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A Manifold identification complexity
for deterministic methods

In this section, we give the manifold identification com-
plexity of deterministic methods, as a function of δmin

and εx(k). Auxillary results are also presented when
needed.

A.1 Proof of Lemma 1

Proof. First, by the optimality conditions of (2), we
have

−∇g(x∗) ∈ ∂h(x∗).

By definition of δmin, if h(x) =
∑
i hi(xi), then ad-

ditionally for all i ∈ Z, any vector u where |ui +
∇g(x∗)i| ≤ δmin also satisfies

ui ∈ ∂hi(x∗i ).

Using (8) we see that u = 1
t(k)H

(k)
(
z(k) − x∗

)
satisfies

this property, and therefore

1

t(k)
H(k)

(
z
(k)
i − x∗i

)
∈ ∂hi(x∗i )

which is true if and only if

x∗i = proxH
(k)

t(k)hi
(z

(k)
i ).

Since the solution to the prox is unique, then this im-
plies that for all i ∈ Z,

x
(k+1)
i = x∗i .

A.2 Accelerated proximal gradient descent

We give more details to the accelerated proximal gra-
dient method and derive theorem 1. The proximal
gradient descent is often accelerated (Nesterov, 2013b)
via a simple scheme

y(k+1) = x(k) − t∇g(x(k))

x(k+1) = proxth((1− γ(k))y(k+1) + γ(k)y(k)).

When g is convex, λ(0) = 0 and

λ(k) =
1 +

√
1 + 4(λ(k−1))2

2
, γ(k) =

1− λ(k)

λ(k+1)
.

When g is strongly convex, γ(k) = γ is constant, as

γ =
1−
√
κ

1 +
√
κ
, κ =

L

µ
.

In either case, we prove finite time manifold identifi-
cation.

Lemma 1. In the non-strongly convex case, for all k,
−1 ≤ γ(k) ≤ 1.

Proof. Note that λ(0) = 0 and λ(k) is monotonically
increasing for all k, since

λ(k) =
1 +

√
1 + 4(λ(k−1))2

2
≥
√

4(λ(k−1))2

2
= λ(k−1).

Now, note that

−1 ≤ γ(k) ≤ 1 ⇐⇒ 1− λ(k+1) ≤ λ(k) ≤ 1 + λ(k+1).

This is true if for all scalar x > 0,

1− 1 +
√

1 + 4x2

2
≤ x ≤ 1 +

1 +
√

1 + 4x2

2

which is true if and only if for all x ≥ 0,

1−
√

1 + 4x2

2
− x ≤ 0,

3 +
√

1 + 4x2

2
− x ≥ 0.

To see this is satisfied, note that the term 1−
√
1+4x2

2 −x
is monotonically decreasing, so it achieves its max-
imum value of 0 when x = 0. Similarly, the term
3+
√
1+4x2

2 − x is also monotonically decreasing (which
can be seen by checking the derivative) so it achieves
its minimum value of 3/2 > 0 at the limit when
x→ +∞.

Note that in actuality, with λ(0) = 0, −1 < γ(k) < 0
for all k > 2, corresponding to extrapolation steps.

Proof of Thm 1
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Proof. First we simplify the term in Lemma 1:

1

t
(z(k) − x∗) +∇g(x∗)

=
1

t
((1− γ(k))y(k+1) + γ(k)y(k))− x∗)

+∇g(x∗)

=
1

t
((1− γ(k))(x(k) − t∇g(x(k))

+γ(k)(x(k−1) − t∇g(x(k−1)))− x∗)
+∇g(x∗)

=
1

t
((1− γ(k))x(k) + γ(k)x(k−1) − x∗)

−(1− γ(k))∇g(x(k))− γ(k)∇g(x(k−1))

+∇g(x∗)

Bounding the norms∥∥∥∥1

t
(z(k) − x∗) +∇g(x∗)

∥∥∥∥
2

(a)

≤ 1− γ(k)

t
‖x(k) − x∗‖2 +

γ(k)

t
‖x(k−1) − x∗‖2

+(1− γ(k))‖∇g(x(k))−∇g(x∗)‖2
+γ(k)‖∇g(x(k−1))−∇g(x∗)‖2

(b)

≤ 1− γ(k)

t
ε(k) +

γ(k)

t
ε(k − 1)

+L(1− γ(k))ε(k) + Lγ(k)ε(k − 1)

(c)

≤
(

1

t
+ L

)
ε(k − 1)

where (a) comes from triangle inequality, (b) from L-
smoothness, and (c) from the fact that ε(k) is a mono-
tonically decreasing sequence.

The explicit k̄ rate for strongly convex g(x) comes from
combining this with Table 1.

A.3 Douglas-Rachford Splitting (DRS)

We give a proof of theorem 2, which gives the man-
ifold identification rate for DRS. In the next section,
we show the equivalence of ADMM with DRS, thus
extending the complexity result from DRS to ADMM.

Proof. The update y(k+1) is exactly that which solves

2x(k+1) − z(k) − y(k+1) = t∇g(y(k+1)).

Therefore

‖1

t
(z(k) − x∗) +∇g(x∗)‖2

= ‖1

t
(2x(k+1) − y(k+1) − x∗)

−(∇g(y(k+1))−∇g(x∗))‖2
≤ (2/t+ L)ε(k).

The rest follows from Lemma 1, combined with Table
1.

A.4 Alternating direction method of
multipliers (ADMM)

In this section, we briefly elaborate on the details of
ADMM. We then show its equivalence of DRS, and ex-
tend the manifold identification complexity rate from
DRS to ADMM.

First, we show that ADMM on (14) is equivalent to the
DRS splitting. This equivalence is well-known, dating
back to Gabay (1983). Here, we give a simplified proof
for our particular formulation, largely based off the
class notes in 1 Writing the augmented Lagrangian of
(14) as

Lt(x, y;u) = g(y) + h(x) + uT (x− y) +
1

2t
‖x− y‖22,

the ADMM algorithm can be summarized via the up-
date scheme

x(k+1) = proxth(y(k) − tu(k)) (1)

y(k+1) = proxtg(x
(k+1) + tu(k)) (2)

u(k+1) = u(k) +
1

t
(x(k+1) − y(k+1)). (3)

Lemma 2. The DRS method expressed in (11)-(13) is
equivalent to the ADMM method expressed as (1)-(3)
given the change of variables u(k) = (z(k) − x(k))/t.

Proof. Recall the DRS scheme for ρ = 1 is

x(k+1) = proxtg(z
(k))

y(k+1) = proxth(2x(k+1) − z(k))
z(k+1) = z(k) + y(k+1) − x(k+1)

where we flip h and g. (This does not affect conver-
gence rates.)

We first swap the order of x and z and reindex k

y(k+1) = proxth(2x(k) − z(k))
z(k+1) = z(k) + y(k+1) − x(k)

x(k+1) = proxtg(z
(k+1))

Now we swap x and z and don’t reindex.

y(k+1) = proxth(2x(k) − z(k))
x(k+1) = proxtg(z

(k) + y(k+1) − x(k))

z(k+1) = z(k) + y(k+1) − x(k)

1www.seas.ucla.edu/∼vandenbe/236C/lectures/dr.pdf
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Now we replace z(k) with u(k) = (z(k) − x(k))/t.

y(k+1) = proxth(x(k) − tu(k))
x(k+1) = proxtg(y

(k+1) + tu(k))

u(k+1) = u(k) +
1

t
(y(k+1) − x(k+1))

This is now exactly the iteration scheme (1)-(3) for
ADMM, with y and x flipped.

We now prove theorem 2 for ADMM.

Proof. The optimality condition for the update of
y(k+1) is

x(k) + tu(k−1) − y(k) = t∇g(y(k)).

Therefore,

1

t
(z(k) − x∗) +∇g(x∗)

=
1

t
(y(k) − tu(k) − x∗) +∇g(x∗)

=
1

t
(x(k) − x∗) + (u(k−1) − u(k))

+(∇g(x∗)−∇g(y(k)))

=
1

t
(x(k) − x∗) +

1

t
(y(k) − x(k))

+(∇g(x∗)−∇g(x(k)))

+(∇g(x(k))−∇g(y(k)))

and therefore∥∥∥∥1

t
(z(k) − x∗) +∇g(x∗)

∥∥∥∥
2

≤ (2/t+ 2L)ε(k).

The rest follows from Lemma 1 combined with Table
1.

A.5 Proximal Newton type

We now prove theorem 3, which gives the manifold
identification complexity rate for the proximal Newton
method.

Proof. Invoking Lemma 1, we just need to find the
conditions such that

|(Hest(x
(k) − x∗) +∇g(x(k))−∇g(x∗))i| ≤ δmin

for all i ∈ Z.

We see that

|(Hest(x
(k) − x∗) +∇g(x(k))−∇g(x∗))i|

≤ ‖Hest(x
(k) − x∗)‖2 + ‖∇g(x(k))−∇g(x∗)‖2

≤ (LH + L)ε(k).

To get a rate of k̄ when g(x) is strongly convex, we
combine this result with Table 1.

B Deterministic methods error
bounds

In this section, we give detailed rates for variable con-
vergence in deterministic methods (see Table 1).

For DRS and ADMM, two important convergence
rates are required here to calculate k̄. Taking z̄ as
the fixed point of the DRS iteration scheme, from
Giselsson and Boyd (2017) we have a linear vari-
able convergence rate for the variable error ‖x(k+1) −
x∗‖2 = O(exp(k)), and from He and Yuan (2015) we
also have another rate for the stationarity of z(k) as
‖x(k) − y(k)‖2 = O(1/k). Both rates are used to cal-
culate εx(k).

C Stochastic methods error bounds

C.1 Table of rates

In this section, we give detailed rates for variable con-
vergence rates (εx(k) ≥ ‖x(k) − x∗‖2) and gradient

convergence rates (εg(k) ≥ ‖G(k)
est −∇g(x∗)‖2) in prox-

imal stochastic methods (see Table 2). In some cases
the exact rates were hard to find, so we include our
own derivations when necessary.

C.2 Proximal stochastic gradient method

Consider the update scheme

x(k+1) = proxt(k)h(x(k) − tG(k)
est )

We now give a simple proof of the O(1/
√
k) conver-

gence rate of prox-SGD for µ-strongly convex g. The
convergence proof for SGD is well-known, and is not
new for prox-SGD, but we include it here for complete-
ness.

Lemma 3. Assume that E[G
(k)
est ] = ∇g(x(k)) and there

is a V where ‖∇g(x∗)‖ ≤ V and ‖G(k)
est‖ ≤ V for all

k. Assume that g is strongly convex with modulus µ.
Then with a step length sequence t(k) = 1/(µk), we
have

E[‖x(k) − x∗‖22] ≤ 1

k
max{‖x(1) − x∗‖2, 4V 2/µ2}. (4)

Proof. For ease of notation, we use t = t(k), Gest =

G
(k)
est , x = x(k), and x+ = x(k+1).

Since g(x) is µ-strongly convex, we have

g(x∗)− g(x) ≥ 〈∇g(x), x∗ − x〉+
µ

2
‖x− x∗‖2

g(x)− g(x∗) ≥ 〈∇g(x∗), x− x∗〉+
µ

2
‖x− x∗‖2
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method Bound on ‖x(k) − x∗‖2 Bound on ‖z(k) − z(k−1)‖2 stepsize

PG (1− µ/L)k/2B0 n/a 2/L

aPG 1√
µ
(1−

√
µ/L)k/2

√
d0 (Nesterov, 2013a) n/a 2/L

DRS/ADMM C2C
k+1
3 (Giselsson and Boyd, 2017)

√
C1
k+1

(He and Yuan, 2015) t > 0

pN (L2
2µ

)2
k−1B2k

0 (Thm 3.4 (Lee et al., 2014)) n/a 1

pQN 2d0C
k
5 /µ (Ghanbari and Scheinberg, 2016) n/a 1

Table 1: Variable convergence rates of deterministic methods. We assume g(x) is µ-strongly convex,
to obtain variable convergence rates more readily. L2 is the smoothness of the Hessian ‖∇2g(x) − ∇2g(y)‖2 ≤
L2‖x− y‖2. B0 = ‖x0 − x∗‖. We assume B0 < 1. Otherwise, we can run the scheme until some k̃ where Bk̃ < 1

and shift all the iterate indices. d0 = f(x0)−f(x∗). For DRS and ADMM, C1 =
z20+‖th(z

(0))−th(z∗)‖2
4 , C2 = z0

1+tµ ,

C3 = 1+ρ
2 with ρ = max{ tL−1tL+1 ,

1−tµ
tµ+1} and z0 = ‖z(0) − z∗‖ where z(k) → z∗. C4 = 1 − µ/(µ + L). For pN and

pQN, C5 = 1− µ/(µ+M), and mI � H(k)
est �MI.

method E[(εx(k))2] Grad. Var. stepsize

pSGD
max{B2

0 ,4V
2/µ2}

k n/a 1/(µk)

pSVRG ρkSVRG(B2
0 + 2td0) E[(εg(k))2] = 4LQ(dk−1 + ρkd0) 1/(4LQ)

(Poon et al., 2018) (Xiao and Zhang, 2014)

pSAGA
(

1− µ
2(µn+L)

)k
BS

0 εg(k) = Lmax (εx(k) + 2εx(k −m)) 1
2(µn+L)

(Defazio et al., 2014)

pRDA(Xiao, 2010) CRDA√
k

E[εg(k)] = σ√
k

+
Cg

RDA

k1/4
1/
√
k

Table 2: Variable convergence rates for stochastic methods. We assume g(x) is µ-strongly convex, to
obtain variable convergence rates more readily. B0 = ‖x0 − x∗‖2. m is number of terms in composite sum
and n is the length of x. dk = f(x(k)) − f(x∗). Lmax = maxi=1,...,m Li where each gi is Li-smooth. For
prox-SAGA, BS

0 = (B2
0 + n

µn+L (d0 − 〈∇g(x∗), x(0) − x∗〉)). The gradient variance bound is E[‖gk‖2] ≤ V 2. For

prox-SVRG, we also require ρSVRG = max{1 − tµ, 4Lt(n + 1)} < 1. For prox-RDA, CRDA = 2(h0 + V 2/µ2),
CgRDA = 4

3Lmax

√
h0 + 3V 2/(2µ2). and σ2 is the gradient norm ‖∇gi‖2 variance at x∗. For many of these rates,

more detailed derivations are given in Appendix C.
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and therefore

〈∇g(x)−∇g(x∗), x− x∗〉 ≥ µ‖x− x∗‖2. (5)

Now,

‖x+ − x∗‖2
(a)
= ‖proxth(x− tGest)− proxth(x∗ − t∇g(x∗))‖2
(b)

≤ ‖(x− x∗)− t(Gest −∇g(x∗))‖2

= ‖x− x∗‖22 + t2‖Gest −∇g(x∗)‖2

−2t〈x− x∗, Gest −∇g(x∗)〉
(c)

≤ ‖x− x∗‖22 + 4t2V 2 − 2t〈x− x∗, Gest −∇g(x∗)〉

where (a) comes from the fixed point property x∗ =
proxth(x∗ − t∇g(x∗)), (b) from nonexpansiveness of
prox, and (c) from the relation

‖Gest −∇g(x∗)‖22 ≤ (‖Gest‖2 + ‖∇g(x∗)‖2)2 ≤ (2V )2.

Taking expectations gives

E[‖x+ − x∗‖2|x]

≤ ‖x− x∗‖22 − 2t〈x− x∗,E[Gest]−∇g(x∗)〉
+4t2V 2

= ‖x− x∗‖22 − 2t〈x− x∗,∇g(x)−∇g(x∗)〉
+4t2V 2

(a)

≤ (1− 2tµ)‖x− x∗‖22 + 4t2V 2.

where (a) is from invoking (5).

Using the nested expectations property, we have that

E[‖x+ − x∗‖2] = E[E[‖x+ − x∗‖2|x]]

≤ (1− 2tµ)E[‖x− x∗‖22] + 4t2V 2.

Now the rest follows from induction. Clearly, (4) is
satisfied for k = 1. Now assume it is satisfied for some
k, and consider the k+1 term. Take C = max{‖x(1)−
x∗‖2, 4V 2/µ2} and t(k) = 1/(µk). Then

E[‖x(k+1) − x∗‖22]

≤ (1− 2/k)E[‖x− x∗‖22] + 4µ2V 2/k2

≤ (1− 2/k)C/k + C/k2

≤ C

k + 1
.

C.3 SAGA Gradient error bound

The SAGA method is discussed in Defazio et al.
(2014), and E[εx(k)2] = O(ck) variable convergence

rates for strongly convex g are derived. Here, we give
the gradient convergence rates εg(k) as a function of
εx(k), which are needed in the overall manifold iden-
tification complexity rate (theorem 4).

Lemma 4. Suppose that εx(k) ≥ ‖x(k) − x∗‖2, and
Lmax is the maximum Lipschitz smooth parameter in
gi, e.g.

‖∇gi(x)−∇gi(y)‖2 ≤ Lmax‖x− y‖2, ∀i = 1, ...,m.

Then in prox-SAGA,

‖Gest −∇g(x∗)‖2 ≤ Lmax (εx(k) + 2εx(k −m)) .

Proof. Define x̂(i) such that ∇gi(x̂(i)) = y
(k−1)
i . Then

Gest −∇g(x∗)

= ∇gi[k](x(k))−∇gi[k](x∗)
+∇gi[k](x∗)−∇gi[k](x̂(i[k]))

+
1

m

m∑
i=1

(∇gi(x̂(i))−∇gi(x̂∗)).

Therefore

‖Gest −∇g(x∗)‖2
(a)

≤ ‖∇gi[k](x(k))−∇gi[k](x∗)‖2
+‖∇gi[k](x∗)−∇gi[k](x̂(i[k]))‖2

+
1

m

m∑
i=1

‖∇gi(x̂(i))−∇gi(x∗)‖2

(b)

≤ Lmax

(
‖x(k) − x∗‖2 + ‖x∗ − x̂(i[k]))‖2

)
+
Lmax

m

m∑
i=1

‖x̂(i) − x∗‖2

(c)

≤ Lmax(εx(k) + 2εx(k −m)).

where (a) is from triangle inequality applied to each
summed term, (b) uses Lmax smoothness of each com-
ponent term gi, and (c) is since εx(k) is a monotoni-
cally decreasing sequence and x̂(i) is at most m itera-
tions stale.

where (a) comes from triangle inequality

C.4 RDA Gradient error bound

In this section, we list and rework known variable con-
vergence rates of pRDA in Xiao (2010) in order to
derive a variable and gradient convergence rate.

Lemma 5. For any random variable Z, E[Z2] ≥
E[Z]2.
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Proof. The variance E[(Z−E[Z])2] = E[Z2]−E[Z]2 ≥
0, so E[Z2] ≥ E[Z]2.

Lemma 6. Assume g is µ-strongly convex. Using
t(k) = µ/

√
k, for general convex h, the expected vari-

able convergence rate is

E[‖x(t+1) − x∗‖2] ≤ CRDA√
k

where CRDA = 2(h0 + V 2/µ2), V 2 =
maxi,x E[‖∇gi(x)‖2], and h0 = maxx∈D h(x) for
some reasonable domain D.

This result was first presented and proven in Xiao
(2010). We list it here to show the simplification steps
needed in our gradient bound.

Proof. Using t(k) = µ/
√
k, we have

E[‖x(t+1) − x∗‖2]
(a)

≤ 2(µh0 + V 2/µ)

µ(k + 1/
√
k)

√
k

≤ 2(h0 + V 2/µ2)
1√
k

where (a) is the exact rate reported in Xiao (2010).

Lemma 7. Assume that E[‖∇gi(x∗) − ∇g(x∗)‖2] ≤
σ2 (e.g. the gradients have bounded variance) and
bounded norm E[‖∇gi(x)‖22] ≤ V 2 for all i, x. Take
d0 = maxx∈D h(x) where D is a bounded region where
all iterates reside. Assume that there is a maximal
Lipschitz constant for each component, e.g.

‖∇gi(x)−∇gi(y)‖ ≤ Lmax‖x− y‖2, ∀i = 1, ...,m.

Then

E[‖Gest −∇g(x∗)‖2] ≤ σ√
k

+
CgRDA

k1/4
.

where

CgRDA =
4

3
Lmax

√
h0 + 3V 2/(2µ2).

Proof.

Gest −∇g(x∗)

=
1

t(k)k
x(k) +

1

k

k∑
j=1

∇gi[j](x(j))−∇g(x∗)

=
1

k

k∑
j=1

∇gi[j](x(j))−
1

k

k∑
j=1

∇gi[j](x∗)

+
1

k

k∑
j=1

∇gi[j](x∗)−∇g(x∗) +
1

t(k)k
x(k) +

= A+B + C

where

A =
1

k

k∑
j=1

∇gi[j](x(j))−
1

k

k∑
j=1

∇gi[j](x∗),

B =
1

k

k∑
j=1

∇gi[j](x∗)−∇g(x∗),

C =
1

t(k)k
x(k).

Since by triangle in equality ‖Gest − ∇g(x∗)‖2 ≤
‖A‖2 + ‖B‖2 + ‖C‖2, we have

E[‖Gest −∇g(x∗)‖2] ≤ E[‖A‖2] + E[‖B‖2] + E[‖C‖2]

by linearity.

We now bound each term. If i is sampled uniformly,
taking X = ∇gi(x∗) as a random vector in Rn, then

E[X] = ∇g(x∗), E[‖X − E[X]‖22] = σ2

then

E[‖B‖22] = E[‖X̄(k) − E[X]‖22] =
σ2

k
,

where X̄(k) = 1
k

∑k
j=1∇gi[j](x∗) the sample mean of

X with k samples.

Now taking the random variable Z = ‖X(k)−E[X]‖2,
we also use Lemma 5 and bound

E[Z]2 ≤ E[Z2] =
σ2

k

and thus
E[‖B‖2] = E[Z] ≤ σ√

k
.

Also,

‖A‖2 ≤ 1

k

k∑
j=1

‖∇gi[j](x(j))−∇gi[j](x∗)‖2

≤ Lmax

k

k∑
j=1

‖x(j) − x∗‖2

Taking Z = ‖x(j) − x∗‖2 and using Lemma 5, we

have E[‖x(j) − x∗‖2] ≤
√

E[‖x(j) − x∗‖22], which is the
square root of the reported quantities in literature,
given in table (2). Now

E[‖A‖2] ≤ Lmax

k

k∑
j=1

E[‖x(j) − x∗‖2]

≤ Lmax

k

k∑
j=1

√
E[‖x(j) − x∗‖22]

(a)

≤ Lmax

√
CRDA

k

k∑
j=1

1

j1/4
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where we use Lemma 6 in (a). Now, using a compari-
son test, we have

k∑
j=1

1

j1/4
≤ 1 +

∫ k+1

1

1

t1/4
dt

=
4

3
(k + 1)3/4 − 1

3

≤ 4

3
k3/4

and thus

E[‖A‖2] ≤ 4

3
Lmax

√
CRDAk

−1/4.

This gives the result.

D δmin propositions

In this section, we first show that when A contains
repeated column entries i and j, then the solution is
degenerate if xi = 0 6= xj . Then we discuss and give
proofs to the propositions in Section 4 involving δmin’s
statistical properties. We first prove a bound for sparse
linear regression, then sparse logistic regression, then
the dual of support vector machines.

Lemma 8. Denote aj the jth column of A. If ai = aj,
then for g(x) = L(Ax; b) any loss function, δ∗i = δ∗j .

Proof. Without loss of generality, assume i = 1 and
j = 2. Then A = [a, a, Ã] and

Ax = Ãx̃+ x̄a, x̄ = xi + xj .

Then for d(z) = L(Ãz + x̄a; b)

(∇g(x))j = aT∇zd(z) = (∇g(x))i.

Then δ∗i = δ∗j .

Corollary 1. If ai = aj and xi = 0 but xj is nonzero,
then xi is necessarily degenerate.

Proof of Proposition 1.

Proof. This readily comes from the definition, triangle
inequalities, and Cauchy Schwartz. For all j ∈ Z,

δ∗j = λ− 1

m
|aTj (Ax− b)|

= λ− 1

m
|aTj (Ax− (Ax# − y))|

≥ λ− 1

m
|aTj Ae| −

1

m
|aTj y|

≥ λ− ρ‖e‖1 −
1

m
‖aj‖22|ej | −

1

m
‖aj‖2‖y‖2

≥ λ− ρ‖e‖1 − α2|ej | − αη.

Proof of Proposition 2.

Proof. Taking zi = σ(aTi x), we can write the gradient
of g succinctly as

∇g(x) = AT (z − b).

(As an abuse of notation, define the vector mapping
σ : Rn → Rn as σ(x)i = σ(xi).) Now for any j ∈ Z,

δ∗j = λ− | 1
m
aTj (σ(Ax∗)− b)|

= λ− | 1
m
aTj (σ(Ax∗)− σ(Ax#)− y)|.

We can approximate the right hand side using a first-
order Tayler series on σ. Taking D an m×m diagional
matrix with Dii = σ(aTi x

∗)(1−σ(aTi x
∗)) then the first

order linearization of σ(Ax#) from a reference point
of x∗ is

σ(Ax#) = σ(Ax∗) +ATDe+O(‖e‖2).

Let us consider the regime in which ‖e‖ is very small,
e.g. x∗ ≈ x#. Then the lower bound on δ∗j can be
approximated, so that

δ∗j ' λ− | − 1

m
aTj (DAe) + aTj y|

≥ λ− 1

m
|aTj (DAe)| − 1

m
|aTj y|.

Note that for all i, 0 ≤ Dii ≤ τ . For any vector a and
b, where (a ◦ b)i = aibi, we have

|aTDb|
(a)

≤ τ‖a ◦ b‖1
(b)

≤ τ‖a‖2‖b‖2

where (a) is by Holder’s inequality (since if D =
diag(d) then |aTDb| = dT (a◦b), and (b) is by Cauchy-
Schwartz. Therefore

|aTj (DAe)| ≤ τα2‖e‖2m

and

δ∗j ' λ− τα2‖e‖2 − αη.

Proof of Proposition 3.

Proof. Define K̃ = diag(b)Kdiag(b). Then the ob-
jective of (20) is

g(x) =
1

2m
xT K̃x− 1

m
xT1

with gradient

∇g(x) =
1

m
(K̃x− 1).
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Note first that for all j ∈ Z, x∗j ∈ {0, λ}, and at x =
x∗, each descent direction must necessarily try to leave
the feasible region. Therefore,

−∇g(x∗)j ≤ 0 if x∗j = 0,

and

−∇g(x∗)j ≥ 0 if x∗j = λ.

Therefore

δ∗j = |∇g(x∗)j |

=

{
(∇g(x∗))j , x∗j = 0

−(∇g(x∗))j , x∗j = λ.

=



1

m

K̃jjx
∗
j +

∑
i 6=j

K̃ijx
∗
i − 1

 , x∗j = 0

1

m

1− K̃jjx
∗
j −

∑
i6=j

K̃ijx
∗
i

 , x∗j = λ.

=



1

m

∑
i6=j

K̃ijx
∗
i − 1

 , x∗j = 0

1

m

1− K̃jjλ−
∑
i 6=j

K̃ijx
∗
i

 , x∗j = λ.

When x∗j = 0, the term
∑
i6=j K̃ijx

∗
i can be arbitrarily

close to 0, and thus no interesting lower bound for δ∗j
can be made. When x∗j = λ, note that

|K̃jjxj +
∑
i 6=j

K̃ijxj | ≤ αλ+ ρλm

and thus

δ∗j ≥
1− αλ
m

− ρλ.
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