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Abstract

This paper is concerned with the problem of
learning the mapping from one graph to an-
other graph. Primarily, we focus on the is-
sue of how to effectively learn the topology of
the source graph and then decode it to form
the topology of the target graph. We em-
bed the topology of the graph into the states
of nodes by exerting a topology constraint,
which results in our Topology-Flow encoder.
To decoder the encoded topology, we de-
sign a conditioned graph generation model
with two edge generation options, which re-
sult in the Edge-Bernoulli decoder and the
Edge-Connect decoder. Experimental results
on the 10-nodes simple graph dataset illus-
trate the substantial progress of the proposed
method. The MNIST digits skeleton map-
ping experiment also reveals the ability of our
approach to discover different typologies.

1 Introduction

Learning from complex structures and generating com-
plex structures has long been a “hot” topic in machine
learning. Sequence encoders, sequence decoders and
the sequence to sequence learning have become stan-
dard methodologies for many applications in natural
language processing (NLP). Tree structures have also
attracted substantial attentions, including the tree en-
coders (Tai et al., 2015) and tree decoders (Zhou et al.,
2018). As a more general task, learning from graphs
is a recently emerged field (Battaglia et al., 2018), be-
cause graph structures are the natural representations
for complex relationships among elements.
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Recently, several graph encoders and decoders have
already been proposed and applied in some structure
mapping frameworks, including the probabilistic graph
generation models (You et al., 2018; Li et al., 2018),
the sequence-to-graph frameworks (Gildea et al., 2018;
Wang et al., 2018, 2016; Peng et al., 2018), and the
graph-to-sequence frameworks (Li et al., 2016; Xu
et al., 2018; Song et al., 2018). The problem of learn-
ing to map a general graph to another graph, how-
ever, has not been thoroughly studied. One may think
that building a graph-to-graph system is a routine task
since one can might be able to build one by assembling
a graph encoder and a graph decoder. However, the
algorithm does not work as a casual combination. The
problem of graph-to-graph learning has its distinct na-
ture, and the encoders and decoders proposed for other
tasks may be incompetent for graph-to-graph learning.

In this paper, we propose a general learning framework
for mapping one graph to another graph. Primarily,
we focus on the problem of how to effectively learn
the topology of the source graph and then decode it
to form the topology of the target graph. We em-
bed the topology of the graph into the states of nodes
by exerting a topology constraint, which results in
our Topology-Flow encoder. To decoder the encoded
topology, we design a conditioned graph generation
model with two edge generation options, which result
in the Edge-Bernoulli decoder and the Edge-Connect
decoder. Experimental results on the 10-nodes sim-
ple graph dataset illustrate the substantial progress
of the proposed method. The MNIST digits skeleton
mapping experiment also reveals the ability of our ap-
proach to discover different typologies.

In the rest of the paper, we first discuss the related
work in Section 2 and propose the problem statement
of the graph-to-graph learning in Section 3. The pro-
posed encoders and decoder are explained in Section
4 and Section 5, respectively. Section 6 presents the
learning algorithm and Section 7 presents the experi-
mental results. We conclude our work in Section 8.
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2 Related Work

2.1 Learning from Graphs

Just like learning from sequences, there are two ma-
jor classes of methodologies for the task of learn-
ing from graphs. The first one is the neighbor-
hood/convolution based approach, including Graph
Neural Network (GNN) (Scarselli et al., 2009), Graph
Convolution Network (GCN) (Johnson, 2017b), Gated
Graph Neural Network (GGNN) (Li et al., 2016),
Graph-LSTM (Liang et al., 2016; Agrawal et al., 2017),
and other graph/network embedding algorithms (Cai
et al., 2018). Convolution-based methods study the
structures of the neighborhoods of nodes on the graph
and generate an annotation for each node as the rep-
resentation of the neighborhood centered at the node.
The convolution operator can be stacked so the neigh-
borhood information can be spread away. Due to the
neighborhood sensitive nature, the convolution-based
graph learning strategy might be suitable for many
neighborhood sensitive tasks, such as semi-supervised
learning, link prediction, node classification, and so on.

Another class of algorithms adopt the recurrent based
approach, including the DAG-LSTM (Zhu et al., 2016;
Chen et al., 2017) and Document Graph-LSTM (Peng
et al., 2017). Instead of focusing on using neigh-
borhood information, recurrent based approach pays
more attention to the long-term dependencies between
nodes, which are important in many NLP applications.
This approach has been successfully applied in tasks
such as word segmentation (Chen et al., 2017), relation
extraction (Peng et al., 2017) and sentiment composi-
tion (Zhu et al., 2016). However, these methods are
mostly proposed for specific NLP tasks with problem
dependent designs. How to design a general-purpose
recurrent learning approach is still an open problem.

The topology of a graph represents the long-term de-
pendency between nodes. For our purpose, we believe
it is suitable to follow the recurrent based approach.
Following this intuition, in this paper, we propose a re-
current learning method - Energy-Flow for generalized
graph learning problem, and a variation - Topology-
Flow that focuses more on the topology of the graph.

2.2 Generating Graphs

Graph structure generations have been studied in sev-
eral application fields. For example, transition based
graph generation is a common technique to generate
a dependency graph (Gildea et al., 2018; Wang et al.,
2018, 2016) or AMR structure (Peng et al., 2018) for an
input sentence in NLP; MolGAN (Cao and Kipf, 2018)
builds a generative model on molecular graphs. These
works implement task-specific structure for graphs,

but these structures cannot be applied in general graph
generation tasks.

For the general graph generation tasks, (You et al.,
2018; Li et al., 2018) learn the probabilistic genera-
tion models for a set of graphs, that is, unconditioned
generation. Although it is mentioned in (Li et al.,
2018) that the proposed generation procedure can be
extended into conditioned cases, conditioned general
graph generation still needs detailed investigation.

The generation procedure of a target graph differs from
task to task. For example, NetGAN (Bojchevski et al.,
2018) generates graphs by random-walk and to fine-
tune the generation procedure using GAN techniques.
But interestingly, we observe that a large number of
algorithms follow the same sequence generation proce-
dure (Gildea et al., 2018; Wang et al., 2018, 2016; You
et al., 2018; Li et al., 2018), where the process creates
one node, and then generates the edges connecting this
node with the previously generated nodes. The differ-
ences between these algorithms lie in the details of
node generation and edge generation.

In this paper, we design a graph decoder conditioned
on input graphs. The decoder follows the same se-
quence generation procedure mentioned above. It
learns the attention on input graph annotations, se-
quentially generates the nodes of target graph, and
employs two optional strategies to generate edges: the
dependent Bernoulli procedure (You et al., 2018) (re-
sults in the Edge-Bernoulli decoder), and the pair of
nodes decision (results in the Edge-Connect decoder).

2.3 From Graph to Graph

Given the graph encoder and decoders mentioned
above, a variety of sequence-to-graph and graph-to-
sequence algorithms have been proposed. Li et al.
(2016); Xu et al. (2018); Song et al. (2018) pro-
posed several graph-to-sequence networks to transform
graphs into sequences. The applications of graph-to-
sequence algorithms include text generation (Beck
et al., 2018; Xu et al., 2018; Song et al., 2018), graph
algorithms (Li et al., 2016; Song et al., 2018), bAbI
tasks (Li et al., 2016; Song et al., 2018), etc. The
sequence-to-graph algorithms are generally proposed
in the NLP field, including dependency graph genera-
tion (Gildea et al., 2018; Wang et al., 2018, 2016) and
AMR structure generation (Peng et al., 2018).

The graph-to-graph problem, however, has not been
thoroughly exploited in existing literature. You et al.
(2018) and Li et al. (2018) built probabilistic genera-
tion models from a set of graphs, which can be viewed
as a self-to-self map. Johnson (2017a) extended the
graph-to-sequence network of Li et al. (2016) to gen-
erate a sequence of graph operations to manipulate
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Figure 1: An example to illustrate how to transform arbitrary graphs into DAGs (directed acyclic graphs).

the input graph, so that it can potentially be used
to generate another graph. Nevertheless, it has not
been tested on graph-to-graph tasks. On the surface,
one may think that building a graph-to-graph system
is an easy task since there are many graph encoders
and decoders available. However, the cooperation be-
tween encoder and decoder is a complicated problem
and needs further investigation.

In this paper, we study the graph to graph task to learn
the topology of source graphs and recover the same or
generate another topology to form the target graphs.
We select a set of graph encoders and accompany them
with our proposed conditioned graph decoder with dif-
ferent edge generation strategy to build several graph
to graph algorithms. These algorithms are tested on
two topology related tasks, and the experimental re-
sults verify the reasonableness of our approach.

3 A DAG Formulation of Graph to
Graph Learning

Recall that our goal is to learn a mapping from a source
graph to a target graph: S → T . We assume that
both S and T are connected graphs without self-loops
or multiple edges. They can be directed or undirected
or mixed, with node attributes or edge attributes.

In this paper, we adopt the sequence generation
method to generate T , in a one-node-per-step man-
ner. This means it requires a partial order among the
nodes in T . DAG (directed acyclic graph) is a nat-
ural way to represent such order information. More-
over, to fully exploit the long-term topology relation-
ship among nodes and edges in S, we propose to use
recurrent based models to encoder the S, which again
needs a partial order on the nodes, i.e., a DAG. Overall
speaking, DAG is a suitable structure for both encoder
and decoder and is adopted in our proposed algorithm.

As illustrated in Figure 1, we adopt the following pro-
cedure to convert a graph G into a DAG without loss
of information:

1. Let G =< N,E >, where N is the set of nodes,
and E is the set of edges. We select a node n1 and
start a breadth-first-traversal over the G from n1.
The travel history builds a partial order relation
≺ between nodes of G, where ni ≺ nj means ni is
visited earlier than nj in the travel.

2. We define the travel graph of G as a DAG GT =<
N,ET >, where ET = {< ni, nj , ẽij > |ni ≺
nj , (ni, nj , eij) ∈ E}, where ẽij is an edge connect-
ing ni to nj with transformed attributes, which
add extra information about the traversal order
on the original eij so that we can recover the G
from GT . For example, if eij is a directed edge
from nj to ni with type t, then we introduce a
new type −t and assign it to ẽij .

3. We add an end node nEND and connect all nodes
in N to nEND with an edge eEND with a special
type TEND. The resulting graph is denoted by
GD =< ND,ED >, where ND = N ∪ {nEND},
ED = ET ∪ {∪Ni=1 < ni, nEND, eEND > |ni ∈ N}.

It is easy to check that with suitable transformation
on edge attributes, there is no information loss dur-
ing the procedure and we can recover G from GD. For
the decoder, given a target graph T , we build the cor-
responding DAG TD as our learning target. For the
encoder, given a source graph S, by selecting different
starting node multiple times, we obtain several DAGs
S1D, · · · ,SKD as multiple views of the graph S. In this
way, our formulation of the graph-to-graph learning
boils down to finding the mapping from several source
DAGs to a target DAG:

M : S1D, · · · ,SKD → TD.



Mingming Sun, Ping Li

Algorithm 1 Energy-Flow Encoder for DAG
Require:

A DAG G;
An initial energy vector s0;
An energy flow function E;
An representation function R to generate repre-
sentation for nodes and edges;

Start
1: Compute the energy vector for starting node n1:

s1 = E(s0, [R(n1)]);
2: for each node nj in G do
3: Compute the energy vector for node nj :

sj =
1

|P(nj)|
∑

ni∈P(nj)

E(
si

|C(ni)|
, [R(eij),R(nj)]);

4: end for
5: return s1, · · · , sEND

4 Recurrent Encoder for DAG

The encoder for multiple DAGs can be implemented
by applying the encoder to every single DAG and then
concatenate the annotations of each node. It is hence
sufficient that we focus on the encoder for a single
DAG. To help express the algorithm, we introduce
three operators on graphs:

1. P(nj) = {ni| < ni, nj , eij >∈ ED, ni ≺ nj}: the
set of parent nodes of node nj ;

2. C(ni) = {nj | < ni, nj , eij >∈ ED, ni ≺ nj}: the
set of child nodes of node ni;

3. D(nj) = {ni|ni /∈ P(nj), ni ≺ nj}: the set of
nodes which are not the parents of node nj .

4.1 Energy-Flow Encoder

We first describe our proposed Energy-Flow encoder,
which is summarized in Algorithm 1:

1. We initialize the energy of each node in the DAG
as zero.

2. We place a high-energy point at the starting point
n1. Then the energy would flow to the place with
lower energy, that is, other nodes.

3. During the flow procedure, each node gathers the
energy from its parents, and then distributes the
energy equally to its children.

4. Lastly, the end node nEND gathers all the flowed
energy and terminates the procedure.

Algorithm 2 Topology-Flow Encoder for DAG
Require:

A DAG G;
An initial energy vector s0;
An energy flow function E;
An representation function R to generate repre-
sentation for nodes and edges;

Start
1: Compute the energy vector for starting node n1:

s1 = E(s0, [R(n1)]);
2: for each node nj in G do
3: Compute the energy vector for node nj :

s̃j =
1

|P(nj)|
∑

ni∈P(nj)

E(
si

|C(ni)|
, [R(eij),R(nj)]);

sj = Transform(s̃j − Project(s̃j , [sk, nk ∈ D(nj)]));

4: end for
5: return s1, · · · , sEND

4.2 Topology-Flow Encoder

The above Energy-Flow encoder algorithm exploits
the information about the direct connection between
nodes (via the parent relationship). It is thus aware
of any part of the topology of the graph. How-
ever, another essential topology information – the non-
connection relationship, is not emphasized during the
procedure. We propose a Topology Aware Energy
Flow encoder (simplified as the Topology-Flow en-
coder) to encode such information.

Algorithm 2 summarizes the procedure, where
Project(v,X) is the projected vector of the vector v
on the space spanned by the set of vectors X, and the
Transform(s) is a transformed vector of s, which could
be linear or nonlinear.

The Topology-Flow encoder differs from the Energy-
Flow encoder with an additional operation:

sj = Transform(s̃j − Project(s̃j , [sk, nk ∈ D(nj)])).

In this operation, let vj = s̃j − Project(s̃j , [sk, nk ∈
D(nj)]), then vj will reside in the orthogonal comple-
ment space spanned by the states of nodes in D(nj),
that is, vj · sk = 0,∀nk ∈ D(nj). It is a strong signal
to force the encoder to memorize the topology infor-
mation. The vj can be computed as follows:

vj = (I − SjS
+
j )s̃j

where Sj = [sk, nk ∈ D(nj)] is the matrix with
columns of states of nodes in D(nj), and the S+

j is the
Moore–Penrose inverse of Sj .
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4.3 Implementation

There are four customizable components in the pro-
posed encoders: the representation function R, the
energy flow function E, the initial states s0 and the
Transform function. We will elaborate on them all.

4.3.1 Representation Function R

The representation function R generates representa-
tion vectors for nodes and edges. A simple implemen-
tation is to combine the features of a node or edge to
form a vector (for categorical feature, embedding or
one-hot vector may be used). For nodes, it can also be
a graph encoder that generates node annotations, e.g.,
graph convolution network or Energy/Topology Flow
network. The overall encoder in this case becomes a
multi-layer stacked neural network.

4.3.2 Energy-Flow Function E

The energy flow function E compute the contribution
of energy from a parent node ni (with energy si) to
the node nj through an edge eij . We use a gated RNN
function (GRU or LSTM) to implement E . It takes si
as the initial states, and process the input sequence of
[R(eij),R(nj)]. The output state vector will be taken
as the energy contribution from node ni to nj .

4.3.3 Initial States

For the initial states s0, one straightforward option is
to set it to a zero vector. It is also possible to use a
representation vector to represent the global charac-
teristic of the input graph, which could be generated
by a global graph convolutional network.

4.3.4 Transform Function

The Transform function introduced in the Topology-
Flow encoder can be either linear or nonlinear map-
ping. A linear mapping is used in this study.

4.4 Encode the Starting Point Information

Since our DAG formulation is dependent on the selec-
tion of the starting node, it would be better to encode
the information about which node is selected as the
starting node. Although the encoder algorithm may
be able to learn such information, when the starting
node of the source graph is explicitly related to the
starting node of the target graph, it would be bet-
ter directly tell the decode which node is the starting
node. The straightforward approach is to append a bi-
nary variable to the obtained representations of each
node, while for the starting node, the binary variable
is set to 1, and for other nodes, it is set to 0.

Algorithm 3 Topology-Flow Decoder for DAG
Require:
A set of annotation vectors A = [sS1 , · · · , sSEND].
A start node state model StartStateModel;
A node state model NodeStateModel;
A node generation model NodeGenModel;
An edge generation model EdgeGenModel;

Start
1: Compute the state of starting node s1 and the

starting node n1:
s1 = StartStateModel(A);

n1 = argmax p(n1|A)

= argmaxNodeGenModel(s1, A)

2: Build the graph T1 =< n1, {} >;
3: do
4: Compute the state for new node :

sk = NodeStateModel(Tk−1, A);

5: Compute the new node nk:
nk = argmax p(nk|Tk−1, A)

= argmaxNodeGenModel(sk, A);

6: Add nk into Tk−1 and obtain Tk
7: for each node nj in Tk−1 do:
8: Compute the new edge ejk:

ejk = argmax p(ejk| < nj , nk >)

= argmaxEdgeGenModel(sj , sk);

9: if ejk is not empty edge then
10: Add ejk into Tk to connect nj and nk;
11: end if
12: end for
13: while nk 6= nEND
14: return Tk

5 Recurrent Decoder for Graphs

Our decoder follows the sequence generation procedure
for graphs. The procedure tarts with an initial empty
graph T0, and then at each step, add a node nk and
corresponding edges {ekj} into the graph Tk−1 to form
a new graph Tk, until nEND is added to the graph, or
the number of nodes exceeds a predefined threshold.
Following the procedure, we develop a family of recur-
rent decoders, which is presented in Algorithm 3.

5.1 StartStateModel

The StartStateModel is used to generate suitable
states for Node Generation Model to choose the cor-
rect starting point. The information about starting
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point is either explicitly encoded in the nodes annota-
tions (as stated in Section 4.4) or could be determined
by the global information of graph, that is, the statis-
tic character of the set of nodes annotations. In either
case, the state of the starting nodes can be computed
as an aggravated transformation of the node annota-
tions. Generally, we use the following transformation:

s0 = StartStateModel(A) = tanh(WT · 1

|A|
∑

sSi ).

5.2 NodeStateModel

The Node State Model is to compute the state of the
new node to be added to the graph to guide the Node
Generation Model to generate the correct node. In-
tuitively, the state of new node si is related to the
generated graph T i−1 and the annotations from the
source graph A:

si = NodeStateModel(Ti−1, A).

In this paper, we assume the state of the graph Ti−1
can be represented in the state si−1 of node ni−1, so
si = NodeStateModel(si−1, A). This can be done by
the attention-based state update scheme:

1. Compute the context on source annotations: ci =
AttentionContext(si−1, A);

2. Compute the state of the node ni by si =
ContextRecurrent(si−1,R(ni−1), ci), where the
recurrent unit can be LSTM or GRU.

The details of the above computations can be found in
(Bahdanau et al., 2014).

5.3 NodeGenerationModel

In our DAG formulation as described in Section 3, the
source graph and the target graph both contain at least
one type of node nEND. Other nodes in the source
graph could be of totally different types from the nodes
in the target graph, although it is also possible that
they share same types. In this situation, the copy
mechanism may be helpful to reduce the difficulty of
the learning problem (Gu et al., 2016), since a target
node si can be either selected from the vocabulary V
for target graphs, or copied from the source graph S.
So the Node Generation Model is:

p(ni|Ti−1, A) = NodeGenModel(si−1, A),
= pS(ni|si) + pV (ni|si)

where pS is the probability of being copied from the
source graph S, and pV is the probability of being
selected from the vocabulary V . The details of the
copy mechanism can be find in (Gu et al., 2016).

5.4 EdgeGenerationModel

People may have different view point for edge genera-
tion process. In GraphRNN algorithm, the generation
of edges eij for node nj is modeled as a Dependent
Bernoulli process and implemented as a gated recur-
rent sequence, with initial state as the state of node
nj and input as the previous generated edge ei−1,j :

p(eij | < nj , ni >) = p(eij |ni)

= DependentBernoulli(si)

Note that the procedure does not directly depend on
the state of node ni. We name the graph decoder using
this edge generation model as Edge-Bernoulli Decoder.

Another viewpoint is that the edge is decided by the
states of nodes whom it connects. So the probability
of an edge eij connecting the newly generated node ni

and any other node nj in Ti−1 is determined by the
states si and sj :

p(eij | < nj , ni >) = EdgeGenModel(si, sj)
= Softmax(f(sk‖sj)),

where f is a transform function. In this paper, f is a
fully-connected three-layer RELU network. We name
the graph decoder using this edge generation model as
Edge-Connect Decoder.

6 Learning

Given a source graph S, the encoder-decoder proce-
dure essentially builds a probability distribution over
the target graph space. We need to optimize the en-
coder and decoder to maximize the conditional prob-
ability of generating the target graph T . In the gen-
eration procedure of the Topology-Flow decoder, the
probability of T given S can be written as:

p(T |S)

=
∏
i

p(ni|Ti−1,S)
∏

nj∈Ti−1

p(eji| < nj , ni >, Ti−1,S)

The learning objective of our graph-to-graph learning
is the negative likelihood:

NegLikelyHood(T |S) = − log p(T |S).

7 Experimental Results

We use two topology learning tasks to test the perfor-
mance of the proposed method. The first one is the
graph copy task, which examines the ability of algo-
rithms to copy a random graph, that is, to honestly
memorize the topology. The second one is the task
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Figure 2: Examples of simple graph dataset.

of learning the mapping from a skeleton graph of a
digit to that of another digit, which tests the ability
of the decoder to recover the topology, on the basis of
honestly memorizing the source topology.

7.1 Graph Copy Task

The Graph Copy task is to train a machine that can
honestly copy a graph. In this experiment, we use a
dataset containing simple graphs with ten nodes and
all possible topology, provided by https://users.
cecs.anu.edu.au/~bdm/data/graphs.html. This
dataset includes 11,716,571 samples, i.e., there is the
same number of types of topology for simple graphs
with ten nodes. Several examples of these sparse
graphs are shown in Figure 2. Using this dataset allows
us to thoroughly examine the capability of different al-
gorithms to learn the large variety of topology.

7.1.1 Experimental Setting

We randomly select 50,000 samples as the training set,
1,000 sample as the validating set and 1,000 samples
as the testing set. For each graph, we select the node
with maximum degree as the start node to build the
DAGs. We test the performances of eight combina-
tions of four encoders (GGNN, GCN, Energy-Flow,
and Topology-Flow) and two decoders (Edge-Bernoulli
and Edge-Connect). In the experiments, we use one
layer network for Topology-Flow and Energy-Flow en-
coders, two layer network for GCN and GGNN, and
one-layer network for all decoders. In all experiments,
we set the hidden dimension to be 256.

7.1.2 Evaluation Criterion

We test the performances of these algorithms by check-
ing whether the generated graph is isomorphic with the
target graph and report the graph-level accuracy (de-
noted by the "G-ACC"). To investigate the difference
between the graph-level accuracy, we also compute the

Table 1: Performance results on the graph-copy task.

Encoder Decoder G-Acc Edge-F1
GCN Edge-Bernoulli < 1% 76.8%
GCN Edge-Connect < 1% 79.2%
GGNN Edge-Bernoulli < 1% 54.9%
GGNN Edge-Connect < 1% 88.9%

Energy-Flow Edge-Bernoulli < 1% 89.6%
Energy-Flow Edge-Connect < 1% 90.4%
Topology-Flow Edge-Bernoulli 87.1% 99.5%
Topology-Flow Edge-Connect 98.3% 99.9%

precisions and recalls on the set of edges and report the
F1 scores (denoted by the "Edge-F1").

7.1.3 Experimental Results

The experimental results are shown in Table 1. We can
see that the algorithm with the Topology-Flow encoder
and Edge-Connect decoder achieves substantial higher
graph-level accuracy than any other algorithm. The
reason is revealed by the F1 scores on edges: the algo-
rithms with encoders other than Topology-Flow have
a lot of error on edge prediction, which confirm the
effectiveness of the explicit topology constraint in the
Topology-Flow encoder. We also observe that the per-
formance of the Edge-Connect decoder is better than
that of the Edge-Bernoulli decoder, which is expected.
Since the Topology-Flow encoder encodes the topol-
ogy information into pair of nodes, the decoder should
consider the information about pairs of nodes to gen-
erate edges just as in Edge-Connect, while the Edge-
Bernoulli decoder does not.

7.2 MNIST Digit Skeleton Mapping

In this task, we learn the skeleton mapping be-
tween different digits. We use the MNIST se-
quence data (https://edwin-de-jong.github.io/
blog/mnist-sequence-data/) and transform the se-
quences into skeleton graphs by connecting neighbor-
hood points and down sampling. Example skeleton
graphs are shown in Figure 3.

Then we build pairs of different digits, and random
sampling several skeleton graphs for each digit to build
a graph mapping dataset. In this paper, we choose the
pairs from neighboring digits, that is, <0, 1>, <1, 2>,
<2, 3>, <3, 4> · · · , <9, 0> . The generated dataset
includes 34,084 pairs of skeleton graphs for training,
8,528 pairs for validating, and 7,192 pairs for testing.

Using this dataset, we would like to evaluate the ability
of various algorithms to learn from a graph and to
generate another different graph.

https://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://edwin-de-jong.github.io/blog/mnist-sequence-data/
https://edwin-de-jong.github.io/blog/mnist-sequence-data/
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Figure 3: Examples of skeleton graphs of digits from
MNIST dataset, from 0-9.

7.2.1 Experimental Setting

The coordinates of nodes of the skeleton graphs are
normalized to [0, 7) in both directions. For each graph,
we select the node with maximum degree as the start
node to build the DAGs. We make the coordinates
of nodes as the attribute of the nodes, and obtain the
representations of the nodes by a randomly initialized
embedding method with the capacity of 50 (all type of
positions and one extra nEND). The representations of
edges are obtained by a randomly initialized embed-
ding method with the capacity of 2 (a normal edge and
eEND).

Again, we test the performances of eight combina-
tions of four encoders (GGNN, GCN, Energy-Flow,
and Topology-Flow) and two decoders (Edge-Bernoulli
and Edge-Connect). In the experiment, decoders of
all models are with one-layer network. Topology-
Flow and Energy-Flow encoders uses one-layer net-
work, while GCN and GGNN uses three-layer nested
network. In all experiments, we set the hidden di-
mension to be 256. The maximum number of training
epochs is set to be 500.

7.2.2 Evaluation Criterion

We evaluate the quality of the generated skeletons by
examining whether they still are the skeletons of the
target digits. It means that we need a skeleton graph
classifier to classify a skeleton graph to a digit. One
approach is to generate an image from the skeleton
graph and use the MNIST digit classifier. However, we
can see from Figure 3 that the skeleton graph is sig-
nificantly different from the normal digit image, which
means that the MNIST digit classifiers may not work
well. Furthermore, since this work is about the graph
learning, we would instead develop a skeleton graph
classifier using the graph learning techniques.

Our skeleton graph classifier first employs a graph en-
coder to generate the annotation for each node, and
averages these annotations to obtain a global repre-
sentation of the graph. Then the representation vec-
tor is sent to a three-layer fully connected RELU net-
work to conduct a 10-class classification task. The
hidden dim is set as 256. Because the convolution-

based graph learning algorithm works well in extract-
ing global graph features, we use the 2-layer GGNN
encoder in the classifier. The dataset used to train
the classifier contains 39,560 graphs for training, 9,890
graphs for validation, and 8,325 graphs for testing.
The performance of the trained classifier on the testing
set is 95.6%.

7.2.3 Experimental Results

The performance of all the combinations of encoders
and decoders is summarized in Table 2. We can see
observe that the Topology-Flow encoder works well
with the Edge-Bernoulli decoder, which learns the map
between skeletons of digits with high accuracy. The
Energy-Flow encoder and the GGNN encoder also per-
form well, while the GCN encoder fails completely. We
also observe that the Edge-Bernoulli decoder generally
works better than Edge-Connect decoder for this task
(expect when working with the Energy-Flow encoder).
Our explanation is that for the simple skeleton topolo-
gies, the Edge-Bernoulli decoder has enough capacity,
and its simplified connection to nodes helps for better
generalization.

Table 2: Performance results on the MNIST digit
skeleton mapping task.

Encoder Decoder Accuracy
GCN Edge-Bernoulli 64.09%
GCN Edge-Connect 54.85%
GGNN Edge-Bernoulli 81.27%
GGNN Edge-Connect 77.15%

Energy-Flow Edge-Bernoulli 54.71%
Energy-Flow Edge-Connect 81.24%
Topology-Flow Edge-Bernoulli 82.31%
Topology-Flow Edge-Connect 79.28%

8 Conclusion

In this paper, we study the problem of learning the
mapping from one graph to another graph. More
specifically, we focus on learning the topology of the
source graph and transforming it to the topology of the
target graph. Our preliminary experimental results on
two common topology learning tasks verify the ability
of the proposed approach.

This work can be extended in several directions.
Firstly, we would like to investigate algorithms to make
the algorithm more efficient for large scale graphs. Sec-
ondly, we would like to apply the proposed graph-to-
graph algorithm to piratical tasks, such as the graph-
structured Open Information Extraction (Sun et al.,
2018b,a) when the relations between facts are consid-
ered.
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