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Abstract

1-bit matrix completion refers to the prob-
lem of recovering a real-valued low-rank ma-
trix from a small fraction of its sign pat-
terns. In many real-world applications, how-
ever, the observations are not only highly
quantized, but also grossly corrupted. In
this work, we consider the noisy statistical
model where each observed entry can be
flipped with some probability after quantiza-
tion. We propose a simple maximum likeli-
hood estimator which is shown to be robust
to the sign flipping noise. In particular, we
prove an upper bound on the statistical error,
showing that with overwhelming probability
n = O (poly(1 — 2E[r])"?rdlogd) samples
are sufficient for accurate recovery, where r
and d are the rank and dimension of the un-
derlying matrix respectively, and 7 € [0,1/2)
is a random variable that parameterizes the
sign flipping noise. Furthermore, a lower
bound is established showing that the ob-
tained sample complexity is near-optimal for
prevalent statistical models. Finally, we sub-
stantiate our theoretical findings with a com-
prehensive study on synthetic and realistic
data sets, and demonstrate the state-of-the-
art performance.

1 Introduction

Many practical problems can be formulated as recover-
ing an incomplete matrix from the small portion of its
components, which is known as matrix completion [10].
For instance, in the Netfliz Prize competition, the un-
derlying matrix consists of movie ratings from a va-
riety of users, and the task is to predict the taste of

Proceedings of the 22°¢ International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Pranjal Awasthi
Rutgers University
New Jersey, USA

Ping Li
Baidu Research
Washington, USA

the users for their unrated movies. This problem has
been studied for a decade, and the matrix factoriza-
tion framework was proposed as an early answer [46].
In the seminal work [I0], it was shown that if the sin-
gular vectors of the matrix to be recovered are dense
enough and the observed entries are sampled uniformly
random, then with high probability, a simple convex
program guarantees exact recovery of the true matrix.

Inspired by the elegant work of [I0], a plethora of the-
oretical results have been established that study the
matrix completion problem from different aspects. A
partial list includes: understanding and improving the
sample complexity [12] 26], 21| [15], addressing struc-
tured noise such as outliers [9] 27 29, [16], developing
fast and provable optimization algorithms [24] 25], mit-
igating practical issues such as memory cost [44] [4] 52],
to name just a few. Orthogonal to these work where
the observed entries are real-valued, [17] considered
the problem in the 1-bit setting. That is, given a tar-
get low-rank matrix which is real-valued, one only ob-
serves some of its sign patterns (+1 or —1) determined
by the true matrix. The goal, however, is still to re-
cover the real-valued matrix by using a few samples.

The 1-bit setting is of broad interest for the machine
learning community. On one hand, it immediately
eases the data acquisition process since it is always
a simpler task to ask a user whether he likes a movie
or not than having him submit a one to five stars rat-
ing. In fact, Netflix recently changed its rating sys-
tem that only requires the user to say a “thumbs up”
or “thumbs down”. From the theoretical perspective,
however, it raises the challenge that a straightforward
observation model makes the problem ill-posed. To be
more detailed, suppose that the binary patterns are
obtained by taking the sign of the entries of the true
matrix. Then even for a rank-one matrix M = uv '
where u and v are column vectors, one can freely mod-
ify the magnitude of the elements of w and v without
changing the sign patterns of M. The second issue
coming up with the 1-bit setting is a tractable recov-
ery paradigm. Since the sign function is not convex,
one cannot tailor the nuclear-norm based convex pro-
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gram [I0] to this case. Another concern is the loss
of estimation accuracy owing to quantization. Thus, a
precise characterization of the tradeoff between the bit
depth and the sample size is crucial. Related to the
sign patterns, it is also important to ask if there is a
provable algorithm that is tolerant to noise.

[I7] gave a partial answer to these questions by show-
ing that, a nuclear-norm based program guarantees
accurate recovery from binary measurements if the ob-
servations are generated from a distribution parame-
terized by the true matrix. [5] further derived the sta-
tistical error rate of multi-bit quantization. We in this
paper tackle the problem of robust I1-bit matriz com-
pletion: (a) can we accurately recover the matrix in
polynomial time if the observations are flipped with
some probability close to 1/2; (b) if yes, how many
samples suffice and is this sample complexity optimal.

Our motivation is two-fold. For practitioners, realistic
data are usually discrete. For instance, the data ma-
trix of the social network that represents whether two
individuals are friends or not is binary. Sometimes the
data are intended to be quantized, due to memory or
communication limitation. The system side, neverthe-
less, has to process this quantized feedback/signal and
predict a real value, for example, a likelihood value
that the user will watch a new movie. On the other
hand, there is a large body of work studying the ro-
bustness of standard matrix completion while little is
known for the 1-bit case. Unlike the standard prob-
lem, the sign flipping noise is no longer additive which
poses specific challenges for theoretical analysis.

Contribution. We offer an affirmative answer to
the noisy 1-bit matrix completion problem. In par-
ticular, we consider the following noise model: for
each binary observation, it is flipped with probabil-
ity 7 € [0,1/2) where 7 itself is a random vari-
able. This means each entry is flipped with differ-
ent probability conditioning on 7. We propose a
novel nuclear-norm constrained convex program and
prove that for any rank-r matrix M € R%*% that
satisfies certain conditions, it accurately recovers M
with high probability, in the sense that the estima-
tion error vanishes when the sample size scales as

O (poly (1 =2E[r]) " r(dy + da) log(dldg)). We also
establish a lower bound on the statistical error, show-
ing that the sample complexity is near-optimal.

In our construction of the estimator and the subse-
quent analysis, we only assume that we have the knowl-
edge of the expected value of 7. This is more practical
than requiring the knowledge of its distribution. In-
terestingly, in our experiments we discover that such
assumption can further be relaxed. To be more de-
tailed, we show on realistic data that an estimator

constructed with an upper bound of the value of T per-
forms as well as the one with E[7], suggesting possible
extension of our noise model.

1.1 Related Work

Matrix completion is closely related to compressed
sensing (CS) [18] 49 [5I] where the goal is to recover
a sparse vector from its compressed measurements. It
is now well-understood that if the sensing matrix sat-
isfies the restricted isometry property [II], then ei-
ther convex programs such as basis pursuit [I4] and
Lasso [47, 50] or greedy algorithms like orthogonal
matching pursuit [35, 48] or iterative hard threshold-
ing [6], [4T} [42] [43] can be used for sparse recovery. En-
couraged by the success of compressed sensing, a large
body of work was devoted to the nuclear-norm based
convex program for low-rank matrix recovery, in view
of the analogy between the ¢; norm and the nuclear
norm [I9, 39, 13]. However, the essential difference
is that the sampling operator in compressed sensing
is Gaussian, while for matrix completion it is a zero-
one matrix eiejT, where e; is the ith canonical basis
and likewise for e;. In this light, theoretical results
in CS cannot be transferred to the matrix completion
problem directly [38].

In compressed sensing, the 1-bit setting has received a
broad attention due to [7]. There is a variety of appeal-
ing work contributed to this emerging field [22] 23] [20],
while recently [37] gave an optimal sample complex-
ity that ensures accurate recovery of the direction of
the signal. It is very interesting to contrast such
a result to the matrix completion problem, where
we recall that in the matrix case, even the direction
(ie., wv " /(|Jull, - ||v]y)) cannot be recovered from the
knowledge of sign (uv . This again suggests discrep-
ancy between compressed sensing and matrix comple-
tion. Very recently, the statistical tradeoff between
the sample size and bit depth of compressed sensing
was investigated in [45], and a guaranteed estimator
of the magnitude of the signal was proposed in [28§].
The tradeoff of quantized matrix completion was also
tackled in [5], but a full picture is still missing.

Of specific interest to the 1-bit setting is the sign flip-
ping noise. Such kind of noise has been widely stud-
ied in the learning theory community for more than
a decade [32, [3, 53], in the context of learning halfs-
paces. However, the target vector therein is a general
object, i.e., without the sparsity structure. A unified
analysis was presented recently in [2], showing possi-
ble improvement on noisy 1-bit compressed sensing by
using tools from learning theory.

Despite these promising results in 1-bit compressed
sensing and learning theory, it turns out that the
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robustness of 1-bit matrix completion is not well-
understood until now. Though these two problems
are inherently linked, it has been recognized that ex-
tra efforts have to be made in the matrix case. In
this work, we take a step to study the model where
the noise has the same distribution over the observed
entries. This is a popular noise model that was also
considered in [37] in the context of 1-bit compressed
sensing. Our empirical study, however, sheds light on
the more challenging bounded noise model [32].

Notation. We collect the pieces of notation that will
be used in this paper. For a matrix M € R%1*%  we
use M;; to denote its (i, j)-th entry. The transpose of
M is denoted by M . There are three matrix norms
that will be involved: the Frobenius norm || M| =
(> iy ij)l/Q, the infinity norm || M|  := max; ; |M;;|
where |z| denotes the absolute value of z, and the nu-
clear norm || M|, := >"!_, 05(M) where o;(M) is the
1th singular value and r is the rank of M.

Suppose d; and dy are two positive integers. We write
[d1] x [dg] for the index set {(i,7) : 1 <i<d;,1<j<
dg}. For a finite set 2, we slightly abuse the notation
to denote its cardinality by |€].

Throughout the paper, f and g are reserved for partic-
ular functions. Hence, f’ and ¢’ should be interpreted
as the derivative evaluated at some point. We also
reserve the upright letter C and its subscript variants
(e.g., Cp, Cq) for absolute constants, whose values may
change from appearance to appearance.

Finally, the sign function sign () outputs +1 if > 0
and outputs —1 otherwise. For a matrix M, sign (M)
operates in an entry-wise manner. The indicator func-
tion is denoted by 1;gy, which equals one if the event
FE is true and zero otherwise.

2 Problem Setup

In this section, we formulate the problem. Recall that
M € R%*% js the underlying low-rank matrix that we
aim to recover, and 2 C [d1] x [d2] is a subset that in-
dexing the observed components. In conventional ma-
trix completion [10], one observes M;; for (i,j) € Q.
Though it seems natural to consider the 1-bit matrix
completion problem as a recovery from sign (Mg,), Dav-
enport et al. pointed out that it is not possible even
when the matrix M has rank one [I7]. The good news
is that if we add noise (e.g., Gaussian, logistic) before
quantization, it is tractable to solve the problem. For-
mally, the observation model considered in [I7] is as
follows: for all (i,7) € Q, we observe

Yij = sign (My; + Zij), (1)

where {Z;;} are i.i.d. random noise. With a proper
choice of a differentiable function f : R — [0, 1], ) is
equivalent to the following probabilistic model:

V. — +1, with probability f(M;;), @)
Y] =1, with probability 1 — f(M;;).

In fact, we can set f(z) = Pr(Z1; + « > 0) for which
the model () reduces to the model [2). Conversely,
given the function f(z), we may think of {Z,;} as
ii.d. random noise with cumulative distribution func-
tion F(z) := Pr(Z11 < ) =1 — f(—x). In this way,
@) reduces to ().

In this paper, we will mainly consider the model (2I),
which is viewed as a noiseless probabilistic model.
With this in mind, we are in the position to introduce
the noisy probabilistic model. Our central interest falls
into the random sign flipping. That is, in place of ob-
serving Y;; as in (2)), we observe

}/ZIJ:(;U}/U? V(Z,j)EQ, (3)

where {d;;} (i j)eq are independent random variables
such that given 7
+1, with probability 1 — 7,
dij = . e (4)
—1, with probability .

Above, 7 itself might be an unknown random variable
but we impose 0 < 7 < 1/2 to prevent model ambigu-
ity. Note that 7 = 0 corresponds to the noiseless model
studied in [I7, [5]. The model (@) together with () in-
dicate that for each element in €2, with probability
the sign is flipped. A remarkable difference between
our model and those considered in [37, [45] is that they
treat 7 as a fixed known parameter which is not real-
istic in real-world problems.

It is worth mentioning that a more general noise model
is that each §;; is parameterized by 7;;, where {7;;}
may differ from each other but subject to the con-
straint 0 < 7;; < 7 < 1/2 for some parameter 7. This
is known as bounded noise (or Massart noise) [32] that
has received a broad attention in learning theory [11 [3].
We will show in the experiments that the proposed es-
timator performs well in this situation, and a thorough
theoretical study is left as a future work.

Before presenting our estimator for M, we need a few
assumptions that were also made in [36] 311 [34, [38].

(A1) Given n > 0, each component (7,j) is included
in © with probability 77-. Hence, E[Q| = n.

(A2) The maximum absolute value of M is upper
bounded by a parameter a, i.e., |[M] < a.



Robust Matrix Completion from Quantized Observations

(A3) M lies in a nuclear-norm ball with radius
a/rdido where r is the rank of M.

Note that assumes a Bernoulli sampling scheme
for © which is more convenient to analyze than the
uniform sampling. In fact, the equivalence between
these two sampling models was pointed out in [I2] [8].
The second assumption essentially excludes the case
that M is too spiky. Otherwise, the recovery of M is ill-
posed [33],[38]. The parameter « is pre-defined, and in
practical applications it has to be tuned. Finally,|(A3)|
acts as a convex relaxation to the exact rank constraint
rank (M) < r. To see this, we note that by algebra

M|, < VM| p < a/rdids.
As we will illustrate later, |[(A3)| also allows us to ap-

proximate M by solving a conver program.

Under these assumptions, we propose to solve the fol-
lowing program in order to approximate M:

max LQ’Y/(X),
X

st | X|o < o, |X]l, < av/rdids.

Above, the objective function Lq y/(X) is given by

()

Lgl_’Y/ (X) = Z |:]_{yi/j:1} log g(Xij)
(i,5)€Q

1y log(L-g(Xi) ], (6)

where g(x) is the function (to be clarified) such that for
every (i,j) € Q, Y, equals 1 with probability g(M;;).
In this light, it is not hard to see that Lqy/(X) is
the log-likelihood function and (@) is the maximum
likelihood estimator (MLE). We remark that the two

constraints in (B)) are enforced to accommodate our
assumptions [(A2)| and

It remains to characterize the function g(z) which is
a crucial component of (&). Note that in view of (3)
and (@), we have the following conditional probability:

Pr (Y, =1|7) = (1=7)f(Mij)+7(1— f(Mi;)). (7)

Thus, once some statistics of 7 is known we are able
to evaluate g(z).

(I) 7 is discrete. In this case, let us suppose that the
random variable 7 takes value in {71, 72,...,7s} with
corresponding probability {p1,pa,...,ps}. It then fol-
lows that

Pr(Y),=1)=> Pr(Y,=171=mn)
k=1

:Zkar(Yi/j:HT:Tk).
k=1

Hence, letting

g(@) =Y pr (1= 7) f(x) + (1 = f(2)))
k=1
= f(z)E[1 — 27] + E[7]. (8)

gives Pr(Y;; = 1) = g(M,;) as desired.

(II) 7 is continuous. Suppose that the probability
density function of 7 is h,(-). Then by simple calcula-
tion, it can be shown that

o(a) = [ e ®[1=017(a) + ¢(1 = )]
= f(z)E[1 — 27] + E[7], (9)

which is identical to the discrete case. Therefore, it
turns out that the random flipping noise ) affects
the recovery only through the mean.

3 Main Results

Our main results characterize the statistical rate of the
optimum to (B)). There are two important quantities
that we will need in the theoretical analysis, i.e.,

+ def

ot (10)

(11)

p, = Sup ——————=.
T ey (0(@)?

In the above expressions, v is a generic positive param-
eter which will be specified to different values in the
sequel. It is not hard to see that the quantity p;r is
essentially the Lipschitz constant of the log-likelihood
function Lq y/(X). While the quantity p is not asso-
ciated with the curvature explicitly, there is still some
intuitive explanation on why it enters our analysis. In-
deed, presume that g(x) is bounded from below in the
interval [—7,~]. As ¢’(x) approaches zero, we find that
p- tends to infinity since

C g(x)(
G@r = (g = 3y @)?

for some constant C. In view of (@), this in turn sug-
gests that either the function f(z) is quite flat in the
interval or E[r] is close to 1/2, making it difficult to
distinguish the entries of M.

3.1 Upper Bound

With these notions on hand, we state our first result
which upper bounds the estimation error of the solu-
tion of (@) for the recovery of M.
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Theorem 1 (Upper Bound). Assume [(Al)], [(A2)]
and . Suppose that the observation model fol-

lows @). Denote M the optimum of (). Then, with
probability at least 1 — Cy1/(dy + d2), we have

1
dids

- 2
HM - MH < iy LT D)
F n
provided that n > (di + dz2)log(dids). Above, ¥, =

Copd Py -

The theorem implies that as soon as we randomly sam-
ple n > 92r(dy + dz)log(d1dz) entries, the estimation
error vanishes. Note that the dependence on the ma-
trix rank r and the dimension (d1,d2) is optimal up
to a logarithmic factor. The theorem also suggests
that the random flipping noise 7 affects the recovery
through the quantity 1., which is multiplicative. For
concreteness, we give estimates of the quantity 1, for
prevalent statistical models. In the following we write
a := E[7] for brevity.

e Logistic regression: f(z) =e”/(1+ e*). We have

pi =1,
- (d+e)?

Pa = W (1—e*a+e*)((e*—1a+1).

Therefore, if we treat the parameter « as a constant,
say e® = 2, it follows that

L (@+1)2-a)  C
Yo = Co (1—2a)? _(1—ga)2’

where the second equality follows by investigating
the asymptotic behavior when a approaches 1/2
from below. The above quickly implies that the sam-
ple size n = O ((1 — 2a)~*r(d1 + d2) log(d1dz)) suf-
fices for accurate recovery even when nearly half of
the entries are flipped.

e Probit regression: f(zx) = ®(x/o). That is, {Z;;}
in (Il) are Gaussian random variables with mean zero
and variance 2. We have

4 «
Tt - (=
Po = (1—-2a)o (U+1>’
2
- o 2 2
Pa < mexp(a /(207)),

oa+o a?
=075 (5))
It is not hard to see that there exists a threshold
o* > « that minimizes the right-hand side above,
hence is a heuristically optimal choice. When o <
o*, one can increase the variance to obtain a better
error bound. This is not surprising since on one

spectrum, if the variance is too small, the model ()
reduces to Y;; = sign (M;;) for which recovery is not
possible [I7]. On the other extreme, if ¢ is too large,
then the function f’(z) (and hence ¢'(x)) becomes
flat, which makes recovery challenging.

In the regime where the parameter « is a con-
stant, we obtain the sample complexity n =
O ((1 —2a)~%r(dy + d2)log(d1dz)) which is worse
than the logistic case. These two models are quite
similar to each other but Gaussian distribution has
a lighter tail, which might be the reason. We leave
a concrete study as future work.

e Laplacian: f'(z) = — o exp(— || /b). We have

2(1 — 2a)
+
pa - b 9
b2
Pr = Ty (2(6 Da+ 1)

X (2(1 — e®/b)q 4 262/5 — 1) :

1
%20(1—%)’

provided that the parameters o and b are constants,
e.g., e*/® = 2. This gives us the sample complex-
ity n = O ((1 — 2a)~?r(dy + d2) log(d1d2)) which is
better than the logistic case. It is also worth men-
tioning that like probit regression, there exists an
optimal choice of the parameter b that minimizes
the upper bound of the statistical error, though we
do not pursue it here.

which yields

3.2 Lower Bound

Our second theorem provides a lower bound on the
statistical error for the recovery of M. It asserts
that under the observation model [B) and sampling
scheme we can always find an instance M sat-
isfying and such that with a non-trivial
probability (say, 3/4), any algorithm has to access as
many samples as Theorem [I] suggests for recovery.

Theorem 2 (Lower Bound). Fiz the parameters «,
r, di and do with a« > 1 and r > 16. Suppose that
oa?rmax{dy,ds} > Cqo for some absolute constant Co,
and ¢'(z) is non-increasing for x > 0. Let Q by an
arbitrary index set with || = n and assume the noisy
observation model [@B)). Then there exists M satisfy-
ing and [(A3)] such that for any algorithm, with

probability at least 3/4, its output M satisfies

- 2
LHM—MH > min  Cy., Cogry | -2{d1, 2} |
d1d2 F n
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provided that the right-hand side is larger than
ra?/min{dy,da}. Above, ¢o = a(py 5,) ">

A few remarks are in order. First and foremost, it is
shown that n = O (¢3rd2) samples are necessary for
accurate recovery where we assume d; < do without
loss of generality. The dependence on the rank r and
matrix dimension (d1, d2) matches the upper bound in
Theorem [ (up to a logarithmic factor), justifying the
optimality provided that « is a constant. Regarding
the noise parameter E[7] contained in ¢,, it is not
hard to see that for all choices of f(x) (i.e., logistic,
probit, laplacian), our lower bound implies that n is
proportional to (1 — 2E[7])~2, indicating a room for
improvement of the upper bound in the logistic and
probit cases (the upper bound for the laplacian case
we established is optimal).

Now let us investigate the conditions in Theorem
Note that we did not optimize the constants. For exam-
ple, the condition r > 16 can be relaxed to, e.g., r > 4.
The condition a?rdy > Cy is easy to satisfy, especially
in the high-dimensional regime where r,da — co. We
also point out that it is very mild to assume ¢'(z) is
decreasing in RT. It amounts to imposing that the
probability density function has a non-increasing tail,
which holds for the popular statistical models in Sec-
tion Bl Finally, when the rank r < O (di/a?), the
right-hand side of the inequality in the theorem is al-
ways larger than ra?/d;. It turns out that under the
setting @ = ©(1), the lower bound holds even when
the matrix rank is of the same order of the dimension.
We summarize the established bounds in Table [Tl

3.3 Proof Sketch
We will consider the centralized loss function
.Z/Q7Y/ (X) = LQ)Y/(X) — LQ7y/ (O)

The following lemma is crucial for our analysis.

Lemma 3. Let the set S be

S = {X eRU* . |X|. < a\/m}.
Write

Ga,y' = sup |Loy/(X) —E Ly (X)],

Xes
G = aptV/ry/n(dy + d2) + dida log(dydy).

Then it follows that

Gy

Pr (GQ,Y’ 2 CQG) S m,

for some absolute constants Cy and Cy.

Recall that the likelihood function we defined in (6
is not averaged by n. Hence, the above lemma sug-
gests that when n is large enough, the shifted loss
%Egﬁy/ (X) concentrates around its expectation with

the rate O (1/4/n).
On the other hand, by algebra we can show that

D (4(anllg(i1) < =Gy,

where the left-hand side is the KL divergence which
can be further lower bounded
1
dids

|37 - ad| < 820 (s000)ll93D))

This immediately implies Theorem [ after some re-
arrangements.

The lower bound follows from standard information
theoretic arguments. We construct a set of matrices
that satisfy and but the discrepancy be-
tween the members of this set is large in terms of Frobe-
nius norm. We then show that for any true matrix M
coming from this set, it is not easy for any recovery
algorithm to output a solution that is quite close to it.
This suggests a lower bound as stated in Theorem
See Appendix [Bl for the full proof.

4 Experiments

We complement our theoretical findings by perform-
ing a comprehensive set of experiments on both sim-
ulated data and realistic problems. In particular, for
synthetic data our focus is on how the estimation error
changes with the sample size n and the random sign
flipping noise. For the real-world data, we will demon-
strate that the proposed estimator works well even
when it is fed with inaccurate information of the noise
parameter 7. The solver for the convex program (&)
is publicly available at Davenport’s homepage, and we
follow their default settings.

4.1 Simulation

We first elaborate the experimental settings.

Data. For simplicity, we set d; = do = d where
d = 200. We randomly generate the true real-valued
matrix M € R4 such that it has rank 7 and || M]|__ <
1. To be more concrete, we construct two matrices
U,V € R™" where the entries are drawn i.i.d. from a
uniform distribution on the interval [—1,1]. The low-
rank matrix M is then given by the product UV T fol-
lowed by a normalization (that is, M <« M/ ||M]|_).
Given a sample size n, the index set Q) is picked uni-
formly random such that |€2] = n. The noisy observa-
tion Yy} depends on the choice of f(x) and the flipping
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Table 1: Upper and lower bounds on the sample complexity in the regime where o is a constant.

f(z) Upper bound Lower bound

Logistic | (1 —2E[r])” " r(dy + da)log(didz) | (1 —2E[r]) " r max{d,,ds}
Probit (1 —2E[r])"° r(dy 4 da)log(dids) | (1 —2E[r])” > rmax{dy,dy}
Laplacian | (1 —2E[r]) " r(dy + do)log(dids) | (1 —2E[r]) "> r max{d;,ds}

parameter 7 (see ([B])). Here, we choose the probit re-
gression for f(z), i.e., f(x) = ®(x/0), the cumulative
density function of zero-mean Gaussian distribution.
The parameter o = 0.3.

Evaluation. We measure the discrepancy between
the recovered matrix M and the true matrix M by
the mean squared error (MSE). Each experiment to
be showed are conducted for 5 trials, and we report
the averaged MSE.

Our first empirical study focuses on the error curve
against the sample size when 7 is fixed as a scalar
(so there is no randomness in 7). We point out that
though 7 is a deterministic quantity, the flipping noise
is still random. Such a noise model was widely stud-
ied in the context of 1-bit compressed sensing [37), 45].
We set 7 = 0.2 which means for all (4,5) € €, the
component Y;; is flipped with probability 0.2. We plot
the curves of MSE in Figure [[l where we also vary the
rank r from 1 to 10. Note that a larger rank indicates
a more complicated problem, hence we need to draw
more observations to achieve a low error, as illustrated
in this figure. Also note that in the right panel, the
x-axis is d/y/n (n is the sample size), and we find that
the statistical error scales approximately linear with it,
which matches our theoretical prediction.

0.5

0.4]

w 0.3
n
=92

0.1

O5 20 40 60 80 100 01

n/d? (%)

Figure 1: Estimation error against sample size
under fixed 7. The z-axis is properly normalized by
a constant for a better view. The statistical error is
approximately linear with 1//n.

Then we fix the rank » = 3, and tune the parameter 7
from 0 to 0.4. Note that 7 is still a deterministic quan-
tity. For each value of 7, we plot the error curves in
Figure 2l We observe that the recovery becomes chal-
lenging when the data are grossly corrupted. In the
right panel, one can also observe a two-phase behavior
in which the MSE varies approximately linearly with
d/+/n when it is small, whereas when d/\/n is large

the MSE for different values of 7 more or less converge
to a common curve. This is because in Figure [2 d is
fixed, and a large d//n means a small sample size n.
In this scenario, no algorithm is able to recover the
true matrix (which is reflected by the large error).
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Figure 2: Estimation error against sample size
under fixed rank.

Now we investigate the situation where 7 itself is a
random variable. A remarkable implication of our the-
oretical analysis is that the random variable 7 affects
the recovery only through its mean. We verify this
by randomly generating 3 different distributions for
7, say Dy, Dy and Ds. For each distribution D;, 7
takes value from {7z }{_; with corresponding proba-
bility {pix}1_,. The configuration {7ix, pir }1_, is gen-
erated randomly, but subject to the constraints that
(i) each 7 lies in the interval [0,1/2); (ii) E[r] = 0.2;
and (iii) Zi:l pir = 1 for a given 4. Then for each dis-
tribution D;, we manually corrupt the clean data Yq
and run the solver to obtain an estimate. The results
are recorded in Figure [3] where we use the logarithmic
scale for the y-axis to magnify the difference for the
curves of these distributions. Even by doing so, we
find that the three curves are almost lying on top of
each other, which verifies our theoretical finding that
the statistical error only depends on the mean of 7.
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Figure 3: Estimation error against sample size
under the same and different noise expectation.
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Finally, we generate 4 distributions with different E[r]
using the same scheme as above and illustrate the re-
sults in Figure These curves again show that the
flipping noise poses challenges for accurate recovery.

4.2 MovieLens-100K under Bounded Noise

Data. As we have verified the theoretical findings
via simulation, now we are moving on to conduct ex-
periments on real-world data set: MovieLens-100K. It
consists of 100,000 ratings collected from 1000 users
on 1700 movies, where the original rating is an integer
from 1 to 5. We threshold the ratings by their average
to obtain a binary matrix. Then we randomly choose
95% for training and the remaining for testing.

Noise Model and Our Estimator. Our goal is
to examine if the proposed estimator is resilient to in-
accurate information of the noise parameter 7. This
is crucial for practical applications since the noise is
usually a hidden variable and the best we can hope is
to know its upper bound. Thus, we corrupt each clean
entry y;; by flipping it with arbitrary probability ;.
Note that this is a much more challenging case than be-
fore in that each 7;; may follow a different distribution.
We assume that all 7;; < Timax < 1/2 and we have the
knowledge of Tyax, which is exactly the bounded noise
model [32]. Our estimator (H), specifically the function
g(x) is constructed with 7.« in place of E[7].

Evaluation. We consider the recovery percentage
of the sign patterns, with the purpose of simulating
the 0/1 recommender systems. We use the logistic
function for f(x). Thus, when the program (Bl returns
the estimate M , we threshold f (]\//7 ) by 0.5 entry-wisely

~

to obtain a binary estimation Y.

We first illustrate that it is safe to apply our method
even when there is no noise in the data. Note that [17]
was developed specifically for the case. In this scenario,
we train two models: one with the knowledge that
7 = 0 (which is exactly the model of [I7]) and another
one with 7.« = 0.4. The results are recorded in the
first row of Table[2l Interestingly, we observe that our
estimator with 7.« performs slightly better than the
ones with the knowledge of noise. Their downgrade is
probably owing to the intrinsic noise in the data, e.g.,
noisy inputs from the users.

Table 2: Accuracy (%) of sign recovery.

[I7]  Ours with E[7]

Noise-free  74.9 74.9 75.0
Bounded 70.3 72.5 72.3

Ours with Tax

Then we consider the bounded noise model where each

observed entry is flipped with an arbitrary probabil-
ity smaller than 0.2. We train the model of [I7] with
the noisy data, and train two models based on our
robust formulation (B): one with the exact estimate
of E[r] which is 0.1 and another with a rough esti-
mate of Tmax = 0.4. From the second row of Table [2]
it is not hard to see that [17] degrades a lot since it
is noise-oblivious while our models performs well. In
particular, we find that even we do not know the exact
information of the noise, it is still possible to achieve
comparable performance.

Finally, we tune the expected value of 7 from 0 to 0.3
with a step size 0.05 (so totally 7 values of E[7]), but
we alway set Tmax = 0.4. We train our two models
as before, and compare the curves produced by the
one with the knowledge of E[7] and the one with only
Tmax- The results are plotted in Figure @l As we ex-
pected, our estimator works well under the bounded
noise model, and is always superior to [I7]. This again
demonstrates the robustness of our model.
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Figure 4: Recovery accuracy of sign patterns un-
der bounded noise.

5 Conclusion

In this paper, we have introduced the noisy 1-bit ma-
trix completion model, where each observed entry is
flipped with some probability controlled by a random
variable 7 € [0,1/2). It has been shown that under
rather mild conditions on the sampling scheme and
the true matrix, a simple maximum likelihood estima-
tor guarantees accurate recovery with high probability.
Along with our analysis, we have established that the
random variable 7 enters the sample complexity only
through its mean. When the binary data are generated
from a Laplacian distribution, we have demonstrated
that the upper bound matches the lower bound (up to
a logarithmic factor). We have carried out a variety
of numerical study to show that our theorems match
perfectly the empirical results. Perhaps somewhat sur-
prisingly, we also demonstrate on a benchmark data
set that the proposed estimator is resilient to bounded
noise. We believe it is a promising direction to pursue
a more refined analysis under such noise model, and
to conduct experiments on larger data sets.
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