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Abstract

Function estimation under shape restrictions,
such as convexity, has many practical applica-
tions and has drawn a lot of recent interests.
In this work we argue that convexity, as a
global property, is too strict and prone to
outliers. Instead, we propose to use weakly
convex functions as a simple alternative to
quantify “approximate convexity”—a notion
that is perhaps more relevant in practice. We
prove that, unlike convex functions, weakly
convex functions can exactly interpolate any
finite dataset and they are universal approxi-
mators. Through regularizing the modulus of
convexity, we show that weakly convex func-
tions can be efficiently estimated both sta-
tistically and algorithmically, requiring mini-
mal modifications to existing algorithms and
theory for estimating convex functions. Our
numerical experiments confirm the class of
weakly convex functions as another competi-
tive alternative for nonparametric estimation.

1 Introduction
Much of machine learning is about estimating an un-
known function f from limited data. Key to the func-
tion estimation problem is our a priori knowledge about
the function f , without which the problem is clearly
hopeless. For example, a standard assumption in ma-
chine learning is that f can be described by a finite
number of parameters (or weights). Estimating the
function can thus be reduced to estimating its parame-
ters, a setting known as parametric estimation. Widely
used methods such as (linear) support vector machines,
(linear) logistic regression, Lasso, deep neural networks,
etc., all belong to this category. Parametric methods
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are popular because they are conceptually simple, their
optimization algorithms scale well, and because their
statistical properties are relatively well-understood.

Nonparametric methods, on the other hand, put less
stringent assumptions on the underlying unknown func-
tion. The candidate functions in a nonparametric
method cannot be described by finitely many parame-
ters, i.e., they consist of an infinite dimensional space.
Thus, nonparametric methods are more flexible when
we have imprecise (often qualitative instead of quanti-
tative) a priori information. Nonparametric function
estimation can be roughly divided into two categories:
those with smoothness restriction and those with shape
restriction. Splines and kernels are typical examples for
the former, see e.g. [Györfi et al., 2002], whereas the
latter, starting from the pioneering work in [Hildreth,
1954; Ayer et al., 1955], has drawn a lot of recent in-
terest as well [Hannah & Dunson, 2012; Hannah et al.,
2014; Balázs et al., 2015; Yin & Yu, 2017; Lim & Glynn,
2012; Seijo & Sen, 2011; Xu et al., 2016].

The practical relevance of estimating shape-restricted
functions such as convex functions has been well artic-
ulated in econometrics [Varian, 1982, 1984], geometric
programming [Magnani & Boyd, 2009; Hannah & Dun-
son, 2012], operations research [Shapiro et al., 2009],
and finance [Grenander, 1956; Hannah et al., 2014], just
to name a few. For example, the optimal value func-
tion of a partially observable Markov decision process
is convex [Sondik, 1978]. Convexity is also important
from an operational perspective: if we were to find the
minimum of an estimated function, see Hannah et al.
[2014] for applications, then having convexity is cer-
tainly useful for efficiently finding the global minimum.

Convexity, however, is a global property. As we show in
§2, even changing a single data point can completely de-
stroy convexity and arbitrarily mislead the least-squares
convex estimate. In this work we consider estimating
an unknown regression function under weak convexity
conditions, which belongs to the above nonparamet-
ric shape restricted category. Our main contribution
is to point out a surprisingly simple way to quantify
(approximate) convexity, along with its algorithmic and
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statistical consequences. The advantage of our new class
of weakly convex functions is: (1) it is universal, unlike
the existing class of convex functions that is being used
in the literature; (2) it can enforce approximate con-
vexity, unlike existing methods based on smoothness
assumptions. Moreover, we can achieve this advantage
by modifying the existing convex estimator in a mini-
mal way, retaining most of its appealing properties and
adding universality. Each of these properties ideally
should be possessed by any sensible method and yet
no existing one could achieve them all.

In §3 we recall the definition of weakly convex functions,
and we discuss a few key properties of them. In partic-
ular, it is known [Rockafellar, 1982; Shapiro & Yomdin,
1981] that on a compact domain weakly convex func-
tions are simply piecewise quadratic (with a bounded
Hessian and possibly infinitely many pieces). These
properties help us identify weakly convex functions in
applications. In fact, many (if not all) functions used in
practice are weakly convex (but not necessarily convex
or concave). Then, in §4 we prove two surprising facts
about weakly convex functions: (a) they can exactly
interpolate any finite dataset, hence bound to overfit,
no matter how large the sample size is; (b) they can
approximate any continuous function on a compact
domain arbitrarily well. Note that both properties do
not hold for convex (or concave) functions. The latter
property, known as universal approximators, strongly
motivates us to consider the class of weakly convex
functions in nonparametric shape-restricted estimation,
if we can address the first overfitting property.

Indeed, in §5 we show that the modulus of convexity
can be used as a natural regularizer to alleviate the over-
fitting problem. The resulting optimization problem
turns out to be quite convenient: it requires very mini-
mal modification to existing algorithms for estimating
convex functions. Moreover, almost all statistical prop-
erties of the least-squares convex estimate can be easily
carried over to the much larger class of weakly convex
functions. In §6 we discuss two appealing properties of
the weakly convex estimates: adaptation to the under-
lying geometry and amenable to efficient minimization,
and we show how to adapt existing scalable algorithms.
Finally, we validate our results in §7 through numerical
experiments, and we conclude in §8.

2 Motivating Example
In this section, we consider function estimation on a syn-
thetic dataset. We show that the convexity constraint
is too strict and is prone to outliers, which motivates
our consideration of weakly convex functions.

Let us consider the following simple dataset D in R2:
For i = 1, . . . , 2n+ 1, let xi = −n− 1 + i and yi ≡ 0.
Then, we perturb the point in the middle, i.e., yn+1 = t

with t ≥ 0, see Figure 1 for an illustration. We are
interested in fitting a convex function to D in the least-
squares sense:

min
f :R→R

2n+1∑
i=1

(
f(xi)− yi

)2
, (1)

where f is restricted to be convex. As mentioned before,
in many applications (see [Groeneboom & Jongbloed,
2014] for many inspiring examples), the true function
does have a convex shape (but not necessarily smooth),
at least approximately. For example, the insurance risk
is roughly a convex function of the age. We remark
that for simplicity we have chosen to perturb a single
point. More generally, we can perturb a small interval
around the middle point yn+1 = t and the conclusion
would be the same.

It is easy to verify the best convex fit is a constant, i.e.,
f(x) ≡ t

2n+1 , with the optimal least-squares objective
2n

2n+1 t
2. The important observation we immediately

make is that even changing a single data point can
completely destroy convexity: there is no longer any
convex function that can fit the data exactly, and the
optimal least squares convex fit can incur an arbitrar-
ily large loss (as t goes to ∞).1 We remark that on
this toy dataset it is tempting to try to detect and
remove the outlying data point yn+1 = t (simply by
say inspecting Figure 1) and then fit a convex function
on the remaining “clean” data points. This approach,
while of some value, can become misleading again in
higher dimensions where no data point “stands out.”

The lesson we learn here is that convexity is a very
stringent condition and perhaps not exactly what we
aim for. An approximately convex function would serve
our purpose equally well, if not better. Our main con-
tribution in this work is to point out a very natural
quantification of approximate convexity, and a statisti-
cally consistent and computationally efficient procedure
for estimating approximately convex functions.

Before delving into definitions, let us point out that for
univariate functions, Yin & Yu [2017] recently proposed
a natural regularizer for estimating a univariate func-
tion that is the difference of two convex functions (DC).
Figure 1 illustrates this DC approach on our toy dataset.
We observe that when the regularization constant λ is
small, there is (almost) no restriction on choosing any
difference of convex function. As a result, DC fits our
dataset exactly. On the other hand, when λ is very
big, DC degenerates to a linear fit, which happens to
be the best convex fit here. For moderate λ, DC gives
a piece-wise linear (but not necessarily convex) fit.

1While it is tempting to attribute the large loss to the
non-robustness of the least squares loss, we note that if the
underlying function that our dataset D is sampled from is
say, a downwards parabola, then any convex estimate is
bound to fit poorly and incur a large loss.
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Figure 1: Toy example on the dataset described in §2, with n = 5, t = 3. From left to right: (a). The best convex
fit is constant f(x) ≡ t

2n+1 ; note the big gap at x = 0, y = t = 3. (b). The difference of convex approach in Yin &
Yu [2017]. (c). Our weakly convex approach; with `22 regularizer, c.f. (4) below. (d). Our weakly convex approach;
with `1 regularizer. The oscillations between the marked examples in (c) and (d) are due to cancellation of the
convex fit (piece-wise linear) and the global quadratic fit.

Despite the appealing performance of DC on our toy
dataset, it has a serious limitation: it cannot be ex-
tended to multivariate non-additive functions. In con-
trast, our proposed weakly convex (WC) approach works
for all multivariate functions. The last two subplots in
Figure 1 illustrate the fits of WC (with different regular-
izations). Again, when the regularization constant λ is
small, there is little restriction on WC and as a result
it fits the training data (marked points) exactly. As λ
gets bigger, WC gets closer and closer to the best convex
fit. For `1 regularization (last subplot), a sufficiently
large λ will recover the best convex fit while for `22 reg-
ularization the convergence only happens in the limit.
We will discuss more about regularization in Section 5.

3 Weakly Convex Functions

In this section we recall some key definitions. Let our
universe X be a (convex) subset of Rp. A real-valued
function f : X→ R is called weakly convex w.r.t. an
arbitrary norm ‖ · ‖ if there exists some σ ∈ R such
that for all x,y ∈ X and λ ∈ [0, 1]:

f(λx+(1−λ)y)+σλ(1−λ)‖x−y‖2≤f(x)+f(y). (2)

Of particular interest are convex functions with σ =
0 and strongly convex functions with σ > 0. The
largest σ so that (2) holds is called the modulus (of
convexity) of f . We remark that convexity itself is an
algebraic property that does not rely on the norm while
in contrast, the modulus of convexity does depend on
the norm. Weakly convex functions are systematically
studied first by Vial [1983] under the Euclidean norm.

The following theorem provides a convenient character-
ization of weakly convex functions:

Theorem 1 (Nikodem & Pàles [2011]). The following
are equivalent:

• The norm ‖ · ‖ is induced by some inner product;

• The function q(x) = ‖x‖2 is weakly convex (w.r.t.
norm ‖ · ‖) with modulus 1;

• f is weakly convex with modulus σ iff f−σq is convex.

From here on, the norm ‖ · ‖ is always induced by an
inner product. We denote the set of weakly convex
functions on X with modulus at least σ as WCσ =
WCσ(X). We will often omit the domain X in our
notations as it is clear from context. In particular,
WC+ :=

⋃
σ≥0WCσ is the set of all convex functions,

and WC :=
⋃
σ∈RWCσ denotes the set of all weakly

convex functions. We remark that while WCσ depends
on the underlying norm ‖ · ‖ (since the modulus does),
WC+ and WC remain the same for all norms.

Weakly convex functions inherit many nice properties
from convex functions. For instance, weakly convex
functions are locally Lipschitz hence they admit gen-
eralized gradients in the sense of Clarke [1990]. It is
easy to verify thatWC is a convex cone, i.e., f, g ∈ WC
implies αf + βg ∈ WC for all α, β ≥ 0. However, WC
is not closed under negation (consider for instance the
function −x4). It immediately follows that multiplica-
tion or composition does not preserve weak convexity
in general.

When the domain X is compact convex, which is per-
haps the most relevant in practice, we can say much
more about weakly convex functions. Indeed, let us re-
call the set of locally weakly convex functions LWC(X),
i.e., for each x ∈ X there exists a neighborhood N of
x so that f is weakly convex on N ∩X.
Theorem 2. For compact convex domain X ⊆ Rp,
LWC(X) =WC(X).

Rockafellar [1982] and Shapiro & Yomdin [1981] char-
acterized locally weakly convex functions, through
Clarke’s generalized gradient. Many of their results
carry over to the weakly convex case, either by restrict-
ing the domain X to be compact or by strengthening
the conditions into a global sense. We mention the
following convenient results on (locally) weakly convex
functions, and defer more to the appendix.
Theorem 3. A (closed) function f is σ-weakly convex
iff f(x) = supt∈T 〈at,x〉 + bt + σ‖x‖2 for some index
set T .
Theorem 4 (Shapiro & Yomdin [1981]). Let f(x) =
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supt∈T ft(x) for some index set T , where each ft is
twice continuously differentiable with uniformly bounded
Hessian. Then, f is weakly convex.

Thus, weakly convex functions are simply piecewise
quadratic, with a bounded Hessian everywhere in the
domain (and with possibly infinitely many pieces). In
the next section we prove that weakly convex functions
are in some sense “universal.”

4 Universal Approximator

As is apparent from the definition, every weakly convex
function is a difference of two convex functions (with
the subtrahend being convex quadratic). Perhaps most
surprisingly, weakly convex functions can interpolate
any finite dataset exactly.
Theorem 5. Let {(xi, yi)} ⊆ X×R be a finite dataset
with xi = xj =⇒ yi = yj. Then, there exists f ∈ WC
such that f(xi) = yi for all i.

In contrast, as shown in §2, convex functions cannot
interpolate certain finite dataset exactly. Moreover,
convex functions cannot approximate certain functions,
e.g. concave ones, well. On the other hand, weakly
convex functions, in addition to accommodating ap-
proximate convexity, also enjoy the following universal
approximation property, putting itself in the same cat-
egory as deep neural networks (with an unbounded
number of neurons) and kernel machines (with uni-
versal kernels). Note that the usual class of smooth
functions (such as polynomials), while being universal,
cannot enforce (approximate) convexity.

Recall that C0(X) denotes the set of continuous func-
tions f on X that vanishes at infinity, i.e., for all ε > 0
there exists a compact (convex) set K ⊆ X such that
|f(x)| < ε if x 6∈ K. As usual, we equip C0(X) with
the uniform metric ‖f − g‖∞ := supx∈X |f(x)− g(x)|.
Theorem 6. Let X ⊆ Rp be closed (or open) convex.
Then,WC(X)∩C0(X) is dense in C0(X), i.e., for all ε >
0, for all g ∈ C0(X), we can find f ∈ WC(X) ∩ C0(X)
so that ‖f − g‖∞ < ε.

Using standard results in real analysis (e.g. [Rudin,
1987, Theorem 3.14]), it is immediate that WC(X) ∩
Lp(X) is also dense in Lp(X), the set of functions f
with |f |p integrable w.r.t. say the Lebesgue measure,
as long as 1 ≤ p <∞. The surprising aspect of Theo-
rem 6 is that neither convex functions nor quadratic
(convex) functions are universal, yet by subtracting the
two classes we get a universal approximator2. More
pleasantly, as we show next, the resulting weakly convex

2As pointed out by an anonymous reviewer, many of our
results still hold if we replace the quadratic function q with
any strongly convex function. It would be interesting to
study the effect of some other choice in concrete settings.

functions inherit many nice statistical and algorithmic
properties from the two parent classes, in addition to
the analytical ones mentioned in §3.

5 Estimating Weakly Convex
Functions

In this section we turn to our main nonparametric
shape-restricted function estimation problem. Consider
the following statistical model: Y = f(X) + ξ, where
f is an unknown function, and ξ is the random noise
with E(ξ|X) = 0. Given a finite dataset D = {(xi, yi) ∈
X×R : i = 1, . . . , n}, we are interested in estimating
the unknown function f that generates our dataset D.

We consider the popular least squares3 estimate:

min
f :X→R

1

n

n∑
i=1

(f(xi)− yi)2 + λ · reg(f), (3)

where reg(f) is an appropriate regularization term that
controls the complexity of f . In particular, we propose
to restrict f to the class of weakly convex functions:

min
f∈WCσ,σ≤0

1

n

∑n

i=1
(f(xi)− yi)2 + λσ2, (4)

where WCσ denotes the set of weakly convex functions
with negative4 modulus σ, and the `22 regularization
term on the modulus σ is employed to encourage an
(approximately) convex fit. As shown in Theorem 5,
without such regularization we are bound to overfit
(achieving 0 training error). Clearly, if λ = 0, then
we are searching in the entire class of weakly convex
functions (hence we can fit exactly any finite dataset),
whereas if λ =∞, then we reduce to the familiar class
of convex functions. An intermediate λ allows us to
avoid overfitting but also to accommodate estimates
that are approximately convex.

`2 regularization is also appealing in resolving identi-
fiability issues. Indeed, a weakly convex function, by
definition, can be decomposed into the sum of a con-
vex function and a quadratic function. However, the
decomposition is not unique. With `2 regularization,
among all decompositions we choose the one with a
modulus closest to 0. Of course, the minimizer f in
(4) still need not be unique, after all a finite dataset
can only determine the value of f on a finite number of
points. Alternatively, we can also use `1 regularization,
by replacing λσ2 with λ|σ|. In this case, σ may no
longer be unique, but for sufficiently large λ, σ will

3It is straightforward to extend all of our results to other
reasonable losses, such as the absolute loss.

4Strongly convex functions with positive modulus are
automatically included, since the class WCσ increases as σ
decreases. The seemingly unnecessary constraint σ ≤ 0 is
introduced for later developments in §6.
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be exactly 0, i.e., we reduce to the convex case with a
sufficiently large but finite λ, which is not possible for
the `2 regularization. See Figure 1 for an illustration.

Using Theorem 1 and well-known results in estimat-
ing convex functions [Kuosmanen, 2008; Seijo & Sen,
2011; Lim & Glynn, 2012], for example [Boyd & Van-
denberghe, 2004, p. 338], we can simplify (4) as the
following finite dimensional convex problem:

min
z,σ≤0,G∈Rn×p

1

n

∑n

i=1
(zi + σ‖xi‖2 − yi)2 + λσ2 (5)

s.t. zi ≥ zj + 〈Gj:,xi − xj〉,∀i 6= j. (6)

Here we have the decomposition f = g+σ‖·‖2 for some
convex function g, and zi = g(xi) are the function val-
ues on the training samples. Note that (6) is basically
the subgradient condition for the convex function g,
with the vector Gj: being the subgradient of g at xj .
Based on a finite dataset, (5)-(6) returns the estimated
function values f(xi) = zi+σ‖xi‖2 on the training set.

While there are generally infinitely many weakly convex
functions f that all fit equally well on the training set,
there is a natural piece-wise quadratic representative
(that is “simple” according to Occam’s razor principle):

f̂λ(x) = ĝλ(x) + σ‖x‖2, (7)
ĝλ(x) = max

j=1,...,n
zj + 〈Gj:,x− xj〉. (8)

This choice accords to the common practice in previous
works [Kuosmanen, 2008; Balázs et al., 2015; Seijo &
Sen, 2011; Lim & Glynn, 2012], where σ = 0. Using f̂λ
we can predict the function value at any test point x.
We remark that the non-uniqueness of f̂λ is inherently
common for all rich nonparametric function classes:
Outside of the convex hull of the training data, we
simply do not have any information to extrapolate the
value of f (and shape or smoothness constraints would
not help). On the other hand, within the convex hull
of the training data, different solutions lead to similar
(usually identical) interpolations. The statistical and al-
gorithmic properties that we discuss in the next section
apply to any choices of the solution, which all converge
to the true function as the sample size increases.

6 Why Weakly Convex Functions?

In this section we elaborate on the gained advantages
of framing nonparametric function estimation over the
class of weakly convex functions. Most saliently, we can
extend almost all known results for estimating convex
functions to weakly convex functions, and yet gain the
universal approximation property discussed in §3, a
seemingly “free” lunch.

6.1 Adaptation to geometry

So far we have assumed the inner product induced norm
‖·‖ is given to us. Conceptually, it almost takes no extra

effort to actually learn the underlying geometry induced
by the norm and the function f simultaneously and
tractably. Indeed, recall that any inner product induced
norm can be represented by a symmetric and positive
semidefinite matrix 0 � Q ∈ Rp×p, with 〈x, z〉 = x>Qz

and ‖x‖ =
√
x>Qx. To learn Q simultaneously with

f , we modify (5) as follows:

min
z,Q�0,G

1

n

∑n

i=1
(zi + x>i Qxi − yi)2 + λ‖Q‖2F (9)

s.t. zi ≥ zj + 〈Gj:,xi − xj〉,∀i 6= j, (10)

where we have absorbed the (negative) modulus σ into
Q. It is clear that (9) is an instance of semidefinite
programming (SDP) hence can be solved in polynomial
time.

For large datasets, the SDP formulation (9) might take
a long time to solve, in which case we can consider
restricting Q to be diagonal. The resulting quadratic
program can be solved much more efficiently. In fact,
its runtime complexity is on par with existing con-
vex estimation methods [Seijo & Sen, 2011; Lim &
Glynn, 2012; Balázs et al., 2015], when p = O(n2). An-
other alternative might be simply dropping the positive
semidefinite constraint Q � 0 in (9), without leaving
the class of weakly convex functions.

6.2 Computational convenience

Next, we present an efficient meta-algorithm for solv-
ing the problem (5)-(6). We observe that the variables
(z, G) and σ do not constrain each other so we can sim-
ply minimize them alternatively, i.e., we fix (z, G) and
minimize σ in closed-form, and then we fix σ and mini-
mize (z, G) using any existing algorithm for estimating
convex functions. This meta-algorithm is very intuitive:
in each iteration, based on the current convex estimate
(z, G) we fit an “optimal” quadratic function to the
residual, and then we repeat by estimating the con-
vex component (z, G) again with the adjusted, “more
convex” dataset {(xi, yi − σ‖xi‖2) : i = 1, . . . , n}. We
summarize the procedure in Algorithm 1.

Algorithm 1 Alternating Minimization
input :X = [x1, . . . ,xn] ∈ Rp×n, y ∈ Rn, λ, µ ≥ 0

1 while not converged do
// solve the convex component g

2 (z, G)← cvx_est
(
X,y − diag(X>QX), µ

)
// solve the quadratic component Q

3 Q← quad_est
(
X,y − z, λ

)
In Algorithm 1, by caching the magnitudes ‖xi‖2, the
step for estimating σ costs only O(n), and is negligi-
ble compared to the cost for estimating (z, G). It is
straightforward to modify Algorithm 1 for solving (9)
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(with a full Q or a diagonal Q), although the step for
solving Q no longer admits a closed-form solution. Nev-
ertheless, we can use (accelerated) projected gradient
to solve Q where each step costs O(p2(p+ n)) for the
full case (9) and O(np) for the diagonal case. We omit
the obvious details.

Lastly, let us mention how to solve the convex com-
ponent g, i.e., solving (z, G). This is an instance of
standard convex quadratic programs, with (p + 1)n
variables and n(n− 1) linear constraints. For small p
and n we can simply use standard convex optimization
toolboxes. For large p or n, we can turn to first order
methods such as the cutting-plane method in [Balázs
et al., 2015] or the clustering approach in [Magnani &
Boyd, 2009]. In fact, a more direct approach for solving
(9) or (5) is also possible. For instance, we can easily
adapt the multi-block ADMM algorithm of Mazumder
et al. [2018].

The convergence of Algorithm 1 follows easily from the
general result of Beck & Tetruashvili [2013, §5].

6.3 Statistical properties

The key to establish statistical consistency and rates of
convergence of the least-squares weakly convex estimate
in (7) is the notion of metric entropy. Let our domain
X be compact convex and F be a class of uniformly
bounded continuous functions on X, equipped with the
uniform metric. An ε-cover of F is a subset N ⊆ F
such that for all f ∈ F , there exists some g ∈ N with
‖f − g‖∞ ≤ ε. The metric entropy of F (w.r.t. the
uniform metric), defined as

Hε(F) := inf{log |N | : N is an ε-cover of F}, (11)

is a natural measure of the size of F , which is usually
infinite dimensional in nonparametric estimation. The
following result is obvious from the definitions:
Theorem 7. H2ε(F + G) ≤ Hε(F) +Hε(G).

Now, let F = CX,L,B be the class of convex functions
on X that are uniformly bounded by B and that are
Lipschitz continuous with Lipschitz constant at most L.
The recent work of Balázs et al. [2015] proved thatHε =
O
(
( 1ε )

d/2 log 1
ε

)
. On the other hand, it is well-known

that a compact convex body in a d-dimensional space
has metric entropy O(log 1

ε ). Therefore, if we letM be
the class of positive semidefinite matrices Q such that
(say) ‖Q‖F ≤ C, then Hε(M) = O(log 1

ε ). Let G be
the class of quadratic functions x>Qx with ‖Q‖F ≤ C.
Note that for two quadratic functions x>Qx and x>Px,
their uniform distance supx∈X |x>Qx−x>Px| ∝ ‖Q−
P‖2, whence follows that Hε(G) ∝ Hε(M) = O(log 1

ε ).
Using Theorem 7 we conclude that H2ε(F + G) ≤
Hε(F) +Hε(G) = O

(
( 1ε )

d/2 log 1
ε

)
. Observe that the

set F + G consists of weakly convex functions whose
modulus of convexity is uniformly bounded.

Equipped with the above result, we can now invoke
[Balázs et al., 2015, Theorem 3.1]: assuming the noise
ε is iid Gaussian (or more generally, subgaussian) with
constant variance, and the regression function f belongs
to the class F + G, then the least-squares estimate in
(7) enjoys the following statistical guarantees: f̂n → f
in mean square at the rate n−2/d log n when say d > 4.
In particular, the least-squares estimate is consistent.
We remark that it is possible to improve the above
bound, by choosing a suitable number of pieces in (7)
(instead of n), see [Balázs et al., 2015, Theorem 4.2]
for details.

6.4 Minimization of the estimate

Unlike many other function classes used in nonparamet-
ric estimation, weakly convex functions are particularly
amenable to minimization [Spingarn, 1982]. In some
applications, we are interested in finding the minimizer
or minimum value of an unknown function f . The
so-called meta-modeling approach, as studied in Han-
nah et al. [2014], first estimates f based on a finite
sample, and then finds the minimizer of the estimated
function. Apparently, the meta-modeling approach is
appealing only when the estimated function is “easy”
to minimize, which is true if we restrict ourselves to
convex functions.

The same is true for weakly convex functions, with the
additional advantage of being a universal approximator.
Indeed, we can apply the celebrated proximal point
algorithm [Rockafellar, 1976] to minimize the weakly
convex estimate f̂ , which amounts to repeatedly com-
puting the following proximity operator:

xt+1 ← argminx f̂(x) +
1

2ηt
‖x− xt‖2. (12)

For sufficiently small ηt (in particular, when ηt is
smaller than the absolute modulus of convexity |σ|
of f̂), the proximity operator (12) is a well-defined con-
vex problem hence can be solved using standard convex
optimization techniques. In fact, using the convention
in (7), (12) is a simple (convex) quadratic program. It
follows then from the result of Attouch & Bolte [2009]
that xt converges to a critical point of f̂ , whose quality
is usually found to be quite reasonable in practice.

7 Experiments

In this section, we conduct experiments to compare the
following function estimation schemes:

• convex [Balázs et al., 2015; Mazumder et al., 2018;
Lim & Glynn, 2012; Seijo & Sen, 2011]: assuming
the unknown regression function is convex;

• concave: a straightforward “negation” of convex;
• linear: assuming the regression function is linear—

a parametric estimation procedure;
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Table 1: Mean square test error (standard deviation) on 4 synthetic datasets over 10 random repetitions.

‖x‖22(λ = 0.1) −‖x‖2(λ = 0.1) −‖x‖22(λ = 10−5) 10 sin(‖x‖2)(λ = 10−5)

`1-wc 0.5829 (0.0246) 0.2374 (0.0071) 0.0329 (0.0035) 0.1825 (0.0175)
`22-wc 0.5829 (0.0246) 0.0376 (0.0068) 0.0328 (0.0035) 0.1825 (0.0175)
convex 0.5829 (0.0246) 0.2374 (0.0071) 1.3061 (0.0464) 0.7626 (0.0489)
concave 1.3340 (0.0520) 0.0371 (0.0038) 0.5730 (0.0196) 0.3434 (0.0248)
linear 0.9426 (0.0463) 0.0913 (0.0068) 0.9245 (0.0281) 0.5216 (0.0439)
dc 0.1014 (0.0173) 0.0429 (0.0068) 0.1043 (0.0138) 0.2519 (0.0256)

• DC [Yin & Yu, 2017]: assuming the regression func-
tion is the sum of univariate difference of convex
functions;

• WC (proposed): with `22 and `1 regularization on the
modulus of convexity σ.

7.1 Synthetic dataset

Our goal here is to confirm the usefulness of weakly
convex functions in nonparametric estimation, through
well-controlled numerical simulations (where we know
the actual true regression functions). We generate our
data X ∈ Rn×p and y ∈ Rn in the following way: each
entry in X is an iid sample from the uniform distri-
bution on [−1, 1]p and each entry in y is obtained by
f(x) + ξ, where f is the unknown regression function
and ξ ∼ N (0, γ2I) is an iid sample from the stan-
dard Gaussian distribution. We consider 4 different
regression functions:

• Scenario 1: f1(x) = ‖x‖22, which is additive and
convex (favorable to DC and convex);

• Scenario 2: f2(x) = −‖x‖2, which is non-additive
and concave (favorable to concave);

• Scenario 3: f3(x) = −‖x‖22, which is additive and
concave (favorable to concave, DC and WC);

• Scenario 4: f4(x) = 10 sin(‖x‖2), which is neither
additive nor convex nor concave.

We set γ = 1 and p = 10 and we tune hyper-parameters
on a validation set, after which we fix the best param-
eters and repeat each experiment 10 times. For each
experiment, we generate 500 and 1000 training and test
points, respectively. The averaged mean square test
errors (standard deviations) are reported in Table 1,
from which we make the following observations.

For Scenario 1, DC performed best, followed by WC and
convex. The reason why DC performed the best here
is that the true function f1 is indeed additive hence
DC can exploit this information for statistical efficiency.
WC performed the same as convex since on this dataset
the best estimate of the modulus of convexity σ is obvi-
ously 0. concave and linear performed significantly
worse, since the true function is indeed quite far from

being concave or linear. For Scenario 2, instead, we see
that when the true regression function is not additive,
the performance of DC suffered, while WC (with `22 regu-
larization) correctly estimated the concave function f2.
Not surprisingly, concave also estimated f2 well while
convex and linear incurred a large error. Scenario 3
is the “negation” of Scenario 1. As a consequence, DC
performed very similarly in these two scenarios while WC
performed surprisingly much better in Scenario 3. The
reason here is because in Scenario 1 WC had to estimate
the convex quadratic function f1 using piecewise linear
functions (the nonnegative constraint σ ≤ 0 forces σ
to be roughly 0) while in Scenario 3 WC benefited from
employing an explicit concave quadratic term σ‖x‖22
in its estimate, which would have incurred a large loss
if approximated by piecewise linear functions, like in
Scenario 1. Lastly, Scenario 4 shows an example where
the true regression function f4 is neither additive nor
convex nor concave. All methods except WC seemed to
suffer significantly on this dataset, hence demonstrating
the flexibility of weakly convex functions.

Figure 2 illustrates the overfitting effect of WC and how
regularization helps alleviate this issue. We observe
that without regularization (middle column), WC re-
produces the training set (left column) almost exactly,
confirming Theorem 5 and signaling overfitting. With
regularization (right column), WC achieves much better
test performance instead.

7.2 Real datasets

We also conduct experiments on three real datasets
below. Each experiment is repeated 10 times with
cross-validation (for selecting hyper-parameters), and
we normalize the features and the output.

• R-1: Based on years of education and experience, we
predict mean weekly wages using the dataset ex1029
in the Sleuth2 package in R. It has also been used
previously in Hannah & Dunson [2013] for convex
estimation. Empirically, mean weekly wages are ap-
proximately concave w.r.t. years of experience, but
not concave or convex w.r.t. years of education. A
common trick is to conduct an exponential transform,
e.g. 1.2years education, to induce concavity [Hannah &
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Figure 2: The effect of overfitting and regularization. First column: training (above) and test (below). Second
column: estimated responses without regularization. Third column: estimated responses with regularization.

Table 2: Mean square test error (standard deviation) on 4 real datasets over 10 random repetitions.

R-1(a) R-1(b) R-2 R-3

`1-wc 0.0010 (0.0002) 8.867e-04 (1.406e-04) 0.0016 (0.0012) 0.0010 (0.0001)
`22-wc 0.0010 (0.0002) 8.867e-04 (1.406e-04) 0.0016 (0.0012) 0.0010 (0.0001)
convex 0.0014 (0.0005) 0.0019 (0.0011) 0.0341 (0.0315) 3.2240 (3.5396)
concave 0.0010 (0.0004) 0.0014 (0.0005) 0.1023 (0.1141) 0.5322 (0.1679)
linear 0.0012 (0.0002) 0.0012 (0.0002) 0.0030 (0.0020) 0.0014 (0.0002)
dc 0.0020 (0.0006) 0.0022 (0.0007) 0.0040 (0.0026) 0.0023 (0.0007)

Dunson, 2013]. We perform experiment for both the
original input (denoted as R-1(b)) and the exponen-
tially transformed input (denoted as R-1(a)). This
dataset has 858 valid data points and we randomly
choose 300 of them for training.

• R-2: We use the NBER-CES Manufacturing Indus-
try Database. We predict the total value of ship-
ment (vship) based on 4 features: total real capital
stock (cap), production worker hours (prodh), non-
production workers (emp-prode), and production
workers (prode). The data is collected from 1958
to 2009, and we focus on the year 2000. There are
totally 473 data points, and 300 of them are used for
training. This dataset has been used in Mazumder
et al. [2018] for convex estimation and we follow its
suggestion to take a log-transform of all features.

• R-3: Concrete is the most important material in
civil engineering. We use the UCI dataset to pre-
dict the concrete compressive strength based on 8
features: cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, fine aggregate,
and age. There are totally 1030 data points and we
randomly choose 300 points for training.

The experiment results are reported in Table 2. For
R-1(a), since the exponential transform leads to an
approximately concave relationship between the input
and output, the performance of WC and concave are
not surprisingly very similar. However, without the ex-

ponential transform, WC performed the best on R-1(b),
followed by linear and then concave, demonstrating
its robustness. On R-2, we empirically verified each
input and output exhibiting an increasing and linear
trend at the beginning but a less clear trend at the
end. In this case, WC performed the best with MSE
nearly a half of that of linear, demonstrating its flex-
ibility. For R-3, the concrete compressive strength
is considered to be highly non-linear w.r.t. age and
ingredients. Empirical visualization does not show any
clear trend between individual features and the output.
Nevertheless, WC again performed the best, thanks to its
universal approximation property and regularization,
followed by linear, while convex severely overfits and
suffers a significantly large MSE.

8 Conclusions

We have proposed weakly convex regression to alleviate
the stringent convexity constraint. Weakly convex func-
tions can exactly interpolate any finite dataset, they
are universal approximators and they can accommo-
date approximate convexity. To combat overfitting, we
proposed to regularize the least-squares weakly convex
estimate by the modulus of convexity. The resulting
formulation inherits nice statistical and algorithmic
properties from its convex counterpart. Our numerical
experiments confirmed the competitiveness of weakly
convex functions in nonparametric estimation.
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