ
+
γ

√
r(d1 + d2)

n

√
1 +

(d1 + d2) log(d1d2)

n

holds with probability at least 1 − C1/(d1 + d2). Since the Hellinger distance is upper bounded by the KL
divergence, we complete the proof.

Now we are in the position to prove Theorem 1. In fact, Theorem 1 follows immediately from Prop. 10 and
Lemma 7.

B.3 Proof for Theorem 2

Proof. Without loss of generality, suppose that d1 ≤ d2. Let

ǫ2 = min

{
1

1024
,Cα

√
ρ−0.75αrd2

n

}
.

Pick

4
√
2ǫ

α
≤ ν ≤ 8ǫ

α
.

It is easy to see that

rα2

64ǫ2
≤ r

ν2
≤ rα2

32ǫ2
.

The length of this interval is rα2

64ǫ , which is larger than 1 since α ≥ 1, r ≥ 16 and ǫ2 ≤ 1/1024. Hence, it is possible
to pick a proper ν such that r

ν2 is an integer. Also, the assumption that ǫ2 ≥ O(rα2/d1) suggests r/ν2 ≤ d1.
Hence we have found an appropriate ν for Lemma 9.

Let X ′
α/2,ν be a set that satisfies all the properties in Lemma 9 with parameter α/2. Let

X =
{
X ′ + α

(
1− ν

2

)
U : X ′ ∈ X ′

α/2,ν

}
,

where all the entries of U equal one.

First, we verify that each component in X satisfies (A2) and (A3). It is easy to see that for any X ∈ X , |Xij |
either equals α or (1− ν)α, i.e., ‖X‖∞ ≤ α since ν < 1. In addition,

∥∥∥X ′ + α
(
1− ν

2

)
U
∥∥∥
∗
≤ ‖X ′‖∗ + α

(
1− ν

2

)
‖U‖∗ ≤

α

2

√
rd1d2 + α

(
1− ν

2

)
‖U‖F .

Since ν ∈ (0, 1) and r ≥ 16, we have 2−ν ≤ √r, which together with ‖U‖F =
√
d1d2 imply that ‖X‖∗ ≤ α

√
rd1d2

for all X ∈ X .
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We prove the theorem by showing that its converse is false. That is, suppose that there exists an algorithm such
that for any M ∈ X (which satisfies (A2) and (A3)), with probability at least 1/4, its output X̂ satisfies

1

d1d2

∥∥∥X̂ −M
∥∥∥
2

F
< ǫ2. (17)

Let X∗ ∈ X be the closest member to X̂ . For any X̃ 6=M ∈ X , it follows that
∥∥∥X̃ − X̂

∥∥∥
F
≥
∥∥∥X̃ −M

∥∥∥
F
−
∥∥∥X̂ −M

∥∥∥
F
> 2ǫ

√
d1d2 − ǫ

√
d1d2 = ǫ

√
d1d2, (18)

where the last inequality follows from (17) and the fact that for any X, X̃ ∈ X ,

∥∥∥X − X̃
∥∥∥
2

F
≥ α2ν2d1d2

8
≥ 4d1d2ǫ

2.

The first inequality above uses the third property in Lemma 9 and the second inequality follows from our choice
of ν.

On the other hand, since X∗ is the closest one to X̂, we have
∥∥∥X∗ − X̂

∥∥∥
F
≤
∥∥∥M − X̂

∥∥∥
F
≤ ǫ
√
d1d2. (19)

Combining (18) and (19), we obtain

∥∥∥X∗ − X̂
∥∥∥
F
<
∥∥∥X̃ − X̂

∥∥∥
F
, ∀ X̃ 6=M,

which implies X∗ =M . Since (17) holds with probability at least 1/4,

Pr (X∗ 6=M) ≤ 3

4
. (20)

From a variant of Fano’s inequality,

Pr(X∗ 6=M) ≥ 1−
1 + d1d2 maxX 6=X̃ D(Y ′

Ω|X || Y ′
Ω|X̃)

log |X | (21)

Denote

D = d1d2D(Y ′
Ω|X || Y ′

Ω|X̃) =
∑

(i,j)∈Ω

D(Y ′
ij |Xij || Y ′

ij |X̃ij).

For each (i, j) ∈ Ω, D(Y ′
ij |Xij || Y ′

ij |X̃ij) is either 0, D(g(α)||g(α′)) or D(g(α)||g(α′)), where α′ = (1− ν)α and

we recall that Xij , X̃ij can only take value from {α, α′}. It thus follows from Lemma 8 that

D(Y ′
ij |Xij || Y ′

ij |X̃ij) ≤
(g(α) − g(α′))2

g(α′)(1 − g(α′))
,

since α′ < α. Now using the mean value theorem, we obtain

D ≤ n(g′(θ))2 (α− α′)2

g(α′)(1 − g(α′))
, for some θ ∈ [α′, α].

As we assumed that ∇g(x) is decreasing in (0,+∞), we get

D ≤ n(να)2

ρ−α′

≤ 64nǫ2

ρ−α′

.
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Due to the construction, the cardinality of X equals to that of X ′
α/2,ν . Hence, combining (20) and (21), we can

show

1

4
≤ D + 1

log |X | ≤
16ν2

rd2

(
64nǫ2

ρ−α′

+ 1

)
≤ 1024ǫ2

α2rd2

(
64nǫ2

ρ−α′

+ 1

)
. (22)

Note that when 64nǫ2 ≤ ρ−α′ , we have

1

4
≤ 1024

2048ǫ2

α2rd2
,

implying α2rd2 ≤ 8 due to the definition of ǫ. This contradicts our assumption that α2rd2 ≥ C0 if we specify
C0 > 8.

When 64nǫ2 > ρ−α′ , then (22) suggests

1

4
≤ 1024× 128× nǫ4

ρ−α′α2rd2
,

which gives

ǫ2 >
α
√
ρ−α′

1024

√
rd2
n
.

Picking C2 = 1/1024 in the definition of ǫ and noting ρ−α′ ≥ ρ−0.75α yields a contradiction.

Therefore, (17) fails to hold with probability at least 3/4.


