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1 Proof of theorem 2
In this section, we prove the expressiveness of stationary spectral kernels.

Theorem 1. Let h be a complex-valued positive definite, continuous and integrable function. Than the family
of generalized spectral kernels

kGS(τ ) =

Q∑
q=1

αqh(τ ◦ γq)e2iπω
>
q τ . (1)

with ◦ denoting the Hadamard product, αq ∈ R+, ωk ∈ RD, γk ∈ RD+ , Q ∈ N+ is dense in the family of
stationary, complex-valued kernels with respect to pointwise convergence of functions.

Proof. We know from the uniform convergence of random Fourier features (Rahimi and Recht, 2008), that
for an arbitrary stationary kernel k0(x,x′) = k0(x− x′), for all compact subsetM∈ RD, and for all ε > 0,

there exists a feature map ζω(x) =
(
αqe

2πω>
q x
)Q
q=1

, such that |ζω(x)ζω(x′)∗ − k0(x− x′)| < ε. The uniform

convergence of random Fourier features suggests the expressiveness of a generalized form of sparse spectrum
kernel kSS(x− x′) =

∑Q
q=1 αqe

2πω>
q (x−x′).

For an arbitrary continuous, integrable kernel h, consider the function k̃(τ ) =
h(τ ◦ γ)

h(0)
kSS(τ ),γ � 0.

Because of the continuity of function h, k̃ uniformly approximates kSS as γ ↓ 0, and thus can be used to
approximate any stationary covariance k0.

k̃(τ ) uniformly approximates any stationary kernel k0 on arbitrary compact subsetM of RD. We can

therefore construct a sequence of k̃n by setting εn =
1

n
,Mn = B(0, n) = {v| ‖v‖ ≤ n}, n = 1, 2, 3, · · · . {k̃n}∞n=1

converges pointwise to k0. kGS takes a more general form, and thus has the same level of expressiveness as
k̃.

We can see from the reasoning that sparse spectrum kernel and spectral mixture kernel both weakly span
stationary covariances, and thus sharing the same level of expressiveness. But the sparse spectrum kernel only
encodes a finite dimensional feature mapping, which reduces a GP regression with a sparse spectrum kernel
to a Bayesian linear regression with trigonometric basis expansions. The spectral mixture kernel alleviates
overfitting by using Gaussian mixture on the spectral distribution, which implicitly assumes certain level
of smoothness of the unknown spectral distribution being modeled – the Gaussian mixture also leads to an
infinite-dimensional feature mapping which does not render a GP regression degenerate.
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2 Derivation of harmonizable mixture kernel
In this section we derive the parametric form of hramonizable mixture kernel. The GSD of a locally stationary
Gaussian kernel follows a generalized Wiener-Khintchin relation, as noticed in (Silverman, 1957). This relation
is easily noticed when subtituting x and x′ with new variables x̃ = (x + x′)/2 and τ = x− x′.

kLSG(x,x′) = e−2π
2x̃>Σ1x̃e−2π

2τ>Σ2τ , (2)

SkLSG(ω, ξ) =

∫∫
kLSG(x,x′)e−2iπ(ω

>x−ξ>x′) dxdx′ (3)

=

∫∫
e−2π

2x̃>Σ1x̃−2iπ(ω−ξ)>x̃e−2π
2τ>Σ2τ−iπ(ω+ξ)>τ dx̃dτ (4)

=

∫
e−2π

2x̃>Σ1x̃−2iπ(ω−ξ)>x̃ dx̃

∫
e−2π

2τ>Σ2τ−iπ(ω+ξ)>τ dτ (5)

= N (ω − ξ| 0,Σ1)N
(
ω + ξ

2

∣∣∣∣ 0,Σ2

)
. (6)

The Wigner transform of kLSG is straightforward as the kernel factors into two parts.

WkLSG(x,ω) =

∫
k
(
x +

τ

2
,x− τ

2

)
e−2iπτ

>ω (7)

= e−2π
2x>Σ1x

∫
e−2π

2τ>Σ2τ−2iπτ>ω dτ (8)

= e−2π
2x>Σ1xN (ω| 0,Σ2). (9)

Now consider the harmonizable mixture kernel,

kHM(x,x′) =

P∑
p=1

kp(x− xp,x
′ − xp), (10)

kp(x,x
′) = kLSG(x ◦ γp,x′ ◦ γp)φp(x)>Bpφp(x

′) (11)

= kLSG(x ◦ γp,x′ ◦ γp)
∑

1≤i,j≤Qp

e2iπ(µ
>
pix−µ

>
pjx

′). (12)

We know from the Fourier transform f̂(ξ) =
∫
f(x)e−2iπx>ξ dx, that the translation in the input leads

to closed form Fourier transforms: for g(x) = f(x ◦ γ), ĝ(ξ) =
1∏
γd
f̂(ξ � γ), and for h(x) = f(x − x0),

ĥ(ξ) = f̂(ξ)e−2iπξ
>x0 . The generalized Fourier transform to obtain GSD is equivalent to a Fourier transform

of the concatenated vector
(

x
−x′

)
. Using the above observations, we can obtain the GSD of the harmonizable

mixture kernel.

SkHM(ω, ξ) =

P∑
p=1

Skp(ω, ξ)e−2iπx>
p (ω−ξ), (13)

Skp(ω, ξ) =
1∏D

d=1 γ
2
pd

∑
1≤i,j≤Qp

bpijSpij(ω, ξ), (14)

Spij(ω, ξ) = SkLSG((ω − µpi)� γp, (ξ − µpj)� γp). (15)
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The Wigner transform of a kHM requires an additional step of reverting the subscript.

kp(x,x
′) = kLSG(x ◦ γp,x′ ◦ γp)

∑
1≤i,j≤Qp

βpije
2iπ(µ>

pix−µ
>
pjx

′) (16)

=
1

2
kLSG(x ◦ γp,x′ ◦ γp)

∑
1≤i,j≤Qp

βpij

(
e2iπ(µ

>
pix−µ

>
pjx

′) + e2iπ(µ
>
pjx−µ

>
pix

′)
)

(17)

= kLSG(x ◦ γp,x′ ◦ γp)
∑

1≤i,j≤Qp

βpij

(
cos

(
2π

(
µpi + µpj

2

)>
τ

)
cos(2π(µpi − µpj)>x̃) + ig(x̃, τ )

)
.

(18)

The imaginary part g(x̃, τ ) is an odd function with respect to τ : g(x̃, τ ) = −g(x̃,−τ ), and thus has an
integral of 0 with Wigner transform. The above derivation gives a separable kernel formulation with respect
to x̃ and τ

WkHM(x,ω) =

P∑
p=1

Wkp(x− xp,ω), (19)

Wkp(x,ω) =
1∏D

d=1 γpd

∑
1≤i,j≤Qp

Wpij(x,ω), (20)

Wpij(x,ω) = WkLSG (x ◦ γp, (ω − (µpi + µpj)/2)� γp) cos(2π(µpi − µpj)>x). (21)

2.1 Derivation of variational Fourier features
For a GP with an integrable harmonizable kernel k, we can derive the cross-covariances between the primary
GP f and its Fourier transform f̂ :

cov(f̂(ω), f(x)) = E
{∫

f(t)f(x)e−2iπω
>t dt

}
=

∫
RD

k(t,x)e−2iπω
>t dt (22)

cov(f(x), f̂(ω)) = cov(f̂(ω), f(x))∗

cov(f̂(ω), f̂(ξ)) = E
{∫∫

f(x)f(x′)e−2iπ(ω
>x−ξ>x′) dxdx′

}
=

∫∫
k(x,x′)e−2iπ(ω

>x−ξ>x′) dxdx′

= Sk(ω, ξ). (23)

In the case of harmonizable mixture kernels, we need to compute closed form
∫
kp(t,x)e−2iπξ

>t dt for the
cross-covariances in variational Fourier features which is derived below:∫

kp(t,x)e−2iπξ
>t dt =

∑
1≤i,j≤Qp

βpij exp

(
−2π2x>

(
Σ1

4
+ Σ2

)
− 2iπµ>pjx

)

×
∫

exp

(
−2π2(t− x0)>

(
Σ1

4
+ Σ2

)
(t− x0) + 2iπµ>pix− 2iπξ>x

)
dx (24)

=
∑

1≤i,j≤Qp

βpij exp

(
−2π2x>

(
Σ1

4
+ Σ2

)
− 2iπµ>pjx− 2iπx>0 ξ

)

×N
(

(ξ − µpi)� γp
∣∣∣∣0, Σ1

4
+ Σ2

)
, (25)

x0 = (Σ1 + 4Σ2)−1(4Σ2 −Σ1)x. (26)
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3 Proof of theorem 3
Theorem 2. Given a continuous, integrable kernel kLS with a valid generalized spectral density, the
harmonizable mixture kernel

kh(x,x′) =

P∑
p=1

kp(x− xp,x
′ − xp), (27)

kp(x,x
′) = kLS(x ◦ γp,x′ ◦ γp)φp(x)†Bpφp(x

′), (28)

where P ∈ N+, (φp(x))q = e2iπµ
>
pqx, q = 1, . . . , Qp, γp ∈ RD+ , xp ∈ RD, µpq ∈ RD, Bp as positive definite

Hermitian matrices, is dense in the family of harmonizable covariances with respect to pointwise convergence
of functions.

Proof. Discrete measures are dense in the Banach space of complex-valued measures on RD × RD. And
the same can be extended to the denseness of discrete positive definite bimeasures (a subset of measures
on RD × RD) in positive definite bimeasures. Intuitively, a harmonizable kernel k0 : R × R 7→ C with a

generalized spectral density S(ω, ξ) =
∂2Ψ(ω, ξ)

∂ω∂ξ
can be expressed in the following form:

k0(x,x′) =

∫∫
S(ω, ξ)e2iπ(ω

>x−ξ>x′) dωdξ. (29)

Consider the Darboux sum with respect to a grid of frequencies ω0 < ω2 < . . . < ωQ∑
1≤u,v≤Q

e2iπ(ω
>
v x−ω>

u x′)Ψ([ωu−1,ωu], [ωv−1,ωv]) =
∑

1≤u,v≤Q

αuve
2iπ(ω>

u x−ω>
v x). (30)

Given the positive definiteness of Ψ(·, ·), the matrix (αuv)
Q
u,v=1 is positive semidefinite. the Darboux sum

takes a “generalized sparse spectrum” form: kGSS(x,x′) = φ(x)†Bφ(y). It is an uniform approximator of the
double integral on a compact set [ω0,ωQ]× [ω0,ωQ], which converges to k0 as [ω0,ωQ]× [ω0,ωQ] covers the
entire frequency domain.

Given the expressiveness of the generalized sparse spectrum kernel, we can similarly smooth the spectral
representation by multiplying with kLS(x ◦ γ,x′ ◦ γ), and add more flexibility by translating the input, which
gives the final harmonizable mixture kernel form.

It is worth noting that the theorem can be strengthened from positive semidefinite Hermitian matrices
Bp, to non-negative valued positive semidefinite matrices. This is an immediate result from the “phase shift”
of the Fourier transform.

4 Expressiveness of product spectral kernels
The spectral mixture product (SMP) kernel (Wilson et al., 2014) is a variant of the spectral mixture kernel,
where the inner product inside the cosine function is decomposed into a product of cosines, which makes each
spectral component a product kernel.

kSMP(τ ) =
∑
q=1Q

w2
q

D∏
d=1

e−2π
2σ2

dτ
2
d cos(2πµqdτd). (31)

Spectral mixture product kernel is used in multidimensional pattern discovery for its added scalability (Wilson
et al., 2014). However, it is not as expressive as the original spectral mixture kernel. We see the product of
cosines can be decomposed as follows

D∏
d=1

cos(2πµqdτd) =
1

2D

∑
b∈{−1,1}D

e2iπ(b◦µ)
>τ . (32)
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Therefore, product spectral kernels are spectral mixture kernel with additional symmetry constraint: ψk(ω) =
ψk(b ◦ ω),∀b ∈ {−1, 1}D. Note that this constraint is stricter than the constraint for an arbitrary stationary
kernel ψk(ω) = ψk(−ω). We conclude that spectral mixture product kernel shall behave as well as spectral
mixture kernel when we underlying covariance has a spectral distribution that is symmetrical with respect to
every “axis”.

For multidimensional harmonizable spectral kernel, we can utilize enhanced scalability when we similarly
replace the cosine term with a product of cosines with respect to every dimension, which leads to similar
stronger symmetry of the generalized spectral distribution Ψ(ω, ξ) = Ψ(b1 ◦ ω, b2 ◦ ξ),∀b1, b2 ∈ {−1, 1}D.

When we use product spectral kernel in replacement of original spectral kernels, there is a tradeoff between
scalability and expressiveness: product spectral kernels offer additional scalability for the cost of reduced
expressiveness based on symmetry of the (generalized) spectral distribution.

5 Interpreting generalized spectral mixture kernel
The generalized spectral mixture kernel (GSM) (Remes et al., 2017) is a nonstationary generalization of the
stationary spectral mixture kernel. The functional formulation makes the kernel able to handle complex
structure in the input. It is formulated as

kGSM(x, x′) =

Q∑
q=1

wq(x)wq(x
′)kGibbs, q(x, x′) cos(2π(µq(x)x− µq(x′)x′)), (33)

kGibbs, q(x, x′) =

√
2lq(x)lq(x

′)

lq(x)2 + lq(x′)2
exp(− (x− x′)2

lq(x)2 + lq(x′)2
), (34)

where functions wq(x), µq(x), lq(x) have GP priors, encoding a spectrogram with wq(x) denoting the magnitude
of the frequency, µq(x), and lq(x) denoting the mean and variance of the frequency components. We propose
that this kernel first projects input using some unknown feature map, and then assume stationary in the
projected space and fit a stationary spectral mixture kernel. Consider the kernel kFSS(x,x′) = cos(g(x)−g(x′))
with an arbitrary function g : RD 7→ R. Assuming g(·) lies within some RKHS H, then g(x) = 〈g,K(x, ·)〉H
is an inner product between a “constant vector” g and the projected input K(x, ·), therefore the kernel kFSS
generalizes sparse spectrum kernel by projecting the data with a feature map first. The GSM kernel then
multiplies kFSS with a Gibbs kernel, implying an unknown mixture model on the spectrum induced by the
projected space.

1 0 1
x
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0

1

x'

GSM kernel matrix

1 0 1
x

0.0

2.5

5.0

w

Wigner distribution with (x)

Figure 1: Wigner distribution of the approximation of a GSM kernel

The white line denotes the µ(x) corresponding to frequency of the spectrogram.
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However, the intuitive interpretation of the underlying spectrogram might be an inaccurate way to
interpret GSM kernel. When we approximate a GSM kernel with HM kernel, the Wigner distribution of
the HM kernel does not quite correspond to the spectrogram interpretation: the mean of the frequency
components are “stretched”, when x approaches 1, the actual local frequency is higher than what the function
µ(x) suggests. GSM kernel seems to keep a biased account of the frequency information.

While the harmonizable mixture kernel handles nonstationarity in the input directly, the GSM kernel is
equally valid – it projects the input space to a feature space, and then assumes stationarity on the feature
space.

6 Experiment details
The models are implemented in Python using the GPFlow framework (Matthews et al., 2017). We implemented
the harmonizable mixture kernel, two sparse GP models with variational Fourier features (namely the
variational lower bound for sparse GP regression (Titsias, 2009) and the stochastic variational Gaussian
process (Hensman et al., 2017)), and a natural gradient optimizer accepting complex-valued variational
parameters.

6.1 Kernel recovery
For kernel recovery, we perform stochastic gradient descent using Adam (Kingma and Ba, 2014), using mean
square error of random batches of data as objective function.

6.2 GP classification
For GP classification using banana dataset, we selected a subset of data containing 500 data points, and
trained a variational GP model. The full variational model is then approximated using sparse GP with
inducing points and inducing frequencies.

The inducing points are initialized using K-means clustering, and the inducing frequencies are initialized
using the frequency means suggested in the trained HMK, with an added Gaussian noise. We ran each model
with 5 random initializations and pick the model with highest classification accuracy on the training set.

For the training of sparse GP model, we first trained the variational parameters with natural gradients for
200 iterations. We then jointly train the inducing variables and variational parameters with 700 alternating
rounds of optimization using respective natural gradient optimizers and Adam (such approach is suggested in
(Salimbeni et al., 2018)).

6.3 GP regression
For GP regression with solar irrandiance, we used the same partition of training and test set in experiments
in (Gal and Turner, 2015) and (Hensman et al., 2017). We further standardize the X-axis for numerical
stability of the variational Fourier features. We used sparse GP regression (Titsias, 2009), where the model is
modified to allow for VFF with the harmonizable mixture kernel.

For GP regression with Gaussian kernel, we used 50 inducing points initialized with K-Means, and initialized
the kernel hyperparameters using 5 increasing lengthscales. The model is chosen using log-likelihoods on the
training set.

With an assumption of smoothness of the underlying data, we used the residual value of the training data
minus the predicted value of the previous model, and used a discrete Fourier transform on 6 subdivisions of
data. The SM kernel has 3 frequency components initialized with respectively the highest two frequency in
the discrete Fourier transform and the 0 frequency. This is initialization is then added with Gaussian noise
and optimized.

The HMK for GP regression has a total of P = 6 components, with Q = 3 frequency values for each
components. The input shifts xp are initialized using K-means clustering, and the frequency values are 0, the

6



highest density frequency obtained in discrete Fourier transform, and random values. We ran the sparse GP
model with inducing points for some iterations and then ran variational Fourier features centered around the
frequency values.
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