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Abstract

Submodular functions have applications
throughout machine learning, but in many
settings, we do not have direct access to the
underlying function f . We focus on stochastic
functions that are given as an expectation of
functions over a distribution P . In practice,
we often have only a limited set of samples fi
from P . The standard approach indirectly
optimizes f by maximizing the sum of fi.
However, this ignores generalization to the
true (unknown) distribution. In this paper,
we achieve better performance on the actual
underlying function f by directly optimizing
a combination of bias and variance. Algorith-
mically, we accomplish this by showing how
to carry out distributionally robust optimiza-
tion (DRO) for submodular functions, pro-
viding efficient algorithms backed by theoret-
ical guarantees which leverage several novel
contributions to the general theory of DRO.
We also show compelling empirical evidence
that DRO improves generalization to the un-
known stochastic submodular function.

1 Introduction

Submodular functions have natural applications in
many facets of machine learning and related areas,
e.g. dictionary learning (Das & Kempe, 2011), in-
fluence maximization (Kempe et al., 2003; Domin-
gos & Richardson, 2001), data summarization (Lin
& Bilmes, 2011), probabilistic modeling (Djolonga &
Krause, 2014) and diversity (Kulesza & Taskar, 2012).
In these settings, we have a set function f(S) over sub-
sets S of some ground set of items V , and seek S∗ so
that f(S∗) is as large or small as possible. While op-
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timization of set functions is hard in general, submod-
ularity enables exact minimization and approximate
maximization in polynomial time.

In many settings, the submodular function we wish
to optimize has additional structure, which may
present both challenges and an opportunity to do bet-
ter. In particular, the stochastic case has recently
gained attention, where we wish to optimize fP (S) :=
Ef∼P [f(S)] for some distribution P . The most naive
approach is to draw many samples from P and opti-
mize their average; this is guaranteed to work when the
number of samples is very large. Much recent work has
focused on more computationally efficient gradient-
based algorithms for stochastic submodular optimiza-
tion (Karimi et al., 2017; Mokhtari et al., 2018; Hassani
et al., 2017). All of this work assumes that we have
access to a sampling oracle for P that, on demand,
generates as many iid samples as are required. But in
many realistic settings, this assumption fails: we may
only have access to historical data and not a simulator
for the ground truth distribution. Or, computational
limitations may prevent drawing many samples if P is
expensive to simulate.

Here, we address this gap and consider the maximiza-
tion of a stochastic submodular function given access
to a fixed set of samples f1, . . . , fn that form an empir-
ical distribution P̂n. This setup introduces elements of
statistical learning into the optimization. Specifically,
we need to ensure that the solution we choose gen-
eralizes well to the unknown distribution P . A nat-
ural approach is to optimize the empirical estimate
f̂n = 1

n

∑n
i=1 fi, analogous to empirical risk minimiza-

tion. The average f̂n is an unbiased estimator of fP ,
and when n is very large, generalization is guaran-
teed by standard concentration bounds. We ask: is it
possible to do better, particularly in the realistic case
where n is small (at least relative to the variance of P )?
In this regime, a biased estimator could achieve much
lower variance and thereby improve optimization.

Optimizing this bias-variance tradeoff is at the heart
of statistical learning. Concretely, instead of opti-
mizing the finite sum, we will optimize the variance-
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regularized objective fP̂n(S) − C1

√
VarP̂n(f(S))/n.

When the variance is high, this term dominates a stan-
dard high-probability lower bound on fP (S). Unfortu-
nately, direct optimization of this bound is in general
intractable: even if all fi are submodular, their vari-
ance need not be (Staib & Jegelka, 2017).

In the continuous setting, it is known that variance
regularization is equivalent to solving a distribution-
ally robust problem, where an adversary perturbs the
empirical sample within a small ball (Gotoh et al.,
2015; Lam, 2016; Namkoong & Duchi, 2017). The re-
sulting maximin problem is particularly nice in the
concave case, since the pointwise minimum of concave
functions is still concave and hence global optimization
remains tractable. However, this property does not
hold for submodular functions, prompting much re-
cent work on robust submodular optimization (Krause
et al., 2011; Chen et al., 2017; Staib & Jegelka, 2017;
Anari et al., 2017; Wilder, 2018; Orlin et al., 2016;
Bogunovic et al., 2017; Mirzasoleiman et al., 2017;
Kazemi et al., 2018).

In this work, 1. we show that, perhaps surpris-
ingly, variance-regularized submodular maximization
is both tractable and scalable. 2. We give a
theoretically-backed algorithm for distributionally ro-
bust submodular optimization which substantially im-
proves over a naive application of previous approaches
for robust submodular problems. Along the way,
3. we develop improved technical results for gen-
eral (non-submodular) distributionally robust opti-
mization problems, including both improved algorith-
mic tools and more refined structural characterizations
of the problem. For instance, we give a more com-
plete characterization of the relationship between dis-
tributional robustness and variance regularization. 4.
We verify empirically that in many real-world settings,
variance regularization enables better generalization
from fixed samples of a stochastic submodular func-
tion, particularly when the variance is high.

Related Work. We build on and significantly ex-
tend a recent line of research in statistical learning
and optimization that develops a relationship between
distributional robustness and variance-based regular-
ization (Maurer & Pontil, 2009; Gotoh et al., 2015;
Lam, 2016; Duchi et al., 2016; Namkoong & Duchi,
2017). While previous work has uniformly focused on
the continuous (and typically convex) case, here we ad-
dress combinatorial problems with submodular struc-
ture, requiring further technical developments. As a
byproduct, we better characterize the behavior of the
DRO problem under low sample variance (which was
left open in previous work), show conditions under
which the DRO problem becomes smooth, and pro-

vide improved algorithmic tools which apply to general
DRO problems.

Another related area is robust submodular optimiza-
tion (Krause et al., 2011; Chen et al., 2017; Staib &
Jegelka, 2017; Anari et al., 2017; Wilder, 2018; Orlin
et al., 2016; Bogunovic et al., 2017). Much of this
recent surge in interest is inspired by applications to
robust influence maximization (Chen et al., 2016; He
& Kempe, 2016; Lowalekar et al., 2016). Existing work
aims to maximize the minimum of a set of submodu-
lar functions, but does not address the distribution-
ally robust optimization problem where an adversary
perturbs the empirical distribution. We develop scal-
able algorithms, accompanied by approximation guar-
antees, for this case. Our algorithms improve both
theoretically and empirically over naive application of
previous robust submodular optimization algorithms
to DRO. Further, our work is motivated by the con-
nection between distributional robustness and gener-
alization in learning, which has not previously been
studied for submodular functions. Stan et al. (2017)
study generalization in a related combinatorial prob-
lem, but they do not explicitly balance bias and vari-
ance, and the goal is different: they seek a smaller
ground set which still contains a good subset for each
user in the population.

A complementary line of work concerns stochastic sub-
modular optimization (Mokhtari et al., 2018; Hassani
et al., 2017; Karimi et al., 2017) that, as opposed to
our setting, requires a sampling oracle for the under-
lying function. We draw from stochastic optimization
tools, but assume only a fixed dataset is available.

Our motivation also relates to optimization from sam-
ples, where we have access to values of a fixed un-
known function on inputs sampled from a distribution.
Balkanski et al. (2017, 2016) prove hardness results for
general submodular maximization from samples, with
positive results for functions with bounded curvature.
We address a different model where the underlying
function itself is stochastic and we observe realizations
of it. Hence, it is possible to well-approximate the op-
timization problem from polynomially many samples.
The challenge is to construct algorithms that make
more effective use of data.

2 Stochastic Submodular Functions
and Distributional Robustness

A set function f : 2V → R is submodular if it satisfies
diminishing marginal gains: for all S ⊆ T and all i ∈
V \T , it holds that f(S∪{i})−f(S) ≥ f(T∪{i})−f(T ).
It is monotone if S ⊆ T implies f(S) ≤ f(T ). Let P
be a distribution over monotone submodular functions
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f . We assume that each function is normalized and
bounded, i.e., f(∅) = 0 and f(S) ∈ [0, B] almost surely
for all subsets S. We seek a subset S that maximizes

fP (S) := Ef∼P [f(S)] (1)

subject to some constraints, e.g., |S| ≤ k. We call
the function fP (S) a stochastic submodular function.
Such functions arise in many domains; we begin with
two specific motivating examples.

2.1 Stochastic Submodular Functions

Influence Maximization. Consider a graph G =
(V,E) on which influence propagates. We seek to
choose an initial seed set S ⊆ V of influenced nodes to
maximize the expected number subsequently reached.
Each edge can be either active, meaning that it can
propagate influence, or inactive. A node is influenced if
it is reachable from S via active edges. Common diffu-
sion models specify a distribution of active edges, e.g.,
the Independent Cascade Model (ICM), the Linear
Threshold Model (LTM), and generalizations thereof.
Regardless of the specific model, each can be de-
scribed by the distribution of “live-edge graphs” in-
duced by the active edges E (Kempe et al., 2003).
Hence, the expected number of influenced nodes f(S)
can be written as an expectation over live-edge graphs:
fIM(S) = EE [f(S; E)]. The distribution over live-edge
graphs induces a distribution P over functions f as in
equation (1).

Facility Location. Fix a ground set V of possibile
facility locations j. Suppose we have a (possibly infi-
nite as in (Stan et al., 2017)) number of demand points
i drawn from a distribution D. For example, each i
may correspond to a user sampled from a population
D. The goal of facility location is to choose a sub-
set S ⊂ V that covers the demand points as well as
possible. Each demand point i is equipped with a vec-
tor ri ∈ R|V | describing how well point i is covered
by each facility j. We wish to maximize: ffacloc(S) =
Ei∼D

[
maxj∈S r

i
j

]
. Each f(S) = maxj∈S rj is submod-

ular, and D induces a distribution P over the functions
f(S) as in equation (1).

2.2 Optimization and Empirical
Approximation

Two main issues arise with stochastic submodular
functions. First, simple techniques such as the greedy
algorithm become impractical since we must accu-
rately compute marginal gains. Recent alternative al-
gorithms (Karimi et al., 2017; Mokhtari et al., 2018;
Hassani et al., 2017) make use of additional, specific
information about the function, such as efficient gra-
dient oracles for the multilinear extension. A second

issue has so far been neglected: the degree of access we
have to the underlying function (and its gradients). In
many settings, we only have access to a limited, fixed
number of samples, either because these samples are
given as observed data or because sampling the true
model is computationally prohibitive.

Formally, instead of the full distribution P , we have
access to an empirical distribution P̂n composed of n
samples f1, . . . , fn ∼ P . One approach is to optimize

fP̂n = Ef∼P̂n [f(S)] =
1

n

∑n

i=1
fi(S), (2)

and hope that fP̂n adequately approximates fP . This
is guaranteed when n is sufficiently large. E.g., in influ-
ence maximization, for fP̂n(S) to approximate fP (S)
within error ε with probability 1 − δ, Kempe et al.

(2015) show that O
(
|V |2
ε2 log 1

δ

)
samples suffice. To

our knowledge, this is the tightest general bound avail-
able. Still, it easily amounts to thousands of samples
even for small graphs; in many applications we would
not have so much data.

The problem of maximizing fP (S) from samples
greatly resembles statistical learning. Namely, if the
fi are drawn iid from P , then we can write

fP (S) ≥ fP̂n(S)− C1

√
VarP (f(S))

n
− C2

n
(3)

for each S with high probability, where C1 and C2 are
constants that depend on the problem. For instance,
if we want this bound to hold with probability 1 − δ,
then applying the Bernstein bound (see Appendix A)

yields C1 ≤
√

2 log 1
δ and C2 ≤ 2B

3 log 1
δ (recall B is an

upper bound on f(S)). Given that we have only finite
samples, it would then be logical to directly optimize

fP̂n(S)− C1

√
VarP̂n (f(S))/n, (4)

where VarP̂n refers to the empirical variance over the
sample. This would allow us to directly optimize the
tradeoff between bias and variance. However, even
when each f is submodular, the variance-regularized
objective need not be (Staib & Jegelka, 2017).

2.3 Variance regularization via
distributionally robust optimization

While the optimization problem (4) is not directly
solvable via submodular optimization, we will see next
that distributionally robust optimization (DRO) can
help provide a tractable reformulation. In DRO, we
seek to optimize our function in the face of an adver-
sary who perturbs the empirical distribution within an
uncertainty set P:

max
S

min
P̃∈P

Ef∼P̃ [f(S)]. (5)
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We focus on the case when the adversary set P is a χ2

ball around the empirical distribution:

Definition 2.1. The χ2 divergence between distribu-
tions P and Q is Dφ(P ||Q) = 1

2

∫
(dP/dQ− 1)

2
dQ.

The χ2 uncertainty set around an empirical distribu-
tion P̂n is Pρ,n = {P̃ : Dφ(P̃ ||P̂n) ≤ ρ/n}. When

P̂n corresponds to an empirical sample Z1, . . . , Zn, we
encode P̃ by a vector p in the simplex ∆n and equiv-
alently write Pρ,n =

{
p ∈ ∆n : 1

2‖np− 1‖22 ≤ ρ
}
.

In particular, maximizing the variance-regularized ob-
jective (4) is equivalent to solving a distributionally ro-
bust problem when the sample variance is high enough:
The intuition behind this equivalence is that the χ2

ball is a quadratic ball in the simplex, and the vari-
ance penalty is also quadratic. More formally:

Theorem 2.1 (modified from (Namkoong & Duchi,
2017)). Fix ρ ≥ 0, and let Z ∈ [0, B] be a random
variable (i.e. Z = f(S)). Write s2n = VarP̂n(Z) and
let OPT = inf P̃∈Pρ,n EP̃ [Z]. Then

max

{
0,

√
2ρ

n
s2n −

2Bρ

n

}
≤ EP̂n [Z]−OPT ≤

√
2ρ

n
s2n.

Moreover, if s2n ≥ 2ρ(maxi zi − zn)2/n, then OPT =
EP̂n [Z]−

√
2ρs2n/n, i.e., DRO is exactly equivalent to

variance regularization.

In several settings, Namkoong & Duchi (2017) show
this holds with high probability, by requiring high pop-
ulation variance VarP (Z) and applying concentration
results. While Theorem 2.1 is a direct port from the
convex setting, the corresponding high probability re-
sult for submodular functions is more involved:

Lemma 2.1. Fix parameters δ, ρ, |V |
and k ≥ 1. Define the constant M =
max{

√
32ρ/7,

√
36 (log (1/δ) + |V | log(25k))}. For

all S with |S| ≤ k and VarP(fP (S)) ≥ B√
n
M , DRO

is exactly equivalent to variance regularization with
combined probability at least 1− δ.

This result is obtained as a byproduct of a more gen-
eral argument that applies to all points in a fractional
relaxation of the submodular problem (see Appendix
B) and shows equivalence of the two problems when
the variance is sufficiently high. However, it is not
clear what the DRO problem yields when the sample
variance is too small. We give a more precise char-
acterization of how the DRO problem behaves under
arbitrary variance:

Lemma 2.2. Let ρ < n(n − 1)/2. Suppose all
z1, . . . , zn are distinct, with z1 < · · · < zn. Define
α(m,n, ρ) = 2ρm/n2 + m/n − 1, and let I = {m ∈
{1, . . . , n} : α(m,n, ρ) > 0}. Then, inf P̃∈Pρ,n EP̃ [Z] is

equal to

min
m∈I

{
zm −min

{√
α(m,n, ρ)s2m,

s2m
zm − zm

}}
≤ EP̂n [Z]−min

{√
2ρs2n
n

,
s2n

zn − zn

}
,

where P̂m denotes the uniform distribution on
z1, . . . , zm, zm = EP̂m [Z], and s2m = VarP̂m(Z).

The inequality holds since n is always in I and
α(n, n, ρ) = 2ρ/n. As in Theorem 2.1, when the vari-
ance s2n ≥ 2ρ/n · (zn− zn)2, we recover the exact vari-
ance expansion. We show Lemma 2.2 by developing
an exact algorithm for optimization over the χ2 ball
(see Appendix C).

Finally, we apply the equivalence of DRO and vari-
ance regularization to obtain a surrogate optimization
problem. Fix the set S, and let Z be the random vari-
able induced by f(S) with f ∼ P . Theorem 2.1 in
this setting suggests that instead of directly optimiz-
ing equation (4), we can instead solve

max
S

min
P̃∈Pρ,n

Ef∼P̃ [f(S)] = max
S

min
p∈Pρ,n

n∑
i=1

pifi(S).

(6)

3 Algorithmic Approach

Even though each fi(·) is submodular, it is not ob-
vious how to solve Problem (6): robust submodular
maximization is in general inapproximable, i.e. no
polynomial-time algorithm can guarantee a positive
fraction of the optimal value unless P = NP (Krause
et al., 2008). Recent work has sought tractable re-
laxations (Staib & Jegelka, 2017; Krause et al., 2008;
Wilder, 2018; Anari et al., 2017; Orlin et al., 2016; Bo-
gunovic et al., 2017), but these either do not apply or
yield much weaker results in our setting. We consider
a relaxation of robust submodular maximization that
returns a near-optimal distribution over subsets S (as
in (Chen et al., 2017; Wilder, 2018)). That is, we solve
the robust problem maxDmini∈[m] ES∼D[fi(S)] where
D is a distribution over sets S. It is not immediately
clear how to represent a distribution over exponen-
tially many subsets. We will later see that optimizing
a product distribution (i.e. via the multilinear exten-
sion) is enough. Our strategy, based on “continuous
greedy” ideas, extends the set function f to a con-
tinuous function F , then maximizes a robust problem
involving F via continuous optimization.

Multilinear extension. One canonical extension of
a submodular function f to the continuous domain



Matthew Staib*, Bryan Wilder*, Stefanie Jegelka

is the multilinear extension. The multilinear exten-
sion F : [0, 1]|V | → R of f is defined as F (x) =∑
S⊆V f(S)

∏
i∈S xi

∏
j 6∈S(1 − xj). That is, F (x) is

the expected value of f(S) when each item i in the
ground set is included in S independently with proba-
bility xi. A crucial property of F (that we later return
to) is that it is a continuous DR-submodular function:

Definition 3.1. A continuous function F : X → R
is DR-submodular if, for all x ≤ y ∈ X , i ∈ [n], and
γ > 0 so that x + γei and y + γei are still in X , we
have F (x+ γei)− F (x) ≥ F (y + γei)− F (y).

Essentially, a DR-submodular function is concave
along increasing directions. Efficient algorithms are
available for maximizing DR-submodular functions
over convex sets (Calinescu et al., 2011; Feldman et al.,
2011; Bian et al., 2017). Specifically, we take X to be
the convex hull of the indicator vectors of feasible sets.
The robust continuous optimization problem we wish
to solve is then

max
x∈X

min
p∈Pρ,n

∑n

i=1
piFi(x). (7)

It remains to address two questions: (1) how to effi-
ciently solve Problem (7) – existing algorithms only
apply to the max, not the maximin version – and (2)
how to then obtain a solution for Problem (6).

We address the former question in the next section.
For the latter question, given a maximizing distribu-
tion D over subsets, existing techniques (e.g., swap
rounding) can be used to round D to a determinis-
tic subset S with no loss in solution quality (Chekuri
et al., 2010). But our variable x in Problem (7) can
only express a limited class of distributions with inde-
pendent marginals P(i ∈ S), not all distributions D.
Fortunately, this discrepancy does not cost us much:

Lemma 3.1. Suppose x is an α-optimal solution to
Problem (7). Then x induces a distribution D over
subsets so that D is (1−1/e)α-optimal for Problem (6).

Our proof involves the correlation gap (Agrawal et al.,
2010). It is also possible to eliminate the (1 − 1/e)
gap altogether by using multiple copies of the decision
variables to optimize over a more expressive class of
distributions (Wilder, 2018), but empirically we find
this unnecessary.

Next, we address algorithms for solving Problem (7).
Since a convex combination of submodular functions is
still submodular, we can see each p as inducing a sub-
modular function, so Problem (7) asks to maximize the
minimum of a set of continuous submodular functions.

Frank-Wolfe algorithm and complications. In
the remainder of this section, we show how Prob-
lem (7) can be solved with optimal approximation ra-

Algorithm 1 Momentum Frank-Wolfe (MFW) for
DRO

1: Input: functions Fi, time T , batch size c, param-
eter ρ, stepsizes ρt > 0

2: x(0) ← 0
3: for t = 1, . . . , T do
4: p(t) ← argmin

p∈Pρ,n

∑n
i=1 piFi(x

(t−1))

5: Draw i1, . . . , ic from {1, . . . , n}
6: ∇̃(t) ← 1

c

∑c
`=1 p

(t)
i`
∇Fi`(x(t−1))

7: d(t) ← (1− ρt)d(t−1) + ρt∇̃(t)

8: v(t) ← argmaxv∈X 〈d(t), v〉
9: x(t) ← x(t−1) + v(t)/T

10: end for
11: return x(T )

tio (as in Lemma 3.1) by Algorithm 1, which is based
on Frank-Wolfe (FW) (Frank & Wolfe, 1956; Jaggi,
2013). FW algorithms iteratively move toward the fea-
sible point that maximizes the inner product with the
gradient. Instead of a projection step, each iteration
uses a single linear optimization over the feasible set
X ; this is very cheap for the feasible sets we are inter-
ested in (e.g., a simple greedy algorithm for matroid
polytopes). Indeed, FW is currently the best approach
for maximizing DR-submodular functions in many set-
tings. While there are FW algorithms designed for
convex-concave games (Gidel et al., 2017), it is not
possible to directly apply these to the submodular set-
ting while maintaining approximation guarantees.

Instead, observe that, since the pointwise minimum
of concave functions is concave, the robust objec-
tive G(x) = minp∈Pρ,n

∑n
i=1 piFi(x) is also DR-

submodular. However, a naive application of FW
to G(x) faces several difficulties. First, to evaluate
and differentiate G(x), we require an exact oracle for
the inner minimization problem over p, whereas past
work (Namkoong & Duchi, 2017) gave only an approx-
imate oracle. In comparison, our submodular setting
is more delicate, so an inexact oracle does not suffice:
the issue is that two solutions to the inner problem
can have arbitrarily close solution value while also pro-
viding arbitrarily different gradients. Hence, gradient
steps with respect to an approximate minimizer may
not actually improve the solution value. To resolve this
issue, we provide an exact O(n log n) time subroutine
in Appendix C. Compared to previous techniques, our
algorithm rests on a more precise characterization of
solutions to linear optimization over the χ2 ball, which
is often helpful in deriving structural results for gen-
eral DRO problems (e.g., Lemmas 2.2 and 3.2).

Second, especially when the amount of data is large,
we would like to use stochastic gradient estimates in-
stead of requiring a full gradient computation at ev-
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ery iteration. This introduces additional noise and
standard Frank-Wolfe algorithms will require O(1/ε2)
gradient samples per iteration to cope. Accordingly,
we build on a recent algorithm of Mokhtari et al.
(2018) that accelerates Frank-Wolfe by re-using old
gradient information; we refer to their algorithm as
Momentum Frank-Wolfe (MFW). For smooth DR-
submodular functions, MFW achieves a (1 − 1/e)-
optimal solution with additive error ε in O(1/ε3)
time. Building off MFW is advantageous versus other
stochastic first-order algorithms for DR-submodular
maximization, e.g. Hassani et al. (2017) achieve sub-
optimal approximation ratio, and Karimi et al. (2017)
focus only on a subclass of problems. Accordingly,
we focus on MFW, and generalize MFW to the DRO
problem by solving the next challenge.

Third, Frank-Wolfe (and MFW) require a smooth ob-
jective with Lipschitz-continuous gradients; this does
not hold in general for pointwise minima. Wilder
(2018) gets around this issue in the context of other
robust submodular optimization problems by replac-
ing G(x) with the stochastically smoothed function
Gµ(x) = Ez∼µ[G(x+z)] as in (Duchi et al., 2012; Lan,
2013), where µ is a uniform distribution over a ball
of size u. Combined with our exact inner minimiza-
tion oracle, this yields a (1− 1/e) optimal solution to
Problem (7) with ε error using O(1/ε4) stochastic gra-
dient samples. However, this approach results in poor
empirical performance for the DRO problem (as we
demonstrate later). We obtain faster convergence, in
both theory and practice, through a better character-
ization of the DRO problem: we show that in many
cases, we actually obtain a smooth problem,

Smoothness of the robust problem. While gen-
eral theoretical bounds rely on smoothing G(x), in
practice, MFW without any smoothing performs the
best. This behavior suggests that for real-world prob-
lems, the robust objective G(x) may actually be
smooth with Lipschitz-continuous gradient. Via our
exact characterization of the worst-case distribution,
we can make this intuition rigorous:

Lemma 3.2. Define h(z) = minp∈Pρ,n〈z, p〉, for z ∈
[0, B]n, and let s2n be the sample variance of z. On
the subset of z’s satisfying the high sample variance
condition s2n ≥ (2ρB2)/n, h(z) is smooth and has L-

Lipschitz gradient with constant L ≤ 2
√
2ρ

n3/2 + 2
Bn .

Combined with the smoothness of each Fi, this yields
smoothness of G.

Corollary 3.1. Suppose each Fi is LF -Lipschitz. Un-
der the high sample variance condition, ∇G is LG-

Lipschitz for LG = LF +
2b
√

2ρ|V |
n +

2b
√
|V |

B
√
n

.

For submodular functions, LF ≤ b
√
k, where b is the

largest value of a single item (Mokhtari et al., 2018).
However, Corollary 3.1 is a general property of DRO
(not specific to the submodular case), with broader
implications. For instance, in the convex case, we im-
mediately obtain a O(1/ε) convergence rate for the
gradient descent algorithm proposed by Namkoong
& Duchi (2017) (previously, the best possible bound
would be O(1/ε2) via nonsmooth techniques). Our
result follows from more general properties that guar-
antee smoothness with fewer assumptions (see Appen-
dices C.2, C.3). For example:

Fact 3.1. For ρ ≤ 1
2 , the robust objective h(z) =

min
p∈Pρ,n

〈z, p〉 is smooth when {zi} are not all equal.

Combined with reasonable assumptions on the dis-
tribution of Fi, this means G(x) is nearly always
smooth. Native smoothness of the robust problem
yields a significant runtime improvement over the gen-
eral minimum-of-submodular case. In particular, in-
stead of O(1/ε4), we achieve the O(1/ε3) rate of the
simpler, non-robust submodular maximization:

Theorem 3.1. When the high sample variance con-
dition holds, MFW with no smoothing satisfies

E[G(x(T ))] ≥ (1− 1/e)OPT − 2
√
kQ

T 1/3
− Lk

T

where Q = max{92/3‖∇G(x0)− d0‖, 16σ2 + 3L2
Gk}; σ

is the variance of the stochastic gradients.

This convergence rate for DRO is almost the same
as for a single submodular function (the non-robust
case) (Mokhtari et al., 2018); only the Lipschitz con-
stant is different, but this gap vanishes as n grows.
It is perhaps surprising that we can obtain this rate
for the robust problem, especially using an algorithm
like MFW which was originally intended for the nonro-
bust setting. Indeed, previous work on robust submod-
ular optimization has relied on different techniques;
MFW is not an obvious candidate for DRO. How-
ever, as surveyed below, our better characterization of
the DRO problem and subsequent ability to leverage
MFW yields theoretical and empirical benefits.

Comparison with previous algorithms Two re-
cently proposed algorithms for robust submodular
maximization could also be used in DRO, but have
drawbacks compared to MFW. Here, we compare their
theoretical performance with MFW (we also show how
MFW improves empirically in Section 4).

First, Chen et al. (2017) view robust optimization as
a zero-sum game and apply no-regret learning to com-
pute an approximate equilibrium. Their algorithm ap-
plies online gradient descent from the perspective of
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the adversary, adjusting the distributional parameters
p. At each iteration, an α-approximate oracle for sub-
modular optimization (e.g., the greedy algorithm or a
Frank-Wolfe algorithm) is used to compute a best re-
sponse for the maximizing player. In order to achieve
an α-approximation up to additive loss ε, the no-regret
algorithm requires O(1/ε2) iterations. However, each
iteration requires a full invocation of an algorithm for
submodular maximization. Our MFW algorithm re-
quires runtime close to a single submodular maximiza-
tion call. This results in substantially faster runtime
to achieve the same solution solution quality, as we
demonstrate experimentally.

Second, Wilder (2018) proposes the EQUATOR algo-
rithm, which also applies a Frank-Wolfe approach to
the multilinear extension but uses randomized smooth-
ing. Our analysis shows smoothing is unnecessary for
the DRO problem, allowing our algorithm to converge
using O(1/ε3) stochastic gradients, while EQUATOR
requires O(1/ε4). This theoretical gap is reflected in
empirical performance: EQUATOR converges much
more slowly, and to lower solution quality, than MFW.

4 Experiments

To probe the strength and practicality of our meth-
ods, we empirically study the two motivating problems
from Section 2: influence maximization and facility lo-
cation. We first report performance of distributions
x∗ that optimize the multilinear extension or its DRO
variant (7), and later demonstrate high performance is
maintained even after rounding. DRO improves test
performance in all cases. All error bars are 95% confi-
dence intervals.

4.1 Facility Location

Similar to (Mokhtari et al., 2018) we consider a facility
location problem motivated by recommender systems.
We use a music dataset from last.fm (las) with roughly
360000 users, 160000 bands, and over 17 million total
records. For each user i, record rij indicates how many
times they listened to a song by band j. We seek a
subset of bands so that the average user likes at least
one of the bands, as measured by the playcounts. More
specifically, we fix a collection of bands, and observe
a sample of users; we seek a subset of bands that per-
forms well on the entire population of users. Here, we
randomly sample a subset of 1000 “train” users from
the dataset, solve the DRO and ERM problems for
k bands, and evaluate performance on the remaining
≈ 360000 “test” users from the dataset.

Optimization. We first compare MFW to previously
proposed robust optimization algorithms, applied to

the DRO problem with k = 3. Figure 1a compares
1. MFW, 2. Frank-Wolfe (FW) with no momentum
and 3. EQUATOR (Wilder, 2018). Naive FW handles
noisy gradients poorly (especially with small batches),
while EQUATOR underperforms since its randomized
smoothing is not necessary for our natively smooth
problem. We also compared to the online gradient de-
scent (OGD) algorithm of Chen et al. (2017). OGD
achieved slightly worse objective value than MFW
with an order of magnitude greater runtime: OGD re-
quired 53.23 minutes on average, compared to 4.81 for
MFW. EQUATOR and FW had equivalent runtime to
MFW since all used the same batch size and number
of iterations. MFW dominates the alternatives in both
runtime and solution quality.

Generalization. Next, we evaluate the effect of DRO
on test set performance across varying set sizes k. Re-
sults are averaged over 64 trials for ρ = 10 (corre-
sponding to probability of failure δ = e−10 of the high
probability bound). In Figure 1b we plot the mean
percent improvement in test objective of DRO versus
optimizing the average. DRO achieves clear gains, es-
pecially when the set size k is small. In Figure 1c
we show the variance of test performance achieved by
each method. DRO achieves lower variance, mean-
ing that overall DRO achieves better test performance,
and with better consistency.

4.2 Influence maximization

As described in Section 2, we study an influence max-
imization problem where we observe samples of live-
edge graphs E1, . . . , En ∼ P . Our setting is challenging
for learning: the number of samples is small and P has
high variance. Specifically, P is a mixture of two differ-
ent independent cascade models (ICM). In the ICM,
each edge e is (independently) live with probability
pe. In our mixture, each edge has pe = 0.025 with
probability q and pe = 0.1 with probability 1− q, mix-
ing between settings of low and high influence spread.
This models the realistic case where some messages are
shared more widely than others. The mixture is not an
ICM, as observing the state of one edge gives informa-
tion about the propagation probability for other edges.
Handling such cases is an advantage of our DRO ap-
proach over ICM-specific robust influence maximiza-
tion methods (Chen et al., 2016).

We use the political blogs dataset, a network with 1490
nodes representing links between blogs related to poli-
tics (Adamic & Glance, 2005). Figure 2 compares the
performance of DRO and ERM. Figure 2a shows that
DRO generalizes better, achieving higher performance
on the test set. Each algorithm was given n = 20
training samples, k = 10 seeds, and we set q (the
frequency of low influence) to be 0.1. Test influence
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Figure 1: Algorithm comparison and generalization performance on last.fm dataset.
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Figure 2: Influence maximization on political blogs dataset.

was evaluated via a held-out set of 3000 samples from
P . Figure 2b shows that DRO’s improved general-
ization stems from greatly improved performance on
the rare class in the mixture (low propagation proba-
bilities). For these instances, DRO obtains a greater
than 40% improvement over ERM in held-out per-
formance for q = 0.1. As q increases (i.e., the rare
class becomes less rare), ERM’s performance on these
instances converges towards DRO. A similar pattern
is reflected in Figure 2c, which shows the variance in
each algorithm’s influence spread on the test set as a
function of the number of training samples. DRO’s
variance is lower by 25-40%. As expected, DRO’s ad-
vantage is greatest for small n, the most challenging
setting for learning.

4.3 Rounding

Above, we report results achieved by the optimal dis-
tribution x∗ on the multilinear extension F (x∗) of the
relevant stochastic submodular function. But to use
our methods in practice, we eventually need to round
x∗ to a single subset S. One might worry that vari-
abilty from the rounding procedure could erase DRO’s
gains. This is not the case: DRO still performs better
empirically, even after rounding.

On the earlier Facility Location problem for k = 4, we
compared the optimal distributions x∗ERM and x∗DRO

for ERM and DRO. For each, we rounded 500 times
to deterministic sets via swap rounding (Chekuri et al.,
2010) and compared the resulting distributions of test
objective values Ef∼P [f(S)] (on a large subsample

from the test set P ). Over 64 trials (the stochasticity
of MFW leads to different x∗ERM, x

∗
DRO), we observed

that: 1. DRO always achieved better mean perfor-
mance, on average by 9.3%; 2. DRO achieved lower
variance in 88% of trials; 3. for every quantile, DRO
was better on at least 73% of trials. We conclude DRO
leads to better performance on the test set, both on
F (x∗) and on the original problem after rounding.

5 Conclusion

We address optimization of stochastic submodular
functions fP (S) = Ef∼P [f(S)] in the setting where
only a finite number of samples f1, . . . , fn ∼ P is avail-
able. Instead of simply maximizing the empirical mean
1
n

∑
i fi, we directly optimize a variance-regularized

version which 1. gives a high probability lower bound
for fP (S) (generalization) and 2. allows us to trade
off bias and variance in estimating fP . We accomplish
this via an equivalent reformulation as a distribution-
ally robust submodular optimization problem. Along
the way, we show new results for the relation between
distributionally robust optimization (DRO) and vari-
ance regularization. We further give conditions for the
uniqueness of the DRO solution: these are broadly use-
ful for guaranteeing that DRO problems are smooth.
Even though robust submodular maximization is hard
in general, we are able to give efficient approximation
algorithms for our reformulation. Empirically, our ap-
proach yields notable improvements for influence max-
imization and facility location problems.
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A Tail Bound

We use the following one-sided Bernstein’s inequality:

Lemma A.1 (Wainwright (2017), Chapter 2). Let X1...Xn be iid realizations of a random variable X which
satisfies X ≤ B almost surely. We have

Pr

[
1

n

n∑
i=1

Xi − E[X] ≥ ε

]
≤ exp

(
− nε2

Var (X) + Bε
3

)

We apply Lemma A.1 with Xi = fi(S). If we set the probability on the right hand side to be at most δ, then a

simple calculation shows that it suffices to have n = Var(X)
ε2 log 1

δ + Bε
3 log 1

δ . Hence, for a given value of n, we
can guarantee error of at most

ε =

√
2 log

(
1

δ

)
Var(X)

n
+

2

3
log

(
1

δ

)
B

n
.

Therefore, we can take C1 =
√

2 log 1
δ and C2 = 2B

3 log 1
δ . B is often bounded in terms of the problem size for

natural submodular maximization problems. For instance, for influence maximization problems we always have
B ≤ |V | (though tighter bounds may be available for specific graphs and distributions).

B Equivalence of Variance Regularization and Distributionally Robust
Optimization

Lemma B.1. Suppose that f({i}) ≤ b for all f in the support of P and all i ∈ V . Then, for each such f , its
multilinear extension F is b-Lipschitz in the `1 norm.

Proof. Consider any two points x, x′ ∈ [0, 1]|V | and any function f ∈ support(P ). Without loss of generality, let
f(x′) ≥ f(x). Let [x]+ = max(x, 0) elementwise, ∨ denote elementwise minimum, and 1i be the vector with a 1
in coordinate i and zeros elsewhere. We bound F (x′) as

F (x′) ≤ F (x′ ∨ x)

= F (x+ [x′ − x]+)

≤ F (x) + F ([x′ − x]+)

≤ F (x) +

|V |∑
i=1

F ([x′ − x]+i 1i)

= F (x) +

|V |∑
i=1

f({i})[x′ − x]+i

≤ F (x) + b

|V |∑
i=1

[x′ − x]+i

≤ F (x) + b‖x′ − x‖1.

Here, the first inequality follows from monotonicity, while the third and fourth lines use the fact that submodular
functions are subadditive, i.e., F (x + y) ≤ F (x) + F (y). Now rearranging gives |F (x′) − F (x)| ≤ b‖x − x′‖1 as
desired.

We will use the following concentration result for the sample variance of a random variable:
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Lemma B.2 (Namkoong & Duchi (2017), Section A.1). Let Z be a random variable bounded in [0, B] and
z1...zn be iid realizations of Z with n ≥ 64. Let σ denote Var(Z) and sn denote the sample variance. It holds

that s2n ≥ 1
4σ

2 with probability at least 1− exp
(
− nσ2

36B2

)
.

This allows us to get a uniform result for the variance expansion of the distributionally robust objective:

Corollary B.1. Let X be the polytope {x ∈ [0, 1]|V | :
∑|V |
i=1 xi = k} corresponding to the k-uniform matroid.

With probability at least 1 − δ, for all x ∈ X such that VarD(F (x)) ≥
max{
√

32
7 ρB

2,
√

36B2(log( 1
δ )+|V | log(1+24k))}

√
n

,

the variance expansion holds with equality.

Proof. Let X≥τ = {x : VarP(F (x)) ≥ τ} be the set of points x with variance at least τ . Let Y be a minimal `1-
cover of X≥τ with fineness ε

b , for a parameter ε to be fixed later. Since the `1-diameter of X is 2k (by definition),

we know that |Y| ≤
(
1 + 2kb

ε

)|V |
. Let sn(x) be the sample variance of F1(x), . . . , Fn(x) and σ(x) = VarP(F (x)).

Via Lemma B.2 and union bound, we have

Pr

[
s2n(x) ≥ 1

4
σ2(x) ∀x ∈ Y

]
≥ 1− |Y| exp

(
− nτ2

36B2

)
.

Conditioning on this event, we now extend the sample variance lower bound to the entirety of X≥τ . Consider
any x ∈ X≥τ and let x′ ∈ arg minx′∈Y‖x− x′‖1. By definition of Y, ‖x− x‖1 ≤ ε

b , and so by Lemma B.1, which
guarantees Lipschitzness of each Fi, we have |Fi(x)−Fi(x′)| ≤ ε for all i = 1, . . . , n. Accordingly, it can be shown
that |sn(x)−sn(x′)| ≤ ε and |σ(x)−σ(x′)| ≤ ε. Therefore, we have sn(x) ≥ sn(x′)−ε ≥ 1

2σ(x′)−ε ≥ 1
2σ(x)− 3

2ε.
Now by setting ε = τ

24 we have that (conditioned on the above event), sn(x) ≥ 7
16τ . Now suppose that we would

like the exact variance expansion to hold on all elements of X≥τ with probability at least 1 − δ. To have

sufficiently high population variance, we must take τ ≥
√

16
7 ·

2ρB2

n . In order for the concentration bound

to hold, a simple calculation shows that τ ≥
√

36B2(log( 1
δ )+|V | log(1+24k))

n suffices. Taking the max, we need

τ ≥
max{
√

32
7 ρB

2,
√

36B2(log( 1
δ )+|V | log(1+24k))}

√
n

.

C Exact Linear Oracle

In this section we show how to construct a O(n log n) time exact oracle for linear optimization in the χ2 ball:

minp 〈z, p〉
s.t. 1

2‖np− 1‖22 ≤ ρ
1T p = 1
pi ≥ 0, i = 1, . . . , n.

(8)

Without loss of generality, assume z1 ≤ z2 ≤ · · · ≤ zn. This can be done by sorting in O(n log n) time.

First, we wish to discard the case where the χ2 constraint is not tight. Let k be the largest integer so that
z1 = zk, i.e. z1 = · · · = zk < zk+1. If it is feasible, it is optimal to place all the mass of p on the first k
coordinates. In particular, the assignment pi = 1/k for i = 1, . . . , k accomplishes this while minimizing the χ2

cost. The cost can be computed as

1

2

k∑
i=1

(n
k
− 1
)2

+
1

2

n∑
i=k+1

(0− 1)2 =
1

2

[
k ·
(
n− k
k

)2

+ (n− k)

]
(9)

=
1

2
· (n− k) ·

[
n− k
k

+ 1

]
(10)

= n(n− k)/(2k). (11)
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Hence if ρ ≥ n(n− k)/(2k) we can terminate immediately. Otherwise, we know the χ2 constraint must be tight.

Before proceeding, we define several auxiliary variables which can all be computed from the problem data in
O(n) time:

zj =

j∑
i=1

zi, j = 1, . . . , n (12)

bj =

j∑
i=1

z2i , j = 1, . . . , n (13)

s2j =
bj
j
− (zj)

2, j = 1, . . . , n. (14)

Note that zj and s2j are the mean and variance of {z1, . . . , zj}.

We begin by writing down the Lagrangian of problem (8):

L(p, λ, θ, η) = 〈z, p〉+ λ

(
1

2
‖np− 1‖22 − ρ

)
+ θ

(
n∑
i=1

pi − 1

)
− 〈η, p〉, (15)

with dual variables λ ∈ R+, θ ∈ R, and η ∈ Rn+. By KKT conditions we have

0 = ∇pL(p, λ, θ, η) = z + λn(np− 1) + θ1− η. (16)

Equivalently,

λn2pi = λn− zi − θ + ηi. (17)

By complementary slackness, either ηi > 0 in which case pi = 0, or we have ηi = 0 and

λn2pi = λn− zi − θ. (18)

Since z1 ≤ · · · ≤ zn, it follows that pi decreases as i increases until eventually pi = 0. Hence there exists m so
that for i = 1, . . . ,m we have pi > 0 and thereafter pi = 0. Solving for pi, we have that: for i = 1, . . . ,m,

pi =

(
1− (zi + θ)

λn

)
· 1

n
for i = 1, . . . ,m, (19)

and pi = 0 otherwise. (20)

Note we can divide by λ as we have already determined the corresponding constraint is tight (hence λ > 0).

We will search for the best choice of m, and then determine p based on m. For fixed λ,m we now solve for the
appropriate value of θ. Namely, we must have 1T p = 1:

1 =

n∑
i=1

pi =

m∑
i=1

pi =

m∑
i=1

(
1− (zi + θ)

λn

)
· 1

n
. (21)

Simplifying,

n =

m∑
i=1

(
1− (zi + θ)

λn

)
= m− 1

λn

m∑
i=1

(zi + θ) (22)

= m− mzm
λn

− θm

λn
. (23)

Multiplying through by λn and solving for θ, we have

λn2 = λmn−mzm − θm =⇒ θ =
(

1− n

m

)
λn− zm. (24)
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Now that we have solved for θ as a function of λ and m, the variable p is purely a function of m and λ. For fixed
λ and m, it is not hard to compute the objective value attained by the value of p induced by equation (19):

〈z, p〉 =
1

n

m∑
i=1

(
1− (zi + θ)

λn

)
zi (25)

=
1

n

m∑
i=1

zi −
1

n

m∑
i=1

(zi + θ)zi
λn

(26)

=
m

n
zm −

1

λn2

m∑
i=1

(z2i + θzi) (27)

=
m

n
zm −

1

λn2
(bm + θmzm) (28)

=
m

n
zm −

1

λn2

(
bm +

((
1− n

m

)
λn− zm

)
mzm

)
(29)

=
m

n
zm −

bm
λn2
− (1− n/m)λnmzm

λn2
+
m(zm)2

λn2
(30)

=
m

n
zm −

bm
λn2

+
(n−m)zm

n
+
m(zm)2

λn2
(31)

= zm −
bm
λn2

+
m(zm)2

λn2
(32)

= zm −
1

λn2
· (bm −m(zm)2) (33)

= zm −
ms2m
λn2

. (34)

Since ms2m ≥ 0, for fixed m we seek the minimum value of λ such that the induced p is still feasible. Since the
1T p = 1 constraint is guaranteed by the choice of θ, we need only check the χ2 and nonnegativity constraints.
In section C.1 we derive that the optimal feasible λ is given by

λ =
1

n2
·max

{√
m2s2m

α(m,n, ρ)
, m(zm − zm)

}
. (35)

Hence, in constant time for each candidate m with α(m,n, ρ), we select λ per equation (35) and evaluate the
objective. Finally, we return p corresponding to the optimal choice m. This algorithm is given more formally in
Algorithm 2.

C.1 Constraints on λ for fixed m

First we check the χ2 constraint; since λ > 0, we have:

ρ ≥ 1

2
‖np− 1‖22 (36)

=
1

2

n∑
i=1

(npi − 1)2 (37)

=
1

2

m∑
i=1

((
1− (zi + θ)

λn

)
− 1

)2

+
1

2

n∑
i=m+1

(−1)2 (38)

=
1

2
· 1

λ2n2

m∑
i=1

(zi + θ)2 +
1

2
(n−m). (39)
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Algorithm 2 Linear optimization in χ2 ball

Input: pre-sorted vector z with z1 ≤ · · · ≤ zn
Output: optimal vector p
Compute maximum k s.t. z1 = zk
if n(n− k)/(2k) ≤ ρ then

return p with pi = 1/k · 1{i ≤ k}
end if
{now we must search for optimal m}
zj ← 1

j

∑j
i=1 zi, j = 1, . . . , n

bj ←
∑j
i=1 z

2
i , j = 1, . . . , n

s2j ← bj/j − (zj)
2, j = 1, . . . , n

mmin ← min{m ∈ {1, . . . , n} : α(m,n, ρ) > 0}
λm = 1

n2 ·max
{√

m2s2m
α(m,n,ρ) , (zm − zm)m

}
, m = mmin, . . . , n

vm ← zm −ms2m/(λmn2), m = mmin, . . . , n
mopt ← argminm{vm : m = mmin, . . . , n}
θ ←

(
1− n

mopt

)
λmopt

n− zmopt

return p = 1
n max

(
0, 1− zmopt+θ

λmoptn

)

We expand the sum of squares:

m∑
i=1

(zi + θ)2 =

m∑
i=1

(z2i + 2ziθ + θ2) (40)

=

m∑
i=1

z2i + 2θ

m∑
i=1

zi +

m∑
i=1

θ2 (41)

= bm + 2θmzm + θ2m. (42)

Plugging in our expression for θ, this equals:

bm + 2θmzm + θ2m = bm + 2mzmθ +
[(

1− n

m

)
λn− zm

]2
·m (43)

= bm + 2mzmθ +

[(
1− n

m

)2
λ2n2 − 2

(
1− n

m

)
λn · zm + (zm)2

]
·m (44)

= bm + 2mzmθ +
(

1− n

m

)2
λ2n2m− 2

(
1− n

m

)
λnmzm +m(zm)2 (45)

= bm + 2mzm

[(
1− n

m

)
λn− zm

]
+
(

1− n

m

)2
λ2n2m− 2

(
1− n

m

)
λnmzm +m(zm)2

(46)

= bm + 2
(

1− n

m

)
λnmzm − 2m(zm)2 +

(
1− n

m

)2
λ2n2m− 2

(
1− n

m

)
λnmzm +m(zm)2

(47)

= bm − 2m(zm)2 +
(

1− n

m

)2
λ2n2m+m(zm)2 (48)

= bm −m(zm)2 +
(

1− n

m

)2
λ2n2m (49)

= ms2m +
(

1− n

m

)2
λ2n2m. (50)
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Finally, plugging this back into equation (39) yields:

ρ ≥ 1

2
· 1

λ2n2
·
[
ms2m +

(
1− n

m

)2
λ2n2m

]
+

1

2
· (n−m) (51)

⇔ 2ρ ≥ ms2m
λ2n2

+
(

1− n

m

)2
m+ (n−m) (52)

⇔ 2ρ ≥ ms2m
λ2n2

+

(
1− 2n

m
+
n2

m2

)
m+ (n−m) (53)

⇔ 2ρ ≥ ms2m
λ2n2

+m− 2n+
n2

m
+ (n−m) (54)

⇔ 2ρ ≥ ms2m
λ2n2

− n+
n2

m
(55)

⇔ 2ρm

n2
≥ m2s2m

λ2n4
− m

n
+ 1 (56)

⇔ m2s2m
λ2n4

≤ α(m,n, ρ), (57)

where α(m,n, ρ) is defined as in the main text. If α(m,n, ρ) ≤ 0, there is no feasible choice of λ for this m.
Otherwise, we can divide and solve for λ:

λ ≥

√
m2s2m

n4α(m,n, ρ)
=

1

n

√
ms2m

2ρ+ n− n2/m
, (58)

or equivalently

λn2 ≥

√
m2s2m

α(m,n, ρ)
. (59)

Now we check the other remaining constraint on λ, that the constraint pi ≥ 0 for i = 1, . . . ,m must hold. In
particular, we must have pm ≥ 0:

0 ≤ pm =
1

n
·
(

1− zm + θ

λn

)
(60)

⇔ zm + θ ≤ λn (61)

⇔ zm +
(

1− n

m

)
λn− zm ≤ λn (62)

⇔ zm − zm ≤
λn2

m
(63)

⇔ m(zm − zm) ≤ λn2. (64)

Hence λ must satisfy

λn2 ≥ max

{√
m2s2m

α(m,n, ρ)
, m(zm − zm)

}
. (65)

Since we seek minimal λ, we select λ which makes this constraint tight.

C.2 Unique solutions

Here we provide results for understanding when there is a unique solution to Problem (8). Recall that our
solution to Problem (8) first checks whether the optimal solutions have tight χ2 constraint. By choosing ρ small
enough, this can be guaranteed uniformly:

Lemma C.1. Suppose {zi} attain at least ` distinct values. If ρ ≤ (` − 1)/2 then all optimal solutions to
Problem (8) have tight χ2 constraint.

Proof. Assume z1 ≤ · · · ≤ zn. If {zi} attain at least ` distinct values, then the maximum number k so that
z1 = · · · = zk can be bounded by n − ` + 1. Recall from earlier in section C that the constraint is tight
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if ρ ≤ n(n − k)/(2k), and note that this bound is monotone decreasing in k. Hence, we can guarantee the
constraint is tight as long as

ρ ≤ n(n− (n− `+ 1))

2(n− `+ 1)
=

n(`− 1)

2(n− `+ 1)
. (66)

Since n− `+ 1 ≤ n, the previous inequality is implied by

ρ ≤ (n− `+ 1)(`− 1)

2(n− `+ 1)
=
`− 1

2
. (67)

Now, assuming the χ2 constraint is tight, we can characterize the set of optimal solutions:

Lemma C.2. Suppose the optimal solutions for Problem (8) all have tight χ2 constraint. Then there is a unique
optimal solution p∗ with minimum cardinality among all optimal solutions.

Proof. This is a consequence of our characterization of the optimal dual variable λ as a function of the sparsity
m. For each choice of m, we solved earlier for the unique dual variable λm which determines a unique solution
p. Hence, even if there are multiple values of m that are feasible and that yield optimal objective value, there is
still a unique minimal mopt, which in turn yields a unique optimal solution.

C.3 Lipschitz gradient

Lemma C.3. Define h(z) = minp∈Pρ,n〈z, p〉. Then on the subset of z’s satisfying the high sample variance

condition s2n ≥ (2ρB2)/n2, h(z) has Lipschitz gradient with constant L ≤ 2
√
2ρ

n3/2 + 2
Bn1/2 .

Proof. In this regime, there is a unique worst-case p ∈ Pρ,n, and it is the gradient of h(z). In the high sample
variance regime, we have m = n, i.e. each pi > 0 and:

pi =

(
1− zi + θ

λn

)
· 1

n
for all i = 1, . . . , n. (68)

In particular, θ = (1− n/n)λn− zn = −zn, and λ = 1
n2

√
n2s2n/(2ρ/n). Simplifying, we have

pi =

(
1− zi − zn

λn

)
· 1

n
(69)

=

(
1− zi − zn

1
n

√
n2s2n/(2ρ/n)

)
· 1

n
(70)

=

(
1− zi − zn√

ns2n/(2ρ)

)
· 1

n
. (71)

We will bound the Lipschitz constant of p as a function of z by computing the Hessian which has entries Hij = ∂pi
∂zj

and bounding its largest eigenvalue. For the element Hij we have two cases. If i = j, then

Hii = −
√

2ρ

n3/2
· ∂
∂zi

(
zi − zn√

s2n

)
(72)

= −
√

2ρ

n3/2
·

(√
s2n(1− 1

n )− (zi − zn) · 2n · (zi − zn)

s2n

)
. (73)

If i 6= j, then

Hij = −
√

2ρ

n3/2
· ∂
∂zj

(
zi − zn√

s2n

)
(74)

= −
√

2ρ

n3/2
·

(
− 1
n ·
√
s2n − (zi − zn) · 2n · (zj − zn)

s2n

)
. (75)
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Define H̃ so that
√
2ρ

n3/2s2n
H̃ = H, i.e.

H̃ij =

{√
s2n( 1

n − 1) + (zi − zn) · 2n · (zi − zn) i = j
1
n ·
√
s2n + (zi − zn) · 2n · (zj − zn) i 6= j.

(76)

It is easy to see that H̃ is given by

H̃ = −diag(
√
s2n1) +

√
s2n
n

11T +
2

n
(z − zn1)(z − zn1)T . (77)

By the triangle inequality, the operator norm of H̃ can thus be bounded by

‖H̃‖ ≤ ‖diag(
√
s2n1)‖+

√
s2n
n
‖11T ‖+

2

n
‖(z − zn1)(z − zn1)T ‖ (78)

=
√
s2n +

√
s2n
n
‖1‖22 +

2

n
‖z − zn1‖22 (79)

= 2
√
s2n +

2

n

n∑
i=1

(zi − zn)2 (80)

= 2
√
s2n + 2s2n. (81)

It follows that the Lipschitz constant of the gradient of h(z) can be bounded by

‖H‖ =

√
2ρ

n3/2s2n
‖H̃‖ (82)

≤
√

2ρ

n3/2s2n

(
2
√
s2n + 2s2n

)
(83)

=
2
√

2ρ

n3/2
·

(
1 +

1√
s2n

)
. (84)

Since we are in the high variance regime s2n ≥ (2ρB2)/n, it follows that 1/
√
s2n ≤

√
n/(B

√
2ρ) and therefore

‖H‖ ≤ 2
√

2ρ

n3/2
·
(

1 +

√
n

B
√

2ρ

)
(85)

=
2
√

2ρ

n3/2
+

2

Bn
. (86)

D Projection onto the χ2 ball

Let w ∈ Rn be pre-sorted (taking time O(n log n)), so that w1 ≥ · · · ≥ wn. We wish to solve the problem

minp
1
2‖p− w‖

2
2

s.t. 1
2‖np− 1‖22 ≤ ρ
1T p = 1
pi ≥ 0, i = 1, . . . , n.

(87)

As in section C, we start by precomputing the auxiliary variables:

wj =

j∑
i=1

wi, j = 1, . . . , n (88)

bj =

j∑
i=1

w2
i , j = 1, . . . , n (89)

s2j =
bj
j
− (wj)

2, j = 1, . . . , n. (90)
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We remark that these can be updated efficiently when sparse updates are made to w; coupled with a binary
search over optimal m, this can yield O(log n) update time as in (Duchi et al., 2008; Namkoong & Duchi, 2016).

We form the Lagrangian:

L(p, λ, θ, η) =
1

2
‖p− w‖22 + λ

(
1

2
‖np− 1‖22 − ρ

)
+ θ

(
n∑
i=1

pi − 1

)
− 〈η, p〉 (91)

with dual variables λ ∈ R+, θ ∈ R, and η ∈ Rn+. We will also use the reparameterization β = 1/(1 + λn2)
throughout. By KKT conditions we have

0 = ∇pL(p, λ, θ, η) = p− w + λn (np− 1) + θ1− η (92)

= (1 + λn2)p− w − λn+ θ1− η. (93)

For any given i, if ηi > 0 we have pi = 0 by complementary slackness. Otherwise, if ηi = 0 we have

0 = (1 + λn2)pi − wi − λn+ θ (94)

⇔ (1 + λn2)pi = wi + λn− θ. (95)

The variable p is implicitly given here by θ, λ and m. Next we seek to solve for θ as a function of λ and m.

Note that since wi decreases as i increases, therefore pi also decreases. It follows that for some m ∈ {1, . . . , n},
we have pi > 0 for i ≤ m and pi = 0 otherwise. Since pi must sum to one, we have

1 =

n∑
i=1

pi =

m∑
i=1

pi (96)

⇔ (1 + λn2) =

m∑
i=1

(wi + λn− θ) (97)

= mwm + λmn−mθ (98)

from which it follows that θ = wm + λn− (1 + λn2)/m. Plugging this into the expression for pi and rearranging
yields

pi = (wi − wm)β + 1/m. (99)

It will become apparent later that the objective improves as β increases, and so for fixed m we seek the largest
β which yields a feasible p. First, we check the χ2 constraint:

ρ ≥ 1

2

n∑
i=1

(npi − 1)2 (100)

=
1

2

m∑
i=1

(npi − 1)2 +
1

2

n∑
i=m+1

12 (101)

=
1

2

m∑
i=1

(nβ(wi − wm) + n/m− 1)2 +
1

2
(n−m). (102)

Expanding and multiplying by 2, we have

2ρ ≥
m∑
i=1

[
n2β2(wi − wm)2 + 2nβ(n/m− 1)(wi − wm) + (n/m− 1)2

]
+ n−m. (103)

The middle term in the sum cancels because
∑m
i=1 wi = mwm. We are left with

2ρ ≥ n2β2
m∑
i=1

(wi − wm)2 +m(n/m− 1)2 + n−m (104)

= n2β2ms2m +m(n/m− 1)2 + n−m. (105)
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Solving for β2, we are left with

β2 ≤ 2ρ+ n− n2/m
n2ms2m

=
2ρm/n2 +m/n− 1

m2s2m
=
α(m,n, ρ)

m2s2m
, (106)

where α(m,n, ρ) is defined as in the main text. This gives the maximum value of β for which the χ2 constraint
is met. We also need to check the pi ≥ 0 constraint. This is more straightforward: we must have

0 ≤ pi = (wi − wm)β + 1/m (107)

for all i = 1, . . . ,m. Since wi is decreasing, it suffices to check i = m. If wm − wm ≥ 0 there is no problem, as
β > 0. Otherwise, we divide and are left with the condition

β ≤ 1

m(wm − wm)
. (108)

Our exact algorithm is now straightforward: for each m, compute the largest feasible β (if there is a feasible β),
compute the corresponding objective value, and then return p corresponding to the best m.

If α(m,n, ρ) < 0 for a given m, we can immediately discard that choice of m as infeasible. Otherwise we compute
β and check the objective value vm for that m:

vm =
1

2
‖p− w‖22 (109)

=
1

2

m∑
i=1

((wi − wm)β + 1/m− wi)2 +
1

2

n∑
i=m+1

w2
i (110)

=
1

2

m∑
i=1

[
(wi − wm)2β2 + 2β(wi − wm)(1/m− wi) + (1/m− wi)2

]
+

1

2

n∑
i=m+1

w2
i . (111)

As before, the
∑m
i=1 2β(wi − wm)/m term cancels and we are left with

vm =
1

2

m∑
i=1

[
(wi − wm)2β2 − 2βwi(wi − wm) + (1/m− wi)2

]
+

1

2

n∑
i=m+1

w2
i (112)

=
1

2
· β2ms2m − β

m∑
i=1

w2
i + β

m∑
i=1

wiwm +
1

2

m∑
i=1

(1/m− wi)2 +
1

2

n∑
i=m+1

w2
i (113)

=
1

2
· β2ms2m − βbm + βm(wm)2 +

1

2

m∑
i=1

(1/m2 − 2wi/m+ w2
i ) +

1

2
(bn − bm) (114)

=
1

2
· β2ms2m − βbm + βm(wm)2 +

1

2
· 1

m
− wm +

1

2
bm +

1

2
(bn − bm) (115)

=
1

2
· β2ms2m − βbm + βm(wm)2 +

1

2m
− wm +

1

2
bn (116)

=
1

2
· α(m,n, ρ)

m
− β(bm −m(wm)2) +

1

2m
− wm +

1

2
bn (117)

=

(
ρ

n2
+

1

2n
− 1

2m

)
− βms2m +

1

2m
− wm +

1

2
bn (118)

=

(
ρ

n2
+

1

2n

)
− βms2m − wm +

1

2
bn. (119)

Discarding the terms which do not depend on m, we seek m which minimizes ṽm := −βms2m − wm. Finally, we
remark that it is now quite apparent that for fixed m we wish to maximize β.

E Convergence analysis for MFW

Here we establish the convergence rate of the MFW algorithm specifically for the DRO problem. For complete-
ness, we reproduce the MFW convergence guarantee here:
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Lemma E.1 (adapted from Mokhtari et al. (2018)). Let F be an up-concave function with L-Lipschitz gradient.
MFW run for T iterations returns a point x(T ) satisfying

E[F (x(T ))] ≥
(

1− 1

e

)
OPT − 2DQ1/2

T 1/3
− LD2

2T

where D = maxx∈X ‖x‖, Q = max{92/3‖∇F (x0)− d0‖2, 16σ2 + 3L2D2}, and σ is the variance of the stochastic
gradients.

The main work is to establish Lipschitz continuity of ∇G, the gradient of the DRO objective. In fact, Mokhtari
et al. (2018) get a better bound by controlling changes in ∇G specifically along the updates used by MFW. We
bound this same quantity as follows:

Lemma E.2. When the high sample variance condition is satisfied, for any two points x(t) and x(t+1) produced

by MFW, ∇G satisfies ‖∇G(x(t))−∇G(x(t+1))‖ ≤
(
b
√
n|V |L+ b

√
k
)
‖x(t) − x(t+1)‖.

Proof. We write ~F (x) = (F1(x), ..., Fn(x)), and are interested in the composition G = h(~F (x)) (recall that h is

defined in Lemma 3.2 as the value of the inner minimization problem for a given set of values). Let D~F (x) be

the matrix derivative of ~F . That is,
[
D~F (x)

]
ij

= ∂
∂xj

Fi(x). The chain rule yields

∇h(~F (x)) =
(
∇h(~F (x))

)
D~F (x).

Consider two points x, y ∈ X . To apply the argument of Mokhtari et al. (2018), we would like a bound on the
change in ∇h along the MFW update from x in the direction of y. Let x′ = x+ 1

T y be the updated point. We
have

‖∇h(~F (x))−∇h(~F (x′))‖ =
∥∥∥(∇h(~F (x))

)
D~F (x)−

(
∇h(~F (x′))

)
D~F (x′)

∥∥∥
=
∥∥∥(∇h(~F (x))

)
D~F (x)−

(
∇h(~F (x))

)
D~F (x′)

+
(
∇h(~F (x))

)
D~F (x′)−

(
∇h(~F (x′))

)
D~F (x′)

∥∥∥
≤
∥∥∥(∇h(~F (x))

)
D~F (x)−

(
∇h(~F (x))

)
D~F (x′)

∥∥∥
+
∥∥∥(∇h(~F (x))

)
D~F (x′)−

(
∇h(~F (x′))

)
D~F (x′)

∥∥∥
=
∥∥∥(∇h(~F (x))

)(
D~F (x)−D~F (x′)

)∥∥∥
+
∥∥∥(∇h(~F (x))−∇h(~F (x′))

)
D~F (x′)

∥∥∥ .
Starting out with the first term, we note that ∇h(~F (x)) is a probability vector (the optimal p for the DRO
problem). Hence, we have∥∥∥(∇h(~F (x))

)(
D~F (x)−D~F (x′)

)∥∥∥ ≤ max
i=1...n

∥∥∥D~F (x)i −D~F (x′)i

∥∥∥
= max
i=1...n

‖∇Fi(x)−∇Fi(x′)‖

And from Lemma 3 of Mokhtari et al. (2018), we have that when x′ is an updated point of the MFW algorithm
starting at x,

‖∇Fi(x)−∇Fi(x′)‖ ≤ b
√
k‖x− x′‖ ∀i = 1...n.
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We now turn to the second term. Note that the jth component of this vector is just the dot product(
∇h(~F (x))−∇h(~F (x′))

)
·D~F (x)·,j

where D~F (x)·,j collects the partial derivative of each Fi with respect to xj . Via the Cauchy-Schwartz inequality,
we have (

∇h(~F (x))−∇h(~F (x′))
)
·D~F (x)·,j ≤

∥∥∥(∇h(~F (x))−∇h(~F (x′))
)∥∥∥∥∥∥D~F (x)·,j

∥∥∥
Lemma 3.2 shows that

∥∥∥(∇h(~F (x))−∇h(~F (x′))
)∥∥∥ ≤ L‖x− x′‖. In order to bound the second norm, we claim

that for all i, j, ∇jFi(x) ≤ b. To show this, note that we can use the definition of the multilinear extension to
write

∇jFi(x) = ES∼x[fi(S|{j} ∈ S)]− ES∼x[fi(S|{j} 6∈ S)]

where S ∼ x denotes that S is drawn from the product distribution with marginals x. Now it is simple to show
using submodularity of fi that

ES∼x[fi(S|{j} ∈ S)]− ES∼x[fi(S|{j} 6∈ S)] ≤ fi({j})− fi(∅) ≤ b.

Accordingly, we have that ∥∥∥D~F (x)·,j

∥∥∥ ≤ b‖1‖ = b
√
n.

This gives us a component-wise bound on each element of the vector
(
∇h(~F (x))−∇h(~F (x′))

)
D~F (x′). Putting

it all together, we have ∥∥∥(∇h(~F (x))−∇h(~F (x′))
)
D~F (x′)

∥∥∥ ≤ b√nL‖x− x′‖ · ‖1‖
≤ b
√
n|V | · L · ‖x− x′‖,

and summing the two terms yields the final Lipschitz constant b
√
n|V |L+ b

√
k.

Now the final convergence rate for MFW stated in Theorem 3.1 follows from plugging the above Lipschitz bound
into Lemma E.1. We also remark that the above argument trivially goes through for an arbitrary (not necessarily
submodular) functions:

Lemma E.3. Suppose that each function f : R|V | → R in the support of P has bounded norm gradients
maxi=1...|V | |∇if | ≤ b which are also Lf -Lipschitz. Then under the high variance condition, the corresponding

DRO objective G has LG-Lipschitz gradient with LG ≤ Lf + b
√
n|V |L, where L is as defined in Lemma 3.2.

F Rounding to a distribution over subsets

The output of MFW is a fractional vector x ∈ X . Lemma 3.1 guarantees this x can be converted into a
distribution D over feasible subsets, and moreover, that the attainable solution value from doing so is within a
(1−1/e) factor of the optimal value for the DRO problem. This result is essentially standard (see Wilder (2018)
for a more detailed presentation), but we sketch the process here for completeness. There are two steps. First,
we argue that x can be converted into a distribution over subsets with equivalent value for the DRO problem.
Second, we argue that the optimal x (product distribution) has value within (1− 1/e) of the optimal arbitrary
distribution over subsets.

For the first step, our starting point is the swap rounding algorithm of Chekuri et al. (2010). Swap rounding
is a randomized rounding algorithm which takes a vector x and returns a feasible subset S. For any single
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submodular function and its multilinear extension F , swap rounding guarantees E[f(S)] ≥ F (x). In our setting,
such guarantees cannot be obtained for a single S since we want to simultaneously match the value of x with
respect to n submodular functions f1, . . . , fn. However, swap rounding obeys a desirable concentration property
which allows us to form a distribution D by running swap rounding independently several times and returning
the empirical distribution over the outputs. Provided that we take sufficiently many samples, D is guaranteed
to satisfy ES∼D[fi(S)] ≥ Fi(x) − ε for all i = 1...n with high probability. Specifically, Wilder (2018) show that

it suffices to draw O
(

log nδ
ε3

)
sets via swap rounding in order for this guarantee to hold with probability 1− δ.

The other piece of Lemma 3.1 relates the optimal value for Problem (7) (optimizing over product distributions)
to the optimal value for the complete DRO problem (optimizing over arbitrary distributions). These values are
easily shown to be within (1− 1/e) of each other by applying the correlation gap result of Agrawal et al. (2010).
For any product distribution p over subsets, let marg(p) denote the set of (potentially correlated) distributions
with the same marginals as p. This result shows that for any submodular function f ,

max
p: a product distribution

max
q∈marg(p)

ES∼q[f(S)]

ES∼p[f(S)]
≤ e

e− 1

and now Lemma 3.1 follows by applying the correlation gap bound to each of the fi.
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