
Appendix: Learning Predictive Models That Transport

A ID Algorithm

Algorithm 1: ID(X, Y; G)

input : ADMG G, disjoint variable sets X,Y ⊂ O
output: Expression for PX(Y) if identified or FAIL if not identified.
1. D = anGO\X(Y);

2. Let c-components of GD be Di, i = 1, . . . , k;

3. PX(Y) =
∑

D\Y
∏k

i=1 Identify(Di,O, P (O));

Function Identify(A, V, Q = Q[V]):
if A == V then

return Q[V];

/* CGV
(B) is c-component of B in GV */

if ∃B ∈ V \A such that CGV
(B) ∩ ch(B) = ∅ then

Compute Q[V \ {B}] from Q (Corollary 1);
return Identify(A, V \ {B}, Q[V \ {B}]);

else
return FAIL(A,GV);

We now restate the identification algorithm (ID) (Tian and Pearl, 2002; Shpitser and Pearl, 2006) using the
modified presentation in Jaber et al. (2018). When the interventional distribution of a set of variables is identified,
the ID algorithm returns it in terms of observational distributions (i.e., if the intervention is represented using do
notation, then the resulting expression contains no do terms). The ID algorithm is complete (Shpitser and Pearl,
2006), so if the interventional distribution is not identifiable, then the algorithm throws a failure exception. Note
that GV denotes an induced subgraph which consists of only the variables in V and the edges between variables
in V.

We will need the following definition:

Definition 1 (C-component). In an ADMG, a c-component consists of a maximal subset of observed variables
that are connected to each other through bidirected paths. A vertex with no incoming bidirected edges forms its
own c-component.

We also restate the following Corollary (Jaber et al., 2018, Corollary 1):

Corollary 1. Given an ADMG G with observed variables O and unobserved variables U, V ∈ X ⊆ O, and
PO\X, if V is not in the same c-component with a child of V in GX, then Q[X \ {V }] is identifiable and is given
by

Q[X \ {V }] =
PO\X

Q[C(V )]

∑
V

Q[C(V )],

where C(V ) denotes the c-component of V in the induced subgraph GX.

This Corollary allows us to derive the post-intervention distribution after intervening on V from the post-
intervention distribution after intervening on the variables in O \ X. The modified presentation of Tian’s ID
algorithm given in Jaber et al. (2018) is in Algorithm 1, which computes the identifying functional for the post-
interventional distribution of the variables in Y after intervening on the variables in X by recursively finding the
identifying functional for each c-component in the post-intervention subgraph.
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B Proofs

B.1 Soundness and Completeness of the Surgery Estimator

Theorem 1 (Soundness). When Algorithm 2 returns an estimator, the estimator is stable.

Proof. Any query Algorithm 2 makes to ID considers intervening on a superset of the mutable variables X ⊇M.
By Proposition 1 this means the target interventional distribution is stable. From the soundness of the ID
algorithm (Shpitser and Pearl, 2006, Theorem 5), the resulting functional of observational distributions that
Algorithm 2 returns will be stable.

Theorem 2 (Completeness). If Algorithm 2 fails, then there exists no stable surgery estimator for predicting T .

Proof. Algorithm 2 is an exhaustive search over interventional distributions that intervene on supersets of M
and are functions of T . Thus, by completeness of the ID algorithm (Shpitser and Pearl, 2006, Corollary 2), if
there is a stable surgery estimator, the procedure will find one.

B.2 Relationship with Graph Pruning

Lemma 1. Let T be the target variable of prediction and G be a selection ADMG with selection variables S. If
there exists a stable conditioning set Z such that P (T |Z) = P (T |Z,S), then Algorithm 2 will not fail on input
(G, ch(S), T ).

Proof. Assume that P (T |Z) is a stable graph pruning estimator. Partition Z into X and W such that X ⊆M
and W ∩M = ∅, and let V = M \X. It must be that T ⊥⊥ X|W in GX. If this were not the case then there
would be some X ∈ X such that there was a backdoor path from T to X, and since X ∈ ch(S) there is a path
T · · · → X ← S. Because X is conditioned upon, this collider path would be active and S 6⊥⊥ T , implying
P (T |Z) is not stable (a contradiction). Now by Rule 2 of do-calculus, P (T |X,W) = PX(T |W). Next consider
the remaining mutable variables V. Letting V(W) denote the subset of V nodes that are not ancestors of any
W nodes in GX, we will show that T ⊥⊥ V|X,W in G

X,V(W)
. First consider V ∈ V(W). For the independence

to not hold, there must be an active forward path from V to T . But because V ∈ ch(S), the path S → V → . . . T
is active since V is not conditioned upon, implying contradictorily that P (T |Z) was not stable. Now consider
V ∈ V \V(W). For the independence to not hold, either there is an active forward path from V to T , or there
is an active backdoor path from V to T . We previously showed the first case. In the second case, because V is
an ancestor of some W ∈W that is conditioned upon, the collider path S → V ← . . . T is active, so P (T |Z) is
not stable (contradiction). Thus, by Rule 3 of do-calculus, we have that PX(T |W) = PM(T |W). This is one of
the conditional interventional queries that Algorithm 2 considers, so Algorithm 2 will not fail.

B.3 Optimality

Theorem 3. If G is such that PM(T |X \M) is identified and equal to P (T |W) for some W ⊆ X, then
fs(x) = E[T |x \m, do(m)] achieves (2):

fs ∈ argmin
f∈C0

sup
Qs∈Γ

EQs [(t− f(x))2].

Proof. The structure of this proof follows that of Theorem 4 in Rojas-Carulla et al. (2018) which proves the
optimality of using invariant conditional distributions to predict in an adversarial setting.

Consider a function f ∈ C0, possibly different from fs. Now for each distribution Q ∈ Γ corresponding to an
environment, we will construct a distribution P ∈ Γ such that∫

(t− f(x))2dP ≥
∫

(t− fs(x))2dQ.

Denote the density of Q by q(x, t). Note that we have assumed that all distributions in Γ correspond to the
same graph G in which PM(T |X \M) = P (T |W) for some W ⊆ X. Because Q ∈ Γ, q factorizes according to
(1) as a product of conditional densities (even when bidirected edges are present, the observational joint can be



factorized as a product of univariate conditionals using the c-component factorization (Tian, 2002)). To construct
the density p(x, t) of P from q, for M ∈ M replace the q(M |·) terms with the marginal density q(M). This is
equivalent to removing the edges into M so notably P (O \M|M) = PM(O \M) by rule 2 of do-calculus. Thus
in P we have that PM(T |X \M) = P (T |X). But since the full conditional interventional distribution is stable it
must be that P (T |X) = P (T |W). So, we know that q(t|w) = p(t|w). Further, we have that p(w) = q(w) since
we constructed P to have the same marginals of M as Q and the other terms remain stable across members of
Γ. Thus q(t,w) = p(t,w). Letting Z = X \W, we note that T ⊥⊥ Z|W in P. We now have that

∫
(t− f(x))2dP =

∫
t,x

(t− f(x))2p(x, t)dxdt

≥
∫
t,x

(t− E[T |x])2p(x, t)dxdt (Conditional mean minimizes MSE)

=

∫
t,x

(t− E[T |x \m, do(m)])2p(x, t)dxdt

(Conditional and interventional distributions are equal by construction)

=

∫
t,w

∫
z

(t− fs(m,x \m))2p(z|w)p(w, t)dzdwdt

=

∫
t,w

∫
z

(t− fs(w))2p(z|w)p(w, t)dzdwdt (E[T |x \m, do(m)] = E[T |w])

=

∫
t,w

∫
z

(t− fs(w))2p(z|w)q(w, t)dzdwdt (q(t,w) is stable)

=

∫
t,w

∫
z

(t− fs(w))2q(z|t,w)dzq(w, t)dwdt ((t− fs(w))2 is not a function of z)

=

∫
z,t,w

(t− fs(w))2q(w, t, z)dwdtdz

=

∫
t,x

(t− fs(w))2dQ

Theorem 4. If G is such that PM(T |X\M) is identified and not a function of M, then fs(x) = E[T |x\m, do(m)]
achieves (2):

fs ∈ argmin
f∈C0

sup
Qs∈Γ

EQs [(t− f(x))2].

Proof. The structure of this proof closely follows the structure of the previous proof.

Consider a function f ∈ C0, possibly different from fs. Now for each distribution Q ∈ Γ corresponding to an
environment, we will construct a distribution P ∈ Γ such that∫

(t− f(x))2dP ≥
∫

(t− fs(x))2dQ.

We shall again construct P from Q such that in P P (T |X \M, do(M)) = P (T |X). Note that we have assumed
that P (T |X\M, do(M))) is not a function of M. This usually corresponds to a dormant independence or Verma
constraint (Shpitser and Pearl, 2008) in the graph: it means that T ⊥⊥M|X\M in GM (the graph in which edges
into M have been deleted). Further discussion of this can be found in the next subsection of the supplement.

Let Z = X\M. By Proposition 1 we have that p(t, z|do(m)) = q(t, z|do(m) where p and q denote the densities of
P and Q, respectively. Note that recovering the joint density p(t, z,m) from p(t, z|do(m)) requires multiplying by
a functional of the observational distribution P of the form p′(m|t, z) (that is, a product of kernels (Richardson
et al., 2017) or conditional-like univariate densities of m) where p′ denotes that this is not an observational
conditional density.
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∫
(t− f(x))2dP =

∫
t,x

(t− f(x))2p(x, t)dxdt

≥
∫
t,x

(t− E[T |x])2p(x, t)dxdt (Conditional mean minimizes MSE)

=

∫
t,z,m

(t− E[T |z, do(m)])2p(z,m, t)dzdmdt

(Conditional and interventional distributions are equal by construction)

=

∫
t,z,m

(t− fs(m, z))2p(z,m, t)dzdmdt

=

∫
t,z,m

(t− fs(m, z))2p(z, t|do(m))p′(m|t, z)dzdmdt

=

∫
t,z,m

(t− fs(m, z))2q(z, t|do(m))p′(m|t, z)dzdmdt (Stability of q(z, t|do(m)) by Prop 1)

=

∫
t,m,z

(t− fs(z))2q(z, t|do(m))p′(m|t, z)dzdmdt (E[T |do(m, z] is not a function of m)

=

∫
t,m,z

(t− fs(z))2q(z, t|do(m))q′(m|t, z)dzdmdt ((t− fs(z))2 is not a function of m)

=

∫
t,m,z

(t− fs(z))2q(z, t,m)dzdmdt

=

∫
t,x

(t− fs(z))2dQ

In the above derivation, note that p(m, t|do(m))p′(m|t, z) essentially represents a particular grouping of terms
whose products equals p(t,x) (e.g., in a DAG without hidden variables both terms would be products of con-
ditionals of the form p(v|pa(v))). Since the integrand of the expectation is not a function of M, we have the
independence in the intervened graph, and we constructed P such that there are no backdoor paths from M to
T , we can push the associated expectations inwards and replace them with the q′ terms that recover the joint
density q. To see this in the context of a particular graph see the front-door graph section of the supplement.

Theorem 5. The surgery estimator is optimal amongst the set of directly transportable statistical or causal
relations for predicting T .

Proof. First consider the set of directly transportable statistical relations for predicting T . These will be ob-
servational distributions (i.e., no do terms) of the form P (T |Z) for Z ⊆ X. We have already shown that stable
conditioning sets correspond to conditional interventional distributions of the form P (T |W, do(M) in Lemma
1 and Corollary 1. Thus, we only need to consider directly transportable causal relations (stable conditional
interventional distributions). However, Algorithm 2 is exactly an exhaustive search over stable conditional in-
terventional distributions that returns the optimal one, thus the surgery estimator is optimal amongst directly
transportable statistical and causal relations.

B.4 Front-door Graph

M
Z

T

S

Figure 1: The front-door ADMG.

Consider the selection ADMG in Fig 1. Notably, for this graph there is no stable graph pruning estimator for
predicting T . Conditioning on either Z or M activates the path S → M ↔ T , and conditioning on nothing



leaves the path S → M → Z → T active, so there is no stable conditioning set (including the empty set). The
full conditional surgery estimator, however, is identified and stable:

P (T |do(M), Z) =
∑
m′

P (T |m′, Z)P (m′).

Note that this distribution is not a function of M as it has been marginalized out. This encodes the constraint
that T ⊥⊥ M |Z in GM , the graph in which the edges into M are deleted. We see that in the front-door graph,
after intervening on M the only relationship between M and T is via the directed chain M → Z → T . Thus
Z mediates all of the effect of M on T , and the conditional interventional distribution, once computed, is not a
function of M .

We can use this example to demonstrate how the proof of Theorem 4 works when interventional distributions
are different from observational distributions. Now consider a distribution Q from the family Γ that corre-
sponds to this graph. The density factorizes as q(T,Z,M) = q(T |Z,M)q(Z|M)q(M). We will construct a
new member of the family P such that p(T,Z,M) = p′(T |Z)q(Z|M)q(M) where p′(T |Z) = p′(T |Z,M) =∫
m′ q(T |Z,m′)q(m′)dm′. While the factorization looks different, P is simply a member of Γ that corresponds to

the chain without unobserved confounding. Let fs(z) = fs(z,m) = E[T |do(m), z] (not a function of M). Now
consider some function f(z,m) ∈ C0:

∫
(t− f(z,m))2dP =

∫
t,z,m

(t− f(z,m))2p(t, z,m)dtdzdm

≥
∫
t,z,m

(t− E[T |z,m])2p′(t|z,m)p(z|m)p(m)dtdzdm

=

∫
t,z,m

(t− E[T |z, do(m)])2p′(t|z)p(z|m)p(m)dtdzdm

=

∫
t,z,m

(t− fs(z,m))2q(t|z, do(m))q(z|m)q(m)dtdzdm

=

∫
t,z,m

(t− fs(z))2q(t|z, do(m))q(z|m)q(m)dtdzdm

=

∫
t,z,m

(t− fs(z))2q(t|z, do(m))q(z)q(m|z)dtdmdz

=

∫
t,z

(t− fs(z))2q(z)
( ∫

m′
q(t|z,m′)q(m′)dm′)( ∫

m

q(m|z)dm
)
dzdt

=

∫
t,z

(t− fs(z))2q(z)
( ∫

m′
q(t|z,m′)q(m′)dm′)( ∫

m

q(m|t, z)dm
)
dzdt

=

∫
t,z,m

(t− fs(z))2q(t,m, z)dmdzdt

=

∫
(t− fs(z))2dQ

C Experiment Details

C.1 Hyperparameters for Baselines

Causal transfer learning (CT) has hyperparameters dictating how much data to use for validation, the significance
level, and which hypothesis test to use. In all experiments we set valid split = 0.6, delta=0.05, and use

hsic = False (using HSIC did not improve performance and was much slower).

Anchor regression requires an “anchor” variable. In the real data experiment we use season as the anchor. It
also has a hyperparameter which dictates the magnitude of perturbation shifts it protects against. We set this
to twice the maximum standard deviation of any variable in the training data (including the target).
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C.2 Simulated Experiment

We generate data from linear Gaussian structural equation models (SEMs) defined by the DAG in Figure 1a:

K ∼ N (0, σ2)

T ∼ N (w1K,σ
2)

A ∼ N (w2, σ
2)

C ∼ N (w3T + w4A, σ
2)

We generate the coefficients w1, w2, w3, w4 ∼ N (0, 1) and take σ2 = 0.12.

In simulated experiment 1, A is the mutable variable so across source and target environments we vary the value
of w2. Similarly, in experiment 2 (target shift) T is the mutable variable so we vary the value of w1.

We perform both experiments as follows: In each environment we sample 1000 examples. We generate coefficients
w1, w2, w3, w4 ∼ N (0, 1), and take 1000 samples. This is used as the training data for Graph Surgery. Then
we generate 1000 samples for each of 9 other randomly generated values of w2 or w1 for experiments 1 and
2, respectively. The 10,000 total samples from 10 environments are used to train the OLS and CT baselines.
Then we evaluate on 1000 samples from each of 100 test environments. The w2 (or w1) values are taken from
an equally spaced grid. For experiment 1 we consider in w2 ∈ [−100, 100] while for experiment 2 we consider
w1 ∈ [−10, 10]. This process is repeated 500 times to yield results on 50,000 test environments.

Figure 2: Boxplot of MSE in test environments for the Fig 1a scenario.

The boxplot of the test environment MSEs across the 50,000 test environments for Experiment 1 is shown in
Figure 2. In this example, Surgery is the only consistently stable model. CT is stable when it selects the empty
conditioning set, but in 70% of the 500 runs CT picks all features (i.e., it is equivalent to OLS). We see that the
two (at least sometimes) stable methods have much lower variance in performance. Thus, stability implies less
variance across environments which is desirable in the proactive transfer setting.

The boxplot of the test environment MSEs across the 50,000 test environments for Experiment 2 is shown in
Figure 3. In this example, Surgery is the only consistently stable model. CT has no stable conditioning set.
In 60% of runs CT conditioned on all features. The other times it tended to use the empty set. However, in
this experiment P (T ) is not stable and uses less information than P (T |A,C) (which OLS models) which is what
causes it to have worse performance than OLS. Thus, even in the challenging target shift scenario, graph surgery
allows us to estimate a stable model when no stable pruning or conditional model exists.
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