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Abstract

The recognition network in deep latent vari-
able models such as variational autoencoders
(VAEs) relies on amortized inference for e�-
cient posterior approximation that can scale
up to large datasets. However, this technique
has also been demonstrated to select subopti-
mal variational parameters, often resulting in
considerable additional error called the amor-
tization gap. To close the amortization gap
and improve the training of the generative
model, recent works have introduced an addi-
tional refinement step that applies stochastic
variational inference (SVI) to improve upon
the variational parameters returned by the
amortized inference model. In this paper, we
propose the Bu↵ered Stochastic Variational
Inference (BSVI), a new refinement proce-
dure that makes use of SVI’s sequence of in-
termediate variational proposal distributions
and their corresponding importance weights
to construct a new generalized importance-
weighted lower bound. We demonstrate em-
pirically that training the variational autoen-
coders with BSVI consistently out-performs
SVI, yielding an improved training procedure
for VAEs.

1 Introduction

Deep generative latent-variable models are impor-
tant building blocks in current approaches to a host
of challenging high-dimensional problems including
density estimation [1, 2, 3], semi-supervised learning
[4, 5] and representation learning for downstream tasks
[6, 7, 8, 9]. To train these models, the principle of max-
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imum likelihood is often employed. However, maxi-
mum likelihood is often intractable due to the di�-
culty of marginalizing the latent variables. Variational
Bayes addresses this by instead providing a tractable
lower bound of the log-likelihood, which serves as a
surrogate target for maximization. Variational Bayes,
however, introduces a per sample optimization sub-
routine to find the variational proposal distribution
that best matches the true posterior distribution (of
the latent variable given an input observation). To
amortize the cost of this optimization subroutine, the
variational autoencoder introduces an amortized in-
ference model that learns to predict the best proposal
distribution given an input observation [1, 10, 11, 12].

Although the computational e�ciency of amortized
inference has enabled latent variable models to be
trained at scale on large datasets [13, 14], amortization
introduces an additional source of error in the approx-
imation of the posterior distributions if the amortized
inference model fails to predict the optimal proposal
distribution. This additional source of error, referred
to as the amortization gap [15], causes variational au-
toencoder training to further deviate from maximum
likelihood training [15, 16].

To improve training, numerous methods have been de-
veloped to reduce the amortization gap. In this paper,
we focus on a class of methods [17, 18, 19] that takes
an initial proposal distribution predicted by the amor-
tized inference model and refines this initial distribu-
tion with the application of Stochastic Variational In-
ference (SVI) [20]. Since SVI applies gradient ascent
to iteratively update the proposal distribution, a by-
product of this procedure is a trajectory of proposal
distributions (q0, . . . , qk) and their corresponding im-
portance weights (w0, . . . wk). The intermediate dis-
tributions are discarded, and only the last distribu-
tion qk is retained for updating the generative model.
Our key insight is that the intermediate importance
weights can be repurposed to further improve train-
ing. Our contributions are as follows

1. We propose a new method, Bu↵ered Stochastic
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Variational Inference (BSVI), that takes advan-
tage of the intermediate importance weights and
constructs a new lower bound (the BSVI bound).

2. We show that the BSVI bound is a special in-
stance of a family of generalized importance-
weighted lower bounds.

3. We show that training variational autoencoders
with BSVI consistently outperforms SVI, demon-
strating the e↵ectiveness of leveraging the inter-
mediate weights.

Our paper shows that BSVI is an attractive replace-
ment of SVI with minimal development and computa-
tional overhead.

2 Background and Notation

We consider a latent-variable generative model p✓(x, z)
where x 2 X is observed, z 2 Z is latent, and ✓ are the
model’s parameters. The marginal likelihood p✓(x) is
intractable but can be lower bounded by the evidence
lower bound (ELBO)

ln p✓(x) � Eq(z)


ln

p✓(x, z)

q(z)

�
= Eq(z) lnw(z), (1)

which holds for any distribution q(z). Since the gap
of this bound is exactly the Kullback-Leibler diver-
gence D(q(z) k p✓(z | x)), q(z) is thus the variational
approximation of the posterior. Furthermore, by view-
ing q as a proposal distribution in an importance sam-
pler, we refer to w(z) = p✓(x,z)

q(z) as an unnormalized

importance weight. Since w(z) is a random variable,
the variance can be reduced by averaging the impor-
tance weights derived from i.i.d samples from q(z).
This yields the Importance-Weighted Autonenocder
(IWAE) bound [21],

ln p✓(x) � E
z1...zk

i.i.d.⇠ q

"
ln

1

k

kX

i=1

w(zi)

#
� ELBO, (2)

which admits a tighter lower bound than the
ELBO [21, 22].

2.1 Stochastic Variational Inference

The generative model can be trained by jointly opti-
mizing q and ✓ to maximize the lower bound over the
data distribution p̂(x). Supposing the variational fam-
ily Q = {q(z ; �)}�2⇤ is parametric and indexed by the
parameter space ⇤ (e.g. a Gaussian variational fam-
ily indexed by mean and covariance parameters), the
optimization problem becomes

max
✓

Ep̂(x)


max
�

Eq(z;�) lnw(z ; �, ✓)

�
. (3)

where importance weight w is now

w(z ; �, ✓) =
p✓(x, z)

q(z ; �)
. (4)

For notational simplicity, we omit the dependency on
x. For a fixed choice of ✓ and x, [17] proposed to
optimize � via gradient ascent, where one initializes
with �0 and takes successive steps of

�i+1  �i + ⌘r�iELBO, (5)

for which the ELBO gradient with respect to �i can
be approximated via Monte Carlo sampling as

r�iELBO ⇡
1

m

mX

j=1

r�i lnw(z�i(✏
(j)
i ) ; �i, ✓) (6)

where z
(j)
i = z�i(✏

(j)
i ) ⇠ q(z ; �i) is reparameterized as

a function of �i and a base distribution p0(✏). We note
that k applications gradient ascent generates a trajec-
tory of variational parameters (�0, . . . ,�k), where we
use the final parameter �k for the approximation. Fol-
lowing the convention in [20], we refer to this procedure
as Stochastic Variational Inference (SVI).

2.2 Amortized Inference Suboptimality

The SVI procedure introduces an inference subroutine
that optimizes the proposal distribution q(z ; �) per
sample, which is computationally costly. [1, 10] ob-
served that the computational cost of inference can be
amortized by introducing an inference model f� : X !
⇤, parameterized by �, that directly seeks to learn the
mapping x 7! �

⇤ from each sample x to an optimal �⇤

that solves the maximization problem

�
⇤ = argmax

�
Eq(z;�) ln

p✓(x, z)

q(z ; �)
. (7)

This yields the amortized ELBO optimization problem

max
✓,�

Ep̂(x)


Eq(z;f�(x)) ln

p✓(x, z)

q(z ; f�(x))

�
, (8)

where q(z ; f�(x)) can be concisely rewritten (with a
slight abuse of notation) as q�(z | x) to yield the stan-
dard variational autoencoder objective [1].

While computationally e�cient, the influence of the
amortized inference model on the training dynamics of
the generative model has recently come under scrutiny
[15, 17, 18, 16]. A notable consequence of amortization
is the amortization gap

D(q�(z | x) k p✓(z | x))�D(q(z ; �⇤) k p✓(z | x)) (9)

which measures the additional error incurred when
the amortized inference model is used instead of the
optimal �

⇤ for approximating the posterior [15]. A
large amortization gap can present a potential source
of concern since it introduces further deviation from
the maximum likelihood objective [16].
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2.3 Amortization-SVI Hybrids

To close the amortization gap, [17] proposed to blend
amortized inference with SVI. Since SVI requires one
to initialize �0, a natural solution is to set �0 = f�(x).
Thus, SVI is allowed to fine-tune the initial proposal
distribution found by the amortized inference model
and reduce the amortization gap. Rather than opti-
mizing ✓,� jointly with the amortized ELBO objective
Eq. (8), the training of the inference and generative
models is now decoupled; � is trained to optimize the
amortized ELBO objective, but ✓ is trained to approx-
imately optimize Eq. (3), where �

⇤ ⇡ �k is approxi-
mated via SVI. To enable end-to-end training of the in-
ference and generative models, [18] proposed to back-
propagate through the SVI steps via a finite-di↵erence
estimation of the necessary Hessian-vector products.
Alternatively, [19] adopts a learning-to-learn frame-
work where an inference model iteratively outputs �i+1

as a function of �i and the ELBO gradient.

3 Bu↵ered Stochastic Variational
Inference
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Figure 1: Idealized visualization of Bu↵ered Stochas-
tic Variational Inference. Double arrows indicate de-
terministic links, and single arrows indicate stochastic
links that involve sampling. The dotted arrow from
x to q0 denotes that the initial variational parameters
are given by the encoder. For notational simplicity,
we omitted the dependence of q1:k on x and the model
parameters �, ✓.

In this paper, we focus on the simpler, decoupled train-
ing procedure described by [17] and identify a new way
of improving the SVI training procedure (orthogonal
to the end-to-end approaches in [18, 19]). Our key ob-
servation is that, as part of the gradient ascent estima-

tion in Eq. (6), the SVI procedure necessarily generates
a sequence of importance weights (w0, . . . , wk), where
wi = w(zi;�i, ✓). Since (lnwk) likely achieves the high-
est ELBO, the intermediate weights (w0, . . . , wk�1) are
subsequently discarded in the SVI training procedure,
and only r✓ lnwk is retained for updating the gen-
erative model parameters. However, if the preceding
proposal distributions (qk�1, qk�2, . . .) are also reason-
able approximations of the posterior, then it is po-
tentially wasteful to discard their corresponding im-
portance weights. A natural question to ask then is
whether the full trajectory of weights (w0, . . . , wk) can
be leveraged to further improve the training of the gen-
erative model.

Taking inspiration from IWAE’s weight-averaging
mechanism, we propose a modification to the SVI pro-
cedure where we simply keep a bu↵er of the entire
importance weight trajectory and use an average of
the importance weights

P
i ⇡iwi as the objective in

training the generative model.1 The generative model
is then updated with the gradient r✓ ln

P
i ⇡iwi. We

call this procedure Bu↵ered Stochastic Variational In-
ference (BSVI) and denote ln

P
i ⇡iwi as the BSVI ob-

jective. We describe the BSVI training procedure in
Algorithm 1 and contrast it with SVI training. For no-
tational simplicity, we shall always imply initialization
with an amortized inference model when referring to
SVI and BSVI.

Algorithm 1 Training with Bu↵ered Stochastic
Variational Inference. We contrast training with SVI

versus BSVI. We denote the stop-gradient operation with

d·e, reflecting that we do not backpropagate through the

SVI steps.

1: Inputs: D =
�
x
(1)

, . . . , x
(n)
 
.

2: for t = 1 . . . T do
3: x ⇠ D
4: �0  f�t(x)
5: for i = 0 . . . k do
6: zi ⇠ q(z ; �i) . reparameterize as z�i(✏)
7: w(z ; �i, ✓) p✓(x, zi)/q(zi ; �i)
8: if i < k then
9: �i+1  d�i + ⌘r�i lnw(z ; �i, ✓)e

10: end if
11: end for
12: �t+1  �t +r�t lnw(z0 ; �0, ✓t)
13: if Train with SVI then
14: ✓t+1  ✓t +r✓t lnw(zk ; �k, ✓t)
15: else if Train with BSVI then
16: ✓t+1  ✓t +r✓t ln

P
i ⇡iw(zi ; �i, ✓t)

17: end if
18: end for

1
For simplicity, we use the uniform-weighting ⇡i =

1/(k + 1) in our base implementation of BSVI. In Sec-

tion 4.1, we discuss how to optimize ⇡ during training.
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�0 �1 �2 �3

z0 z1 z2 z3

(a) Dependent proposal distributions

z0 z1 z2 z3

(b) Dependent samples

Figure 2: Graphical model for dependent proposal dis-
tributions and samples. When �1:k is marginalized,
the result is a joint distribution of dependent samples.
For notational simplicity, the dependency on ✓ is omit-
ted.

4 Theoretical Analysis

An important consideration is whether the BSVI ob-
jective serves as a valid lower bound to the log-
likelihood ln p✓(x). A critical challenge in the analysis
of the BSVI objective is that the trajectory of varia-
tional parameters (�0, . . . ,�k) is actually a sequence of
statistically-dependent random variables. This statis-
tical dependency is a consequence of SVI’s stochastic
gradient approximation in Eq. (6). We capture this
dependency structure in Figure 2a, which shows that
each �i+1 is only deterministically generated after zi is
sampled. When the proposal distribution parameters
�0:k are marginalized, the resulting graphical model is
a joint distribution over q(z0:k | x). To reason about
such a joint distribution, we introduce the following
generalization of the IWAE bound.

Theorem 1. Let p(x, z) be a distribution where z 2 Z.
Consider a joint proposal distribution q(z0:k) over Zk.
Let v(i) ⇢ {0, . . . , k} \ {i} for all i, and ⇡ be a cat-
egorical distribution over {0, . . . , k}. The following
construction, which we denote the Generalized IWAE
Bound, is a valid lower bound of the log-marginal-
likelihood

Eq(z0:k) ln
kX

i=0

⇡i
p(x, zi)

q(zi | zv(i))
 ln p(x), (10)

The proof follows directly from the linearity of expec-
tation when using q(z0:k) for importance-sampling to
construct an unbiased estimate of p✓(x), followed by
application of Jensen’s inequality. A detailed proof is
provided in Appendix A.

Notably, if q(z0:k) =
Q

i q(zi), then Theorem 1 re-
duces to the IWAE bound. Theorem 1 thus provides a
generalization of IWAE, where the samples drawn are
potentially non-independently and non-identically dis-
tributed. Theorem 1 thus provides a way to construct
new lower bounds on the log-likelihood whenever one
has access to a set of non-independent samples.

In this paper, we focus on a special instance where
a chain of samples is constructed from the SVI tra-
jectory. We note that the BSVI objective can be ex-
pressed as

Eq(z0:k|x) ln
kX

i=0

⇡iwi = Eq(z0:k|x) ln
kX

i=0

⇡i
p✓(x, zi)

q(zi | z<i, x)
.

(11)

Note that since �i can be deterministically computed
given (x, z<i), it is therefore admissible to interchange
the distributions q(zi | z<i, x) = q(zi | �i). The
BSVI objective is thus a special case of the Gener-
alized IWAE bound, where zv(i) = z<i with auxiliary
conditioning on x. Hence, the BSVI objective is a valid
lower bound of ln p✓(x); we now refer to it as the BSVI
bound where appropriate.

In the following two subsections, we address two addi-
tional aspects of the BSVI bound. First, we propose
a method for ensuring that the BSVI bound is tighter
than the Evidence Lower Bound achievable via SVI.
Second, we provide an initial characterization of BSVIs
implicit sampling-importance-resampling distribution.

4.1 Bu↵er Weight Optimization

Stochastic variational inference uses a series of gradi-
ent ascent steps to generate a final proposal distribu-
tion q(z | �k). As evident from Figure 2a, the pa-
rameter �k is in fact a random variable. The ELBO
achieved via SVI, in expectation, is thus

Eq(z,�k|x) ln
p✓(x, z)

q�(z | �k)
= Eq(z0:k|x) lnwk, (12)

where the RHS re-expresses it in notation consistent
with Eq. (11). We denote Eq. (12) as the SVI bound.
In general, the BSVI bound with uniform-weighting
⇡i = 1/(k + 1) is not necessarily tighter than the SVI
bound. For example, if SVI’s last proposal distribu-
tion exactly matches posterior qk(z) = p✓(z | x), then
assigning equal weighting to across (w0, . . . wk) would
make the BSVI bound looser.

In practice, we observe the BSVI bound with uniform-
weighting to consistently achieve a tighter lower
bound than SVI’s last proposal distribution. We
attribute this phenomenon to the e↵ectiveness of
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variance-reduction from averaging multiple impor-
tance weights—even when these importance weights
are generated from dependent and non-identical pro-
posal distributions.

To guarantee that the BSVI is tighter than the SVI
bound, we propose to optimize the bu↵er weight ⇡.
This guarantees a tighter bound,

max
⇡

Eq(z0:k|x) ln
kX

i=0

⇡iwi � Eq(z0:k|x) lnwk, (13)

since the SVI bound is itself a special case of the BSVI
bound when ⇡ = (0, . . . , 0, 1). It is worth noting that
Eq. (13) is concave with respect to ⇡, allowing for easy
optimization of ⇡.

Although ⇡ is a local variational parameter, we shall,
for simplicity, optimize only a single global ⇡ that we
update with gradient ascent throughout the course of
training. As such, ⇡ is jointly optimized with ✓ and �.

4.2 Dependence-Breaking via
Double-Sampling

�0 �1 �2 �3

ẑ0 ẑ1 ẑ2 ẑ3

z0 z1 z2 z3

Figure 3: Graphical model for double sampling. No-
tice that the samples z0:k are now independent given
�0:k and x. Again the dependence on ✓ is omitted for
notational simplicity.

As observed in [20], taking the gradient of the log-
likelihood with respect to ✓ results in the expression

r✓ ln p✓(x) = Ep✓(z|x)r✓ ln p✓(x, z). (14)

We note that gradient of the ELBO with respect to ✓

results in a similar expression

r✓ELBO(x) = Eq�(z|x)r✓ ln p✓(x, z). (15)

As such, the ELBO gradient di↵ers from log-likelihood
gradient only in terms of the distribution applied by
the expectation operator. To approximate the log-
likelihood gradient, we wish to set q�(z | x) close to
p✓(z | x) under some divergence.

We now show what results from computing the gradi-
ent of the BSVI objective.

Lemma 1. The BSVI gradient with ✓ is

r✓BSVI(x) = Eqsir(z|x)r✓ ln p✓(x, z), (16)

where qsir is a sampling-importance-resampling proce-
dure defined by the generative process

z0:k ⇠ q(z0:k | x) (17)

i ⇠ r(i | z0:k) (18)

z  zi, (19)

and r(i | z0:k) = (⇡iwi)/(
P

j ⇡jwj) is a probability
mass function over {0, . . . , k}.

A detailed proof is provided in Appendix A.

A natural question to ask is whether BSVI’s qsir is
closer to the posterior than qk in expectation. To
assist in this analysis, we first characterize a partic-
ular instance of the Generalized IWAE bound when
(z1, . . . , zk) are independent but non-identically dis-
tributed.

Theorem 2. When q(z0:k) =
Q

i qi(zi), the implicit
distribution qsir(z) admits the inequality

Eqsir(z) ln
p✓(x, z)

qsir(z)
� Eq(z0:k) ln

kX

i=0

⇡iwi (20)

= Eq(z0:k) ln
kX

i=0

⇡i
p✓(x, z)

qi(zi)
. (21)

Theorem 2 extends the analysis by [23] from the i.i.d.
case (i.e. the standard IWAE bound) to the non-
identical case (proof in Appendix A). It remains an
open question whether the inequality holds for the
non-independent case.

Since the BSVI objective employs dependent samples,
it does not fulfill the conditions for Theorem 2. To
address this issue, we propose a variant, BSVI with
double-sampling (BSVI-DS), that breaks dependency
by drawing two samples at each SVI step: ẑi for com-
puting the SVI gradient update and zi for computing
the BSVI importance weight wi. The BSVI-DS bound
is thus

Eq(ẑ<k|x)

 
Eq(z0:k|ẑ<k,x) ln

kX

i=0

⇡i
p✓(x, z)

q(zi | ẑ<k, x)

!
,

(22)

where q(z0:k | ẑ<k, x) =
Q

i q(zi | ẑ<k, x) is a product
of independent but non-identical distributions when
conditioned on (ẑ<k, x). Double-sampling now allows
us to make the following comparison.

Corollary 1. Let qk = q(zk | ẑ<i, x) denote the pro-
posal distribution found by SVI. For any choice of
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(ẑ<i, x), the distribution qsir implied by BSVI-DS (with
optimal weighting ⇡

⇤) is at least as close to p✓(z | x)
as qk,

D(qsir k p✓(z | x))  D(qk k p✓(z | x)), (23)

as measured by the Kullback-Leibler divergence.

Corollary 1 follows from Theorem 2 and that the
BSVI-DS bound under optimal ⇡⇤ is no worse than
the SVI bound. Although the double-sampling proce-
dure seems necessary for inequality in Corollary 1 to
hold, in practice we do not observe any appreciable
di↵erence between BSVI and BSVI-DS.

5 Computational Considerations

Another important consideration is the speed of train-
ing the generative model with BSVI versus SVI. Since
BSVI reuses the trajectory of weights (w0, . . . , wk)
generated by SVI, the forward pass incurs the same
cost. The backwards pass for BSVI, however, is O(k)
for k SVI steps—in contrast to SVI’s O(1) cost. To
make the cost of BSVI’s backwards pass O(1), we
highlight a similar observation from the original IWAE
study [21] that the gradient can be approximated via
Monte Carlo sampling

r✓BSVI(x) ⇡ 1

m

mX

i=1

r✓ ln p✓(x, z
(i)), (24)

where z
(i) is sampled from BSVI’s implicit distribu-

tion qsir(z | x). We denote this as training BSVI
with sample-importance-resampling (BSVI-SIR). Set-
ting m = 1 allows variational autoencoder training
with BSVI-SIR to have the same wall-clock speed as
training with SVI.

6 Experiments

6.1 Setup

We evaluated the performance of our method by
training variational autoencoders with BSVI-SIR
with bu↵er weight optimization (BSVI-SIR-⇡)) on
the dynamically-binarized Omniglot, grayscale SVHN
datasets, and FashionMNIST (a complete evaluation
of all BSVI variants is available in Appendix B). Our
main comparison is against the SVI training proce-
dure (as described in Algorithm 1). We also show the
performance of the standard VAE and IWAE train-
ing procedures. Importantly, we note that we have
chosen to compare SVI-k0 and IWAE-k0 trained with
k
0 = 10 against BSVI-k-SIR trained with k = 9 SVI

steps. This is because that BSVI-k-SIR generates k+1
importance weights.

For all our experiments, we use the same architec-
ture as [18] (where the decoder is a PixelCNN) and
train with the AMSGrad optimizer [24]. For grayscale
SVHN, we follow [25] and replaced [18]’s bernoulli ob-
servation model with a discretized logistic distribution
model with a global scale parameter. Each model was
trained for up to 200k steps with early-stopping based
on validation set performance. For the Omniglot ex-
periment, we followed the training procedure in [18]
and annealed the KL term multiplier [2, 26] during
the first 5000 iterations. We replicated all experiments
four times and report the mean and standard deviation
of all relevant metrics. For additional details, refer to
Appendix D

6.2 Log-Likelihood Performance

For all models, we report the log-likelihood (as mea-
sured by BSVI-500). We additionally report the SVI-
500 (ELBO*) bound along with its decomposition into
rate (KL*) and distortion (Reconstruction*) compo-
nents [27]. We highlight that KL* provides a fair com-
parison of the rate achieved by each model without
concern of misrepresentation caused by the amortized
inference suboptimality.

Omniglot. Table 1 shows that BSVI-SIR outper-
forms SVI on the test set log-likelihood. BSVI-SIR
also makes greater usage of the latent space (as mea-
sured by the lower Reconstruction*). Interestingly,
BSVI-SIR’s log-likelihoods are noticeably higher than
its corresponding ELBO*, suggesting that BSVI-SIR
has learned posterior distributions not easily approxi-
mated by the Gaussian variational family when trained
on Omniglot.

SVHN. Table 2 shows that BSVI-SIR outperforms
SVI on test set log-likelihood. We observe that both
BSVI-SIR and SVI significantly outperform both VAE
and IWAE on log-likelihood, ELBO*, and Reconstruc-
tion*, demonstrating the e�cacy of iteratively refining
the proposal distributions found by amortized infer-
ence model during training.

FashionMNIST. Table 3 similarly show that BSVI-
SIR outperforms SVI on test set log-likelihood. Here,
BSVI achieves significantly better Reconstruction* as
well as achieving higher ELBO* compared to VAE,
IWAE, and SVI.

In Tables 4 to 6 (Appendix B), we also observe that the
use of double sampling and bu↵er weight optimization
does not make an appreciable di↵erence than their ap-
propriate counterparts, demonstrating the e�cacy of
BSVI even when the samples (z0:k) are statistically
dependent and the bu↵er weight is simply uniform.
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Table 1: Test set performance on the Omniglot dataset. Note that k = 9 and k
0 = 10 (see Section 6.1). We

approximate the log-likelihood with BSVI-500 bound (Appendix C). We additionally report the SVI-500 bound
(denoted ELBO*) along with its KL and reconstruction decomposition.

Model Log-likelihood ELBO* KL* Reconstruction*
VAE -89.83 ± 0.03 -89.88 ± 0.02 0.97 ± 0.13 88.91 ± 0.15

IWAE-k0
-89.02 ± 0.05 -89.89 ± 0.06 4.02 ± 0.18 85.87 ± 0.15

SVI-k0
-89.65 ± 0.06 -89.73 ± 0.05 1.37 ± 0.15 88.36 ± 0.20

BSVI-k-SIR -88.80 ± 0.03 -90.24 ± 0.06 7.52 ± 0.21 82.72 ± 0.22

Table 2: Test set performance on the grayscale SVHN dataset.

Model Log-likelihood ELBO* KL* Reconstruction*
VAE -2202.90 ± 14.95 -2203.01 ± 14.96 0.40 ± 0.07 2202.62 ± 14.96

IWAE-k0
-2148.67 ± 10.11 -2153.69 ± 10.94 2.03 ± 0.08 2151.66 ± 10.86

SVI-k0
-2074.43 ± 10.46 -2079.26 ± 9.99 45.28 ± 5.01 2033.98 ± 13.38

BSVI-k-SIR -2059.62 ± 3.54 -2066.12 ± 3.63 51.24 ± 5.03 2014.88 ± 5.30

Table 3: Test set performance on the FashionMNIST dataset.

Model Log-likelihood ELBO* KL* Reconstruction*
VAE -1733.86 ± 0.84 -1736.49 ± 0.73 11.62 ± 1.01 1724.87 ± 1.70

IWAE-k0
-1705.28 ± 0.66 -1710.11 ± 0.72 33.04 ± 0.36 1677.08 ± 0.70

SVI-k0
-1710.15 ± 2.51 -1718.39 ± 2.13 26.05 ± 1.90 1692.34 ± 4.03

BSVI-k-SIR -1699.44 ± 0.45 -1707.00 ± 0.49 41.48 ± 0.12 1665.52 ± 0.41

6.3 Stochastic Gradient as Regularizer

Figure 4: Performance comparison between BSVI and
BSVI-SIR on training (top) and validation (bottom)
sets for Omniglot. Although BSVI achieves lower
training loss, BSVI-SIR avoids overfitting and per-
forms better on the test set.

Interestingly, Table 4 shows that BSVI-SIR can out-

perform BSVI on the test set despite having a higher
variance gradient. We show in Figure 4 that this is the
result of BSVI overfitting the training set. The results
demonstrate the regularizing e↵ect of having noisier
gradients and thus provide informative empirical ev-
idence to the on-going discussion about the relation-
ship between generalization and the gradient signal-
to-noise ratio in variational autoencoders [28, 16].

6.4 Latent Space Visualization

Figure 5: Visualization of images sampled from de-
coder trained using SVI (top) and BSVI-SIR (bottom).
Each row represents a di↵erent z sampled from the
prior. Conditioned on z, 20 images x(1:20) ⇠ p✓(x | z)
are then sampled from the PixelCNN decoder.
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Table 1 shows that the model learned by BSVI-SIR
training has better Reconstruction* than SVI, indi-
cating greater usage of the latent variable for encod-
ing information about the input image. We provide
a visualization of the di↵erence in latent space usage
in Figure 5. Here, we sample multiple images condi-
tioned on a fixed z. Since BSVI encoded more infor-
mation into z than SVI on the Omniglot dataset, we
see that the conditional distribution p✓(x | z) of the
model learned by BSVI has lower entropy (i.e. less
diverse) than SVI.

6.5 Analysis of Training Metrics

(a) Di↵erence between lower bounds achieved by qk (SVI-

k) and q0 (SVI-0) during training.

(b) Di↵erence between the BSVI-k bound and SVI-k bound

during training.

(c) Plot of the bu↵er weight average (defined as E⇡(i)i/k)
during training when the bu↵er weight is optimized.

Figure 6: Plots of metrics during BSVI-k training,
where k = 9. Since BSVI-k uses SVI-k as a sub-
routine, it is easy to check how the BSVI-k bound
compares against the SVI-k and the amortized ELBO
(SVI-0) bounds on a random mini-batch at every iter-
ation during training.

Recall that the BSVI-k training procedure runs SVI-k
as a subroutine, and therefore generates the trajec-
tory of importance weights (w0, . . . , wk). Note that
lnw0 and lnwk are unbiased estimates of the ELBO
achieved by the proposal distribution q0 (SVI-0 bound)

and qk (SVI-k bound) respectively. It is thus possible
to monitor the health of the BSVI training procedure
by checking whether the bounds adhere to the ordering

BSVI-k � SVI-k � SVI-0 (25)

in expectation. Figures 6a and 6b show that this is
indeed the case. Since Omniglot was trained with KL-
annealing [18], we see in Figure 6a that SVI plays a
negligible role once the warm-up phase (first 5000 it-
erations) is over. In contrast, SVI plays an increas-
ingly large role when training on the more complex
SVHN and FashionMNIST datasets, demonstrating
that the amortization gap is a significantly bigger is-
sue in the generative modeling of SVHN and Fashion-
MNIST. Figure 6b further shows that BSVI-k consis-
tently achieves a better bound than SVI-k. When the
bu↵er weight is also optimized, we see in Figure 6c
that ⇡ learns to upweight the later proposal distribu-
tions in (q0, . . . , qk), as measured by the bu↵er weight
average E⇡(i)i/k. For SVHN, the significant improve-
ment of SVI-k over SVI-0 results in ⇡ being biased sig-
nificantly toward the later proposal distributions. In-
terestingly, although Figure 6c suggests that the opti-
mal bu↵er weight ⇡⇤ can di↵er significantly from naive
uniform-weighting, we see from Tables 1 and 2 that
bu↵er weight optimization has a negligible e↵ect on
the overall model performance.

7 Conclusion

In this paper, we proposed Bu↵ered Stochastic Varia-
tional Inference (BSVI), a novel way to leverage the in-
termediate importance weights generated by stochas-
tic variational inference. We showed that BSVI is ef-
fective at alleviating inference suboptimality and that
training variational autoencoders with BSVI consis-
tently outperforms its SVI counterpart, making BSVI
an attractive and simple drop-in replacement for mod-
els that employ SVI. One promising line of future work
is to extend the BSVI training procedure with end-to-
end learning approaches in [18, 19]. Additionally, we
showed that BSVI procedure is a valid lower bound
and belongs to general class of importance-weighted
(Generalized IWAE) bounds where the importance
weights are statistically dependent. Thus, it would
be of interest to study the implications of this bound
for certain MCMC procedures such as Annealed Im-
portance Sampling [29] and others.
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