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Abstract

In machine learning, models that generalize
better often generate outputs that lie on a
low-dimensional manifold. Recently, several
works have separately shown finite-time man-
ifold identification by some proximal meth-
ods. In this work we provide a unified view
by giving a simple condition under which
any proximal method using a constant step
size can achieve finite-iteration manifold de-
tection. For several key methods (FISTA,
DRS, ADMM, SVRG, SAGA, and RDA)
we give an iteration bound, characterized in
terms of their variable convergence rate and
a problem-dependent constant that indicates
problem degeneracy. For popular models,
this constant is related to certain data as-
sumptions, which gives intuition as to when
lower active set complexity may be expected
in practice.

1 INTRODUCTION

Consider the classic machine learning problem

D R e
min > Llafb) + AR(z) (1)

where £ is the loss of a machine learning model
(such as squared or logistic loss) and R(x) is a sep-
arable regularizer that promotes x to lie in a low-
dimensional manifold. Specifically, the manifold M
is parametrized by an active set of indices Z where

M=A{z:z,=2],Viec Z}.

For example, when R(x) is the ¢; norm, then M is the
set of vectors x where x; = 0 whenever z} = 0.
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For simplicity, in this work we restrict our attention
to cases where R(z) is element-wise separable and
convex. This includes the ¢; norm and element-wise
constraints, which arise in support vector machines
(SVMs). However, all our results can be extended to
other norms by considering atomic sparsity and a gen-
eralized definition of the active set,

M ={x: Bz = Bz}, Vie Z},

where B;z is the projection of x onto an orthogonal
subspace B;. This includes the total variation norm for
smooth vectors and the group norm for group sparsity.

1.1 Related work

The early works on active set identification (Dunn)
1987} Burke and Moré, [1988; [Wrightl [1993}; |Gafni and
Bertsekas, |1984) focus on constrained optimization
problems, where an inequality constraint is active if
satisfied with equality. Extensions to nonsmooth func-
tions have also been explored (Hare and Lewis, 2004;
Nutini et al., 2017b). Notable works cover sequen-
tial quadratic programming (Burke and Moré| [1988)),
proximal gradient method (Dunnl 1987)), bundle meth-
ods (Daniilidis et al., |2009), prox-SVRG (Poon et al.,
2018), regularized dual averaging (Lee and Wright,
2012) and variants (Duchi and Ruan| [2016)), and block
coordinate methods (Tseng and Yun| 2009; [Hare|, 2011}
De Santis et al.l 2016; |She and Schmidtl 2017). In
general, all these works show that finite-time manifold
identification is possible if the final solution is non-
degenerate. More recently, nonasymptotic active set
complexity bounds have become of interest, in partic-
ular for the proximal gradient method (Nutini et al.,
2017b), ADMM (Liang et al., [2017)), and block coor-
dinate methods (Nutini et al.| 2017a)).

Understanding manifold identification properties has
also led to specialized methods for improved perfor-
mance. For example, in two-stage methods, a first-
order proximal method is first used to identify the
manifold, and a heavier method (such as Newton’s
method, or a direct solve) is used to find the true
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solution in a much reduced parameter space (Bert-
sekas, {1974} Ko et al.| [1994; Daniilidis et al., [2009).
Similarly, a two-metric method is proposed by |Gatni
and Bertsekas (1984), and uses a mixture of Newton’s
method on i ¢ Z and the proximal gradient method for
i € Z in the intermediate iterates, achieving superior
convergence results. And, Wright| (2012) proposes a
linearized proximal coordinate-descent type algorithm
that is accelerated by performing Newton steps when-
ever the function is smooth over the active set cur-
rently identified. Active set properties can also be used
for parameter selection (Hastie et al., [2004).

Contributions We provide a unified analysis
bounding the number of iterations needed for mani-
fold identification, or the active set complexity, for all
proximal gradient-type methods. The analysis follows
3 main steps:

1. quantify the “amount of nondegeneracy” in the
problem,

2. bound the amount of variable error allowed in or-
der for correct manifold identification, which is
directly correlated with the “amount of degener-
acy”, and

3. combine with known variable convergence bounds
to compute the active set complexity. (See also
Tables [1| and [2 in the Appendix.)

Although the idea of bounding the variable error with
the distance to the manifold is not new (Lewis and
Wright|, |2011)) how this distance and variable error are
related for various methods is made explicit in this
work. In particular, our analysis shows a direct rela-
tionship amongst three key quantities:

e ¢(k), a monotonic sequence upper bounding vari-
able error;

e k a constant such that for all k > k, () is on the
manifold; and

® Jnin quantifying how “close to degenerate” the
problem isﬂ

These three key quantities are unified under a single
lemma, which we term the “Wiggle Room Lemma”;
subsequently, manifold identification rates for new
proximal methods can be quickly and easily derived.
In contrast, previously they have been often derived
from scratch; additionally, in some cases our derived
bounds are tighter than those previously derived.

2 ACTIVE SET MANIFOLDS

2.1 Problem statement
Generalizing , we consider the problem class

'6min is commonly written as dist(z*,rbd(0h(z*))),
where Oh is the subdifferential of h and ‘rbd’ indicates the
relative boundary of a set (Rockafellar} 2015)).

min  f(z) := g(z) + h(z), (2)

where g is convex and L-smooth:

IVg(z) — Vg(y)ll2 < Lljz — yl2, V 2, 9.

The function h(z) is generally a nonsmooth, convex
regularizer. We assume the optimal minimizer z* is
unique. To simplify the analysis, we consider only
h(xz) = 3, hi(x;) separable. These assumptions are
reasonable and often appear in practice.

The first-order optimality condition of is
0 € Vg(a*) + Oh(z™), (3)

where Oh(x) is the
x:(Rockafellar] 2015)

Oh(z) = {= : hiz) — h(y) < " )}, ¥ y.

subdifferential of h at

2.2 Active sets

We characterize the manifold via the active set.

Definition 1. (Nutini et al., [2017b) For problems of
form (), we define the active set of indices as

Z = {i: 0h;(x]) is not a singleton}, (4)
where z* is the optimum of .

Essentially, Def. [[|says that if i € Z then h;(z;) is non-
smooth at x*. When ¢ € Z, the solution to is often
trivial. For example, when h(z) = ||z||1, } = 0 for all
i € Z; and when h(x) is an indicator for an element-
wise constraint z < ¢, then 2} = ¢; for all7 € Z. In
this case, if we know Z, then the optimization reduces
to a smooth unconstrained problem over {z;}igz.

Definition 2. (Nutini et al.,|2017b) For any x, define
0;i(x) for i = 1,...,n as the maximum scalar d where

[=(Vg(x))i —d, =(Vg(2))i +d] € Ohi(z).  (5)

We can think of 6,y as the “wiggle room” in the op-
timality conditions. For many methods, the existance
of a strictly positive §;;, exactly corresponds to when
finite time manifold identification is possible, since it
allows noisy iterates z(*) to partially satisfy optimality

conditions, provided z(*) is close enough to z*.

Definition 3 (Degeneracy). Define the
dependent constant

data-
Omin = rlrélg 0;(x™).
We say the problem is degenerate when 6y, = 0.

In general, finite time manifold identification is impos-
sible to guarantee if the problem is degenerate (Burke
and Moré| 1988} |Lee and Wright, [2012).
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le| | x* g'(z*) Oh(z*) active?
<1 0 —c  {sign(z*)} no
>1 |c—sign(c) —sign(c) [-1,1] yes
=1 0 —c [-1,1]  degenerate
Table 1: Small example. Solution and function

properties for @

2.3 Example
Consider minimizing the composite scalar function
f(z) = g(z) + h(x) where

o) = gle—c ad b=l (©)
In this case the true solution can be computed ana-
lytically (Table . Specifically, when x* # 0, then
f = g+ h is smooth at z* and the active set is
empty (Fig. [1| left). When z* = 0, then h is nons-
mooth at z* (and so is f) and Z = {1}. In this case,
Omin = 01(z*) = 1 —|¢'(z*)| = 1 — |¢|, and is strictly
positive only if |¢| < 1 (Fig. [I| middle); otherwise, the
problem is degenerate (Fig. [1] right). In practice, de-
generacy for randomized data is a rare occurrence; in
this example, if ¢ is drawn from any smooth distribu-
tions, ¢ = £1 with probability 0.

/ \—08 %
ES q /\ /.
- . £ g W

Figure 1: Simple example. Left: ¢ = 2, and z* =
1 > 0 (inactive). Middle: ¢ =1/2 and §;(z*) =1/2 >
0 (active). Right: ¢ = 1, and both z* = d;(z*) = 0
(degenerate).

n_z
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It has been observed that i, plays a key role not only
in the iteration complexity for manifold identification,
but also for variable convergence. This is often at-
tributed to the two-phase convergence in which many
methods seem to accelerate after the manifold has been
identified (Wright| [2012; (Gafni and Bertsekas, [1984).
In particular, when we reduce (2)) to {z; : i € Z}, often
the problem becomes better conditioned; that is,

Amin(vzg(l')) S )\min((VZ.g(I))Z,Z)'

and this increase often results in noticable speedup in
convergence (Liang et al., 2014, [2016)).

3 MANIFOLD ID METHODS

Definition 4. For a nondegenerate problem (dpin >
0) we say a method is manifold identifying if it iden-
tifies the active set Z in a finite number of iterations.
Specifically, there is a k such that for all k > k,

2®) VieZ.

*
=x;,

The quantity k is the active set complexity and de-
pends on dyin.

There is an inherent one-sided flavor to this definition,
in that for indices outside the active set, these points
may achieve z} at any k, or never at all. For sparse
optimization, this means that zgk) = 0 may occur at
any k, even if ¢ ¢ Z. Thus, this definition differs from
the traditional notion of support identification, where
the exact pattern of zeros and nonzeros are identified.
In general, guaranteeing both sides cannot be done for
finite k, as &;(z*) = 0 whenever i ¢ Z; however, in
practice both are often identified in finite time.

3.1 Proximal methods

We define the prozximal mapping of h with respect to
a positive definite scaling matrix H as
1
proxi!(z) := argmin h(z) + i(z —2)TH(xz - 2).
x
We also use the
prox,(z) := prox} (z).

unscaled proximal mapping

There are many important methods that use the prox-
imal mapping. The most common example is the prox-
imal gradient (PG) method, where at each iteration,

20 = g 4 Bgf(pR)
2D = prox,u,(z®)
is applied until %) converges to a fixed point z*. Here,
t() > 0 is some positive step length, and z(*) is the
result after a gradient step. Other proximal meth-
ods of similar form include the prox-Newton method,
the Douglas-Rachford Splitting (DRS) method, and
the Alternating Direction Method of Multipliers
(ADMM). When using a constant step size, we write
t:=t*) for all k.

Lemma 1 (Wiggle Room Lemma). Consider a gen-
eralized proximal algorithm for solving of the form

(k)
2D proxﬁk h(z(k))’ (7)

where z%) depends on past ®, t*) and H®) . Then
the active set is identified by x*+tY) when for alli € Z

' <t(1k)H(’“)(z(k) — ")+ Vg(a:*))

S 5min- (8)

The proof of Lemma [I]is in Appendix [A]

In the case of the PG method, using the triangle in-
equality, (8) can be satisfied if

1
(F42)1e® ol <o )

When g is strongly convex, ||z(®) —z*||; = O(exp(—k)),
and by inverting @ the active set complexity is
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- 1 L
5min
as reported in |[Nutini et al.| (2017h)).

We now use Lemmal[I] to prove the manifold identifying
property on several well-known proximal methods. In
particular, we define s*) € R” with

0 0, idZ (10)
C b (3P - ar) + (Vg icz

t(k)

the active set residual, and derive k where for all k > k,
Hs(k)”oo S 5min-

3.2 First-order methods

In this section we derive the active set complexity for
several popular first-order deterministic methods. We
give k as a function of variable error rates, with an
explicit rate when ¢ is strongly convex. All proofs
can be found in Appendix [A] and exact convergence
rates (used to compute exact E) are given in Appendix
We define €, (k) a monotonically decreasing upper
bounding sequences (e (k) > ||z*) — 2*||5) and always
assume t(*) = ¢ a constant step size.

We emphasize that strong convexity is not a require-
ment to show finite manifold identification, but is of-
ten used to derive the variable convergence rate €, (k).
All we require at this point is the uniqueness of the
solution z* to .

Accel. Prox. Grad. (aPG) The proximal gradi-
ent descent is often accelerated (Nesterovl 2013b) via
a simple scheme

y(k+1)
LD

z®) — tvg(z®))
prox, (1 —7")y* ) 4 40y 0)

for a specific sequence of —1 < v*) < 1. When g is
strongly convex, then the iterates z(¥) converge to z*
at a linear rate (Nesterov, 2013al).

Theorem 1. The aPG method identifies the manifold
for all k > k when

<:1I; + L) Ex(k — 1) S 5min-

When g is strongly convez, k = O(log(6min))-

Note that manifold identification is with reference to
) y*) may not be in M. More generally, manifold
identification is proven only for the output of the prox-
imal mapping. The dependence of aPG on €(k) (see
Appendix B) is the same order as that of PG; how-
ever, since the variable convergence rate (k) of aPG is
faster than PG, the overall active set complexity rate
is faster as well. Finally, the manifold identification

property does not depend on the method itself hav-
ing monotonic variable convergence, as aPG in general
does not. All we need is a monotonic variable bound,
which may be pessimistic in practice. (See Fig. )

Prox gradient

Acc prox gradient

1

variable error

sparsity error
IIsll

0 20 40 60 80 0 20 40 60 80
Iterations Iterations

Figure 2: PG and aPG convergence behavior.
Trajectories of deterministic methods on sparse linear
regression. Here, the entries of A € R200%500 are ii.d.
Gaussian and b = Az# +y. The vector 27 is the sparse
ground truth signal, and y is a Gaussian i.i.d. noise
vector. The variable error (blue) is bounded above by
the dashed decreasing line, which is (k) as reported in
literature. The ASI error (yellow) reaches 0 when the
max absolute value of the residual (red) dips below the
horizontal dashed line, which represents d,,i,. Before
this happens, the manifold has been identified.

Previous work |Liang et al.| (2017) and |Johnstone
and Moulin| (2015) also discuss manifold identification
for aPG. The analysis in|Johnstone and Moulin| (2015)
is similar but is restricted to sparse (¢; regularized) op-
timization. In|Liang et al.| (2017)) the analysis is based
more on generalized topological analysis and extends
to all L-smooth convex functions g, resulting in an
active set complexity of O(§2;) iterations. In com-
parison, Theorem [I] with strong convexity guarantees
O(log(dmin)) iterations.

DRS and ADMM Two other (equivalent) non-
monotone proximal splitting methods are the DRS
method (Douglas and Rachford, [1956; |[Lions and
Mercier} 1979} [Eckstein and Bertsekas| 1992]), which
minimizes using the following scheme

25D = prox,, (z) (11)
y = proxtg(2x(k+1) —2(F) (12)
(k+1) 20) 4y (kD) (et D) (13)

and ADMM (Gabay and Mercier} [1975}; |Glowinski and
Marrocol, |1975|) on the reformulation of

min {g(y) + h(z) : & = y}. (14)

The variable convergence rate is equivalent for both,
since in this simplified formulation they are equivalent
under the transformation u(®) = (2(®) — z(®) /t where
u®) is the dual ADMM iterate. (See Appendix ) In
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particular, |Giselsson and Boyd, (2017) showed z(*) —
xz* at a linear rate and He and Yuan| (2015) showed
) — y®) |y = 0 at a O(1/VE) rate.

Theorem 2. Consider a monotonically decreasing se-
quence e;(k) > max{|lz®) — %3, |2 —y Mo} for
all k. Then the active set is identified at k when

Omin for DRS, and

1. (2/t+ L)e, (k) <
(k) < 6min for ADMM on

2. (2/t+2L)e,

For g strongly conver, k = O(582..) for both methods.

Previous work |Liang et al. (2016 Prop. 4.5 gives
a rate k = O(02,,) for general convex g. When g is
strongly convex, Thm. [2| gives an improved active set
complexity of k = O(6min). Note that if we can show
lz*) —4*)||5 converging linearly, we can improve this
to k = O(1og(dmin)). The local linear convergence be-
havior of DRS-like methods is also discussed in IMoli-
nari et al. (2018]), which shows finite active set com-

plexity but does not provide a rate for k.
3.3 Proximal Newton-type methods
When g is twice-differentiable everywhere, a family of
proximal Newton-type methods can be described as
Y = argmin (Vg(x(k))Tx + (15)
T

h(z) + (@ — ™) THE) (2 — 20)),

where Hést is a symmetric positive definite matrix ap-
proximating the Hessian at (*) satisfying the Dennis-
More (Dennis and Moré, [1974)) criterion

|(H) = V2g(a ) (@®H) —a®))y
[z +D) — 2R, :
Specifically, describes the prox-Newton (pN)

method when Hest V2g(x™®), and more generally
the prox-Quasi-Newton (pQn) method. These meth-
ods are well-studied; when g is strongly convex, pN
converges g-quadratically (Lee et all|2014), and pQN
converges linearly (Ghanbari and Scheinberg 2016).

Theorem 3. When H) =< Lygl, both pN and pQN

est

methods identify the manifold for all k > k whenﬂ
(L + LH)em(];) < 5min-
For g strongly convex, pQN has active set complexity
k= O(log(6min)
k = O(log(1og(dmin))-
= V2g(2™®) is exact, Ly = L.

and pN has

When H®) =

est

An important future extension of this analysis is to
include quasi-Newton methods that do not satisfy the
Dennis-More condition, such as L-BFGS.

2The two-stage convergence behavior of the Newton-
type methods (linear to a neighborhood, followed by
quadratic convergence) is captured in €, (k).

3.4 Stochastic methods

We now extend the analysis to stochastic proximal
methods, namely proximal versions of stochastic gra-
dient descent (SGD), the stochastic variance reduced
gradient (SVRG) method (Johnson and Zhang}, 2013]),
stochastic average gradient amélioré (SAGA) (Defazio
et al,2014), and the regularized dual averaging (RDA)
method (Xiao, [2010). A new challenge in stochastic
methods is a potentially diminishing step size. In par-
ticular, when t(*) — 0, it is not clear that condition
(8) will hold for all k& > k, for any finite k, even if
z®) — z*. Condition is a conservative bound; in
our experiments, we observe that when e, (k)/t*) £ 0,
manifold identification happens in some problem in-

stances, but not consistently.

We now assume g is a sum of smooth functions

==Y ) (16)

and consider methods that sample a single gradient
Vgi(x) for i € {1,...,m} uniformly at each iteration.
Exact k values can be computed by combining the
stated theorems and explicit rates for €, and €;. (See
Table [2 given in Appendix [C])

SGD, SVRG, SAGA Denote by i[k] the sample
picked at iteration k. These methods can be summa-
rized by the iteration scheme

2D = prox,u, (e® — ™Gk (7

where Gg:t) is a noisy estimate of the gradient Vg(z(*)).
In particular, we consider

e prox-SGD (pSGD), where Ggst) = Vi (z(,);
e prox-SVRG (pSVRG)

2013)), where
G = Vaip (2®) = Vg (7) + V(@)

and T is the iterate taken at the beginning of the
current epoch; and

e prox-SAGA (pSAGA) (Defazio et all

where

(Johnson and Zhang,

2014),

Ggg = sz‘[k] (x(k))

(k 1)Jr Zy(k 1)

and
) {Vgi(x(k)),
Y = y_(kq)

i = ilk],

else.

Define €, (k) and €4(k) two monotonically decaying se-
quences such that €, (k) > ||z — 2%, and €, (k) >

IVg(a*) = Gl
Theorem 4. pSVRG and pSAGA identify the mani-
fold for k > k when
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Figure 3: Trajectories of stochastic methods on
sparse linear regression. Data is generaed as in
Fig. [2l For SGD and RDA, the step size rate decays as
t*®) = 0.1/+/k, which is necessary for convergence. For
SVRG and SAGA, the step size is constant at t(*) =
0.1. The variable error (blue) and the max value of the
active set residual (yellow) are plotted. The vertical
lines measure when the active set is identified (solid),
and when ||s%)||o < Smin (dashed).

ex(l:?)
t(k)

+ €4(k) < Smin- (18)

When g is strongly convex and t*%) = ¢ a constant step
size, k = O(1og(Omin))-

Proof. We invoke for z(F) = (k) — t(k)Ggl:t) and
apply the triangle inequality. The rest follows from
the linear convergence rate (Appendix [C| Table[2).

For pSGD, the Condition for finite manifold identifica-
tion is also ; however, here ¢4(k) # 0 in general.
E| A key advantage of variance reduced methods like
pSVRG (Johnson and Zhang| [2013) and pSAGA (De-|
[fazio et al. [2014)) (as well as other variants like MISO,
Finito, and SDCA) is that ¢;(k) — 0. Then, since
PSVRG and pSAGA usually employ constant step size,
both terms in go to 0, and thus are manifold iden-
tifying methods. (See also [Poon et al| (2018)).)

Previous work [Poon et al| (2018) discuss finite-
iteration manifold identification of pSVRG and
PSAGA, and give some hint to k for specific appli-
cations, but do not show its relationship with pyin.

RDA The RDA method (Duchi and Ruan, 2016)
and its proximal version (pRDA) (Xiaoj [2010) was in-
troduced as a variance-reduced method for stochastic

31f we assume additional conditions, such as the strong
growth condition on f, then €4(k) — 0 (Schmidt and Roux|

2013).

optimization (where we do not need to assume that
m is finite in ) Unlike pSVRG and pSAGA, in
pRDA we require a decaying step size for convergence,
and the variable error converges at a sublinear rate.

By some rearrangement, we can rewrite this scheme as

k
1
z > Vi (@)
=1

= ProX;.mp (fkt(k)g(k» .

g(k) -

LB+

Then, using z(*) = —kt® (¥ condition gives the
following result.
Theorem 5. pRDA identifies the manifold when

S Jminv

Gg(k) + ]{it(k)

where B > ||z ||y for all k. Taking t*) = 1/vk and
g strongly convex, k = O ((6min)4).

Since most choices of h in our applications are not
strongly convex, the only scheme in which RDA is
guaranteed to converge is with a diminishing step

51ze such as t( = 1/vk. Under this choice of
step size, M 0) reports E[(e,(k))?] = O(k~1/2),
which gives E[e, (k)] = O(k~1/4). Interestingly, Theo-
rem 5| does not depend on em(k) and guarantees active
set identification whenever t*) > O(1/k).

Previous work |[Lee and Wright| (2012) discuss
finite-iteration manifold identification of RDA and
show that there is a direct relationship between ¢, (k)
and dmin. They also provide sharper probabilistic esti-
mates of €,(k), whereas ours is in expectation.
also consider manifold identification
of a variantof RDA under a restricted strongly convex
assumptions on g.

4 APPLICATIONS

It is now evident that a key factor in the manifold
identifying behavior is dpn. Unfortunately, because
Omin depends on the optimal value x* of , in practice
the value is not available until after the optimization is
complete. In this section, we develop some intuition as
to when d,;n may be large, based on data incoherence
and training performance. We investigate this for both
sparse regularization and bound constraints. All the
proofs in this section are in Appendix [D]

4.1 Sparse regularization

Consider h(z) = Az|1. Then §;(x) = A — |Vg(x)].
Here, we consider two specific instances of problem :
sparse linear and logistic regression.

“Here, we use 1/t(k) in place of B%) the step size pa-
rameter used in (2010), so that all methods are easy
to compare.
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Linear regression Taking

L(aga;br) = (1/2)(aga — br)?,

then )
Omin = min A — — (AT (Az — b)),
min A — —|(47 (Az — b))

where A = [a1,...,am]T.

e Repeated feature entries. Assume that the
data matrix is A = [a,a,...,a] = alT € R™X",
Then for i # j and x; = 0 but x; is nonzero, then
x; is necessarily degenerate. (See Appendix @)

e Very incoherent A. When the data matrix A
is almost orthonormal (AT A ~ mlI) and fits the
data well (Az =~ b) then for fixed A, one may
expect dmin to be larger. (Prop. )

e Incoherent useless entries. Often, data vec-
tors are not totally incoherent. In fact, in classifi-
cation, we may expect the data matrices restricted
to one class to be highly correlated. Note, how-
ever, that if j € Z then z; = 0, and the jth
feature is not used in the final classifier. Such a
feature then has little correlation with the sam-
ple label, and may be uncorrelated with the other
sample features as well.

Assumption 1. Suppose that b = F(Az?) +y for
some smooth map F : R™ — R™ and sparse “truth”
vector x*, and the noise is bounded by |y|l2 < nv/m.
Define e = x* — x*%. For all columns a; of A, ||la;]|2 <
ay/m. For alli € Z, for all j # i, |aFa;| < p.
Proposition 1. With Assumption [1] and model b =
Ax# 4y, for all j € Z, in linear regression,

6min >A— p”e”l - a2|ej‘ — an.

In general, « is some small fixed constant. (If we nor-
malize the data, then o = 1.) This proposition sug-
gests that d,i, can be increased if either A is larger or
p, lej|, and n are smaller.

Figure [4] gives a surface plot of |z}| and §;(z*) for the
MNIST binary classification problem distinguishing 4
and 9, for varying choice of A\. As expected, with sparse
regularization, the features selected are those in re-
gions that distinguish between 4 and 9, such as the
angular slant of the 4. The §;(x*) surface plot shows
a close inverse, with large values when a feature is not
used in classification (|z;| ~ 0). In regions where both
plots are blue, the feature is degenerate, suggesting
ambiguity in whether it is important.

extend
where

Sparse logistic regression We now
our results to sparse logistic regression,
o(x) :=1/(1+ e *) the sigmoid function, and

A =0.1000, abs(x )
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Figure 4: Feature importance. MNIST classifica-
tion of 4 vs 9 digits via sparse linear regression for
varying levels of A. The top row are |x;| and bottom
are d(z}). Note the tradeoff between test error and
sparsity quality, with the middle column being a de-
sirable “sweet spot”.

ﬁ(a?:c; bi) = —b; log(a(aiTx)) (19)
—(1 —b;)log(1 — o(alz)).

7

Extending the analysis to logistic regression is more
involved, and thus we locally linearize the model.

Proposition 2. With Assumption and b =
o(Ax?) +y, define

7 =maxo(alz*)(1 — o(al z*)).

Then for all j € Z, for the sparse logistic problem,
5 2 A —71a?|lellz — an + O(|le][3).

The constant 7 < 1/4 is a measure of the maximum
“uncertainty” for a single sample; if all samples are
classified easily, then 7 is very small. Overall, if 7, 7,
and ||e||2 are small, we may expect larger dpip.

Figure [9] illustrates this result numerically. In almost
all cases, the probability of degeneracy (dmin = 0) is
at the tail end of the curve (unless A is too small). In
these experiments, we found varying noise levels and
the number of samples m had little effect on the dnin
distribution. However, the sparsity levels of 27, the A
value, and the incoherence of A, did have an effect.

4.2 Constrained optimization
Element-wise constraints on z appear after dualiza-
tion of the hinge-loss function. The most important

example of this is the Lagrange dual of SVMs EI
i L (b TK(b —LzT1
min sm(box)' K(box)— -x (20)
st 0<z; <\ i=1,...,m.

Here, xoy represents element-wise multiplication. The
matrix K € R™*™ is the symmetric positive semidef-
inite kernel matrix, where K;; = K¢(a;,a;) and Ky is

SWe analyze the version without bias terms in the

model.
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Figure 5: Histograms of d.,;,. Here, 2* is the solu-
tion to 10,000 random instances of logistic regression,
where the data is generated as in Fig[2] Unless other-
wise stated, A is random Gaussian, n = 250, m = 250,
sparsity level = 10%, noise level = 1/100, A = 1. As
expected, increasing A\ increases i, in expectation.
Also, when the sparsity level of # is increased, dmin
concentrates away from 0. Unexpectedly, more corre-
lated data seems to increase dpyi, in practice.

some kernel function. For a linear SVM, K = AAT.
After training, the binary classifier for a new data vec-

tor a is f(a) = sign(>_1", bizi K f(a;, a)).

The function ¢ is the L-smooth objective of ([20)
(where L = || K||2). The constraint can be expressed as
a separate 0/o0 indicator penalty for each element-wise
interval, and dmin = minez |(Vg(z*));|. Additionally,
J € Z implies z7 € {0, A}.

Proposition 3. Let us assume that for all j € Z,
|Ki;| < p fori# j, and |Ky| < «. Then for problem
, if x; = A then

1
oy Z%—E@H—pm).

We generally expect a to be a small constant value;
for linear SVMs, a > ||a;|3 for all i, and for the radial
basis function (RBF) kernel, o = 1. When z; = 0,
then the data sample j plays no role in the final clas-
sifier and we cannot give any guarantees; the value of
dmin can be arbitrarily close to 0. Now assume that
for some j € Z, x; = A. If we choose A\ very small

(corresponding to a large hinge loss regularizer in the
primal) we will obtain large 0pin; however this can
degrade performance as it unnaturally drives 2* to 0.
However, limiting A < 1/« and driving p to 0 can in-
crease Onmin. Active set methods for solving the dual
SVM are explored in a number of works, for example
Joachims| (1998), [Usunier et al.| (2010). Keerthi and
DeCoste (2005)), and [She and Schmidt| (2017)).

5 CONCLUSIONS

The ability of certain methods to identify low-
dimensional solution manifolds in finite time is known
in folklore, but existing proofs are often specific to the
algorithm. Here we provide a unified view of proximal
methods, with one key lemma that summarizes all the
requirements for finite active set complexity. To show
the power of this unified analysis, we calculate the step
size assumptions and number of iterations needed for
manifold identification for seemingly unrelated proxi-
mal methods.

The active set complexity is closely reliant on prob-
lem degeneracy (Omin), and both manifold identifica-
tion and variable convergence is often faster when 0.,
is large. We cannot easily compute dp;,, but anal-
ysis and experiments suggest that manipulating data
parameters like p, 7, and ||e||; (for example, through
clever feature selection) give favorable properties.

None of our results rely on strong convexity of g when
relating e(k), k, and i, though we require z* to
be unique. Considering problems with nonunique z*
adds unrealistic complications to the analysis, as the
resulting solution manifold may no longer be unique.
Of course, the rates €, (k) often require g to be strongly
convex, and having more general variable error rates is
the most natural way to relax this assumption. (Duchi
and Ruanl, 2016} [Yen et al., [2014)

Finally, thus far not much in our analysis has pre-
cluded the use of nonconvex functions g and regular-
izers h. Convexity has several advantages, such as a
simple and everywhere interpretable notion of subd-
ifferentials, and simplifies the question of unique sta-
tionary points. However, though we focus on convex
functions, we believe the intuition in our analysis car-
ries over to more general problems.
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