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Abstract

We introduce the active exploration problem
in Markov decision processes (MDPs). Each
state of the MDP is characterized by a ran-
dom value and the learner should gather sam-
ples to estimate the mean value of each state
as accurately as possible. Similarly to active
exploration in multi-armed bandit (MAB),
states may have di↵erent levels of noise, so
that the higher the noise, the more samples
are needed. As the noise level is initially un-
known, we need to trade o↵ the exploration of
the environment to estimate the noise and the
exploitation of these estimates to compute a
policy maximizing the accuracy of the mean
predictions. We introduce a novel learning
algorithm to solve this problem showing that
active exploration in MDPs may be signifi-
cantly more di�cult than in MAB. We also
derive a heuristic procedure to mitigate the
negative e↵ect of slowly mixing policies. Fi-
nally, we validate our findings on simple nu-
merical simulations.

1 Introduction

Active exploration
1 refers to the problem of actively

querying an unknown environment to gather informa-
tion and perform accurate predictions about its be-
havior. Popular instances of active exploration are
optimal design of experiments (Pukelsheim, 2006) and,
more in general, active learning (AL) (Hanneke, 2014),
where given a fixed budget of samples, a learner ac-
tively chooses where to query an unknown function

1We use this term in contrast to the exploration-
exploitation dilemma (i.e., regret minimization) and best-
arm identification.
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to collect information that could maximize the accu-
racy of its predictions. An e↵ective AL method should
adjust to the approximation function space to obtain
samples wherever the uncertainty is high. In multi-
armed bandit (MAB), the active exploration prob-
lem (Antos et al., 2010; Carpentier et al., 2011) rather
focuses on adjusting to the noise a↵ecting the observa-
tions, which may di↵er over arms. Despite their di↵er-
ence, in both AL and MAB, the underlying assumption
is that the learner can directly collect a sample at any
arbitrary point or pull any arm with no constraint.

In this paper, we extend the MAB setting to active ex-
ploration in a Markov decision process (MDP), where
each state (an arm in the MAB setting) is character-
ized by a random variable that we need to estimate.
Unlike AL and MAB, if the learner needs to generate
an “experiment” at a state, it needs to move from the
current state to the desired state. Consider the prob-
lem of accurately measuring the level of pollution over
di↵erent sites when a fixed budget of measurements
is provided and only one measuring station is avail-
able. The noise a↵ecting the observations may di↵er
over sites and we need to carefully design a policy in
order to collect more samples (resp. less samples) on
sites with higher (resp. lower) noise. Since the noise
level may be unknown in advance, this requires alter-
nating between the exploration of the environment to
estimate the noise level and the exploitation of the es-
timates to optimize the collection of “useful” samples.

The main contributions of this paper can be summa-
rized as follows: 1) we introduce the active exploration
problem in MDP and provide a thorough discussion
on its di↵erence w.r.t. the bandit case, 2) inspired by
the bandit algorithm of Carpentier et al. (2011) and
Frank-Wolfe UCB by Berthet and Perchet (2017), we
devise a novel learning algorithm with vanishing regret
under the assumption that the MDP is ergodic and
its dynamics is known in advance, 3) we discuss how
slowly mixing policies may compromise the estimation
accuracy and introduce a heuristic convex problem to
compute faster mixing reversible policies, 4) we report
numerical simulations on simple MDPs to validate our
theoretical findings. Finally, we discuss how our as-
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sumptions (e.g., known dynamics) could be relaxed.

Related work. Dance and Silander (2017) study ac-
tive exploration in restless bandit where the value of
each arm is not an i.i.d. random variable but has a sta-
tionary dynamics. Nonetheless, they still consider the
case where any arm can be pulled at each time step.
Security games, notably the patrolling problem (e.g.,
Basilico et al., 2012), often consider the dynamics of
moving from a state to another, but the active explo-
ration is designed to contrast an adversary “attack-
ing” a state (e.g., Balcan et al., 2015). Rolf et al.
(2018) consider the problem of navigating a robot in
an environment with background emissions to iden-
tify the k strongest emitters. While the performance
depends on how the robot traverses the environment,
the authors only consider a fixed sensing path. Auer
et al. (2011) study the autonomous exploration prob-
lem, where the objective is to discover the set of states
that are reachable (following a shortest path policy)
within a given number of steps. Intrinsically motivated
reinforcement learning (Chentanez et al., 2005) often
tackles the problem of “discovering” how the environ-
ment behaves (e.g., its dynamics) by introducing an
“internal” reward signal. Hazan et al. (2018) recently
focus on the instrinsically-defined objective of learning
a (possibly non-stationary) policy that induces a state
distribution that is as uniform as possible (i.e., with
maximal entropy). This problem is related to our set-
ting in the special case of equal state variances. We
believe such line of work is insightful as it may help to
understand how to encourage an agent to find policies
which can manipulate its environment in the absence
of any extrinsic scalar reward signal.

2 Preliminaries

Active exploration in MDPs. A Markov deci-
sion process (MDP) (Puterman, 1994) is a tuple M =
(S,A, p, ⌫, s), where S is a set of S states, A is a set
of A actions, and for any s, a 2 S ⇥A, p(s0|s, a) is the
transition distribution over the next state s0 2 S. We
also define the adjacency matrix Q 2 RS⇥S , such that
Q(s, s0) = 1 for any s, s0 2 S where there exists an
action a 2 A with p(s0|s, a) > 0, and Q(s, s0) = 0 oth-
erwise. Instead of a reward function, ⌫(s) is an obser-
vation distribution supported in [0, R] with mean µ(s)
and variance �2(s), characterizing the random event
that we want to accurately estimate on each state. Fi-
nally, s is the starting state. The stochastic process
works as follows. At step t = 1 the environment is ini-
tialized at s1 = s, an agent takes an action a1, which
triggers a transition to the next state s2 ⇠ p(·|s1, a1)
and an observation x2 ⇠ ⌫(s2), and so on. We denote
by Ft = {s1, a1, s2, x2, a2, . . . , st, xt} the history up to
t. A randomized history-dependent (resp. stationary)
policy ⇡ at time t is denoted by ⇡t : Ft ! �(A) (resp.

⇡ : S ! �(A)) and it maps the history (resp. the cur-
rent state) to a distribution over actions. We denote
the set of history-dependent (resp. stationary) policies
by ⇧HR (resp. ⇧SR). For any policy ⇡, we denote by
T⇡,n(s) =

Pn
t=2

I{st = s} the number of observations
collected in state s when starting from s1 = s and fol-
lowing policy ⇡ for n steps.2 At the beginning of step
t, for any state s such that T⇡,t(s) > 0, the empirical
estimates of the mean and variance are computed as

bµ⇡,t(s)=
1

T⇡,t(s)

tX

⌧=2

x⌧ I{s⌧ =s}

b�2

⇡,t(s)=
1

T⇡,t(s)

tX

⌧=2

x2

⌧ I{s⌧ =s}� bµ2

⇡,t(s)

. (1)

In order to avoid dealing with subtle limit cases and
simplify the definition of the estimation problem, we
introduce the following assumption.

Assumption 1. For any state s 2 S and policy ⇡,
T⇡,1(s) = 1 and T⇡,n(s) = 1 +

Pn
t=2

I{st = s}.

We basically assume that at t = 1 one sample is avail-
able and used in estimating µ(s) and �2(s) at each
state (see App. A.1 for further discussion). For any
policy ⇡ and any budget n 2 N, we define the estima-
tion problem as the minimization of the normalized
mean-squared estimation error

min
⇡2⇧HR

Ln(⇡) :=
n

S

X

s2S

E⇡,⌫

h�
bµ⇡,n(s)� µ(s)

�2i
,

where E⇡,⌫ is the expectation w.r.t. the trajectories
generated by ⇡ and the observations from ⌫. When
the dynamics p and the variances �2(s) are known, we
restrict our attention to stationary polices ⇡ 2 ⇧SR

and exploiting the independence between transitions
and observations, and Asm. 1, we obtain

Ln(⇡) =
n

S

X

s2S

E⇡


E⌫

h�
bµ⇡,n(s)� µ(s)

�2���T⇡,n

i�

=
1

S

X

s2S

�2(s)E⇡


n

T⇡,n(s)

�
. (2)

In the case of deterministic and fully-connected MDPs,
the problem smoothly reduces to the active bandit for-
mulation of Antos et al. (2010).

Technical tools. For any stationary policy ⇡ 2
⇧SR, we denote by P⇡ the kernel of the Markov
chain induced by ⇡ in the MDP, i.e., P⇡(s0|s) =P

a2A
p(s0|s, a)⇡(a|s). If the Markov chain P⇡ is er-

godic (i.e., all states are aperiodic and recurrent), it
admits a unique stationary distribution over states

2The counter starts at 2 as observations are received
upon arrival on a state (i.e., no observation at s1 = s).
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⌘⇡, such that ⌘⇡(s) =
P

s0 P⇡(s|s0)⌘⇡(s0). A Markov
chain P⇡ is reversible if the detailed balance condi-
tion ⌘⇡(s)P⇡(s0|s) = ⌘⇡(s0)P⇡(s|s0) is satisfied for all
s, s0 2 S. Let {⇠⇡(s)} be the eigenvalues of P⇡, we
define the second-largest eigenvalue modulus (SLEM)
and the spectral gap as

⇠⇡,max := max
s:⇠⇡(s) 6=1

|⇠⇡(s)|; �⇡ := 1� ⇠⇡,max. (3)

The SLEM can be written as the spectral norm (i.e.,
the maximum singular value) of an a�ne matrix in P⇡.
Let D⌘ be the diagonal matrix with the elements of ⌘,
then (Boyd et al., 2004)

⇠⇡,max = kD1/2
⌘⇡

P⇡D
�1/2
⌘⇡

�p
⌘⇡

p
⌘⇡

T k2. (4)

For ergodic chains, ⇠⇡,max < 1. The spectral gap is
tightly related to the mixing time of the chain and it
characterizes how fast the frequency of visits converges
to the stationary distribution (e.g., Hsu et al. (Thm. 3,
2015), Paulin et al. (Thm. 3.8, 2015)).

Proposition 1. Let ⇡ 2 ⇧SR
be a stationary pol-

icy inducing an ergodic and reversible chain P⇡ with

spectral gap �⇡ and stationary distribution ⌘⇡. Let

⌘⇡,min = mins2S ⌘⇡(s). For any budget n > 0 and

state s 2 S,
���
E
⇥
T⇡,n(s)

⇤

n
� ⌘⇡(s)

��� 
1

2
p
⌘⇡,min

1

�⇡n
,

and for any � 2 (0, 1), with probability 1� �,

���
T⇡,n(s)

n
�⌘⇡(s)

���  ✏⇡(s, n, �) := O
⇣
vuut ln( 1�

q
2

⌘⇡,min

)

�⇡n

⌘
.

The exact formulation of ✏⇡(s, n, �) is reported in
App. C (see proof of Lem. 1). It is interesting to no-
tice that the convergence in expectation is faster than
in high-probability (O(n�1) vs O(n�1/2)), but in both
cases the spectral gap may significantly a↵ect the con-
vergence (e.g., for slowly mixing chains �⇡ ⇡ 0).

Finally, we recall a concentration inequality for vari-
ance estimation (see Antos et al. (2010)).

Proposition 2. For any � 2 (0, 1) and time t, with
probability at least 1� �

��b�2

t (s)� �2(s)
��  ↵(t, s, �) := 5R2

s
log( 4St

� )

Tt(s)
.

3 The Asymptotic Case

In deterministic fully-connected MDPs, problem (2)
reduces to the bandit setting and it also inherits its
NP-hard complexity, as it may require enumerating

all possible values of {Tn(s)}s (see e.g., Welch, 1982).
In our case, this di�culty is further increased by the
fact that observations can only be collected through
the “constraint” of the MDP dynamics. In this section
we introduce an asymptotic version of the estimation
problem and a learning algorithm with vanishing re-
gret w.r.t. the optimal asymptotic stationary policy.

3.1 An Asymptotic Formulation

A standard approach in experimental optimal de-
sign (Pukelsheim, 2006) and MAB (Antos et al., 2010;
Carpentier et al., 2011) is to replace problem (2) by its
continuous relaxation, where the empirical frequency
Tn(s)/n is replaced by a distribution over states. In
our case Tn(s) cannot be directly selected so we rather
consider an asymptotic formulation for n ! 1.3 We
first introduce the following assumption on the MDP.

Assumption 2. For any stationary policy ⇡ 2 ⇧SR
,

the corresponding Markov chain P⇡ is ergodic and we

denote by ⌘min = inf⇡2⇧SR mins2S ⌘⇡(s) the smallest

stationary probability across policies.

Asm. 1 and 2, together with the continuity of the in-
verse function x 7! 1/x on [1/n, 1], guarantee that for
any policy ⇡, n

T⇡,n(s)
converges almost-surely to 1

⌘⇡(s)

when n ! +1 (see Prop. 1). As a result, we replace
problem (2) with

min
⇡2⇧SR,⌘2�(S)

L(⇡, ⌘) := 1

S

X

s2S

�2(s)

⌘(s)

s.t. 8s 2 S, ⌘(s) =
X

s0,a

⇡(a|s0)p(s|s0, a)⌘(s0)
, (5)

where ⌘ is constrained to be the stationary distribu-
tion associated with ⇡ (i.e., ⌘ = ⌘⇡). While both ⇡ and
⌘ belong to a convex set and L(⇡, ⌘) is convex in ⌘, the
overall problem is not convex because of the constraint.
Yet, we can apply the same reparameterization used
in the dual formulation of reward-based MDP (Sect. 8,
Puterman, 1994) and introduce the state-action sta-
tionary distribution �⇡ 2 �(S ⇥A) of a policy ⇡. Let

⇤ =
n
� 2 �(S ⇥A) : 8s 2 S,

X

b2A

�(s, b) =
X

s02S,a2A

p(s|s0, a)�(s0, a)
o

(6)

be the set of state-action stationary distributions, we
define the optimization problem

min
�2�(S⇥A)

L(�) := 1

S

X

s2S

�2(s)P
a2A

�(s, a)

subject to � 2 ⇤

. (7)

We can characterize this problem as follows.

3In the bandit case, the continuous relaxation is equiv-
alent to the asymptotic formulation.
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Proposition 3. The function L(�) is convex on the

convex set ⇤. Let �? be the solution of (7), then the

policy

⇡�?(a|s) = �?(s, a)P
b2A

�?(s, b)
, 8s 2 S, a 2 A (8)

belongs to ⇧SR
and solves problem (5). Furthermore

for any ⌘ > 0, L(�) is C⌘-smooth on the restricted

set ⇤⌘ = {� 2 ⇤ :
P

a2A
�(s, a) � 2⌘, 8s 2 S} with

parameter C⌘  A
P

s2S
�2(s)/(2⌘)3.

As a result, whenever the dynamics of the MDP and
the variances �2(s) are known, problem (7) can be ef-
ficiently solved using any optimization algorithm for
convex and smooth functions (e.g., projected gradi-
ent descent or Frank-Wolfe (Jaggi, 2013)). Leveraging
Prop. 1 we can also characterize the di↵erence between
the solutions of the asymptotic problem (5) and the
finite-budget one (2). For the sake of simplicity and
at the cost of generality (see App. A.2), we introduce
an additional assumption.

Assumption 3. For any stationary policy ⇡ 2 ⇧SR
,

the corresponding Markov chain P⇡ is reversible and

we denote by �min = min⇡2⇧SR �⇡ the smallest spectral

gap across all policies.

Lemma 1. Let � = SAS/n2
, if n is big enough such

that for any s 2 S and any stationary policy ⇡ 2 ⇧SR
,

✏⇡(s, n, �)  ⌘⇡(s)/2, then we have

��Ln(⇡)� L(⇡, ⌘⇡)
��  `n(⇡), (9)

where

`n(⇡) :=
1

S
p
⌘minn�⇡

X

s2S

�2(s)

⌘2⇡(s)

⇣
1 + 2

✏⇡(s, n, �)

⌘⇡(s)

⌘
,

which gives the performance loss

Ln(⇡�?)� Ln(⇡
?
n)  `n(⇡�?) + `n(⇡

?
n), (10)

where ⇡?
n is the solution to problem (2) and ⇡�? is

defined in (8).

It is interesting to compare the result above to the
bandit case. For n � 4/(S⌘2

min
) the performance loss

of the continuous relaxation in bandit is bounded as
8�2

max
/(⌘3

min
n2) (see Prop. 7 in App. C). While the

condition on n in Lem. 1 is similar (i.e., from the defi-
nition of ✏⇡(s, n, �), we need n > e⌦(1/⌘2

min
)), the per-

formance loss di↵ers over two main elements: (i) the
rate of convergence in n, (ii) the presence of the spec-
tral gap �⇡. In MAB, the “fast” convergence rate is
obtained by exploiting the smoothness of the function
L, which characterizes the performance of both dis-
crete and continuous allocations. On the other hand,

Algorithm 1 FW-AME: the Frank-Wolfe for Active

MDP Exploration algorithm

Input: e�1 = 1/SA, ⌘
for k = 1, 2, ...,K � 1 do

b +

k+1
= argmin�2⇤⌘

hr bL+

tk�1
(e�k),�i

b⇡+

k+1
(a|s) =

b +

k+1
(s, a)

P
b2A

b +

k+1
(s, b)

Execute b⇡+

k+1
for ⌧k steps

Update the state-action frequency e�k+1

end for

in the MDP case, while L is indeed smooth on the re-
stricted simplex, Ln is a more complicated function of
⇡, which does not allow the same proof technique to
be directly applied. Furthermore, the spectral gap di-
rectly influences the di↵erence between the finite-time
and asymptotic behavior of a policy ⇡. This extra
“cost” is not present in MAB, where any allocation
over states can be directly “executed” without waiting
for the policy to mix.

3.2 Learning Algorithm

We introduce a learning algorithm to incrementally
solve the active exploration problem in the setting
where the state variances �2(s) are unknown. We rely
on the following assumption.

Assumption 4. The MDP model p is known.

In App. A.3 we sketch a way to relax Asm. 4 by follow-
ing an optimistic approach similar to UCRL (Jaksch
et al., 2010) in order to incorporate the uncertainty on
the MDP dynamics, and we conjecture that the regret
guarantees of the algorithm would remain unchanged.

Let ⌘ < 1/(2S) be a positive constant. Since L(�)
is smooth in ⇤⌘ (Prop. 3), it can be optimized using
the Frank-Wolfe (FW) algorithm (Jaggi, 2013), which
constructs a sequence of linear optimization problems
whose solutions are used to incrementally update the
candidate solution to problem (7). In MAB, Berthet
and Perchet (2017) showed that FW can be fed with
optimistic estimates of the gradient to obtain a bandit
algorithm with small regret. The resulting algorithm
(Frank-Wolfe-UCB) actually reduces to the algorithm
of Carpentier et al. (2011) when the function to op-
timize is the mean estimation error. The mapping
from FW to a bandit algorithm relies on the fact that
the solution to the linear problem at each iteration of
FW corresponds to selecting one single arm. Unfor-
tunately, in the MDP case, FW returns a state-action
stationary distribution, which cannot be directly “ex-
ecuted”. We then need to adapt the bandit-FW idea
to track the (optimistic) FW solutions.
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In Alg. 1 we illustrate FW-AME (FW for Active MDP
Exploration) which proceeds through episodes and is
evaluated according to the frequency of visits of each
state, i.e., e�k(s) = Ttk�1(s)/(tk�1). At the beginning
of episode k, FW-AME solves an MDP with reward re-
lated to the current estimation error, so that the corre-
sponding optimal policy tends to explore states where
the current estimate of the mean µ(s) is not accurate
enough. More formally, FW-AME solves a linear prob-
lem to compute the state-action stationary distribu-
tion b +

k+1
minimizing the expected “optimistic” gra-

dient evaluated at the current solution obtained using
the confidence intervals of Prop. 2, i.e.,

r bL+

tk�1
(�)(s, a) = �

b�2

tk�1
(s) + ↵(tk � 1, s, �)

(
P

b �(s, b))
2

.

This choice favors exploration towards states whose
loss is possibly high (i.e., large gradient) and poorly
estimated (large confidence intervals). This step e↵ec-
tively corresponds to solving an MDP with a reward
equal to r bL+

tk�1
. Then the policy b⇡+

k+1
associated to

b +

k+1
is executed for ⌧k steps and the solution e�k is

updated accordingly. Let ⌫k+1(s, a) be the number of
times action a is taken at state s during episode k. We
can write the update rule for the candidate solution as

e�k+1 =
⌧k

tk+1 � 1
e k+1 +

tk � 1

tk+1 � 1
e�k

= �k e k+1 + (1� �k)e�k,

where e k+1(s, a) = ⌫k+1(s, a)/⌧k is the frequency of
visits within episode k and �k = ⌧k/(tk+1 � 1) is the
weight (or learning rate) used in updating the solution.
While we conjecture that a similar approach could be
paired with other optimization algorithms (e.g., pro-
jected gradient descent), by building on FW we obtain
a projection-free algorithm, where at each episodes we
only need to solve a specific instance of an MDP. In
App. D we derive the following regret guarantee.

Theorem 1. Let episode lengths satisfy tk = ⌧1(k �
1)3 + 1 where ⌧1 is the length of the first episode, i.e.,

⌧k = ⌧1(3k
2 � 3k + 1) and �k =

3k2 � 3k + 1

k3
.

Under Asm. 1, 2, 3, 4, FW-AME satisfies with high

probability
4

L(e�K)� L(�?) = eO
�
t�1/3
K

�
.

Sketch of the proof. The proof combines the FW

analysis, the contribution of the estimated optimistic

4See App. D.2 for a more explicit bound. See App. A
for a discussion on the relaxation of Asm. 1, 3 and 4.

gradient, and the gap between the target distribution
b +

k+1
and the empirical frequency e k+1. Let ⇢k+1 :=

L(e�k+1) � L(�?) be the regret at the end of episode

k. Introducing  ?
k+1

:= argmin�2⇤⌘
hrL(e�k),�i and

exploiting the convexity and C⌘-smoothness of L, it is
possible to obtain the “recursive” inequality

⇢k+1  (1� �k)⇢k + C⌘�
2

k + �k✏k+1 + �k�k+1,

where ✏k+1 := hrL(e�k), b +

k+1
�  ?

k+1
i and �k+1 :=

hrL(e�k), e k+1� b +

k+1
i. The term ✏k+1 is an optimiza-

tion error and it can be e↵ectively bounded exploiting
the fact that b +

k+1
is the result of an optimistic opti-

mization. On the other hand, the term�k+1 is a track-
ing error and it can be only bounded using Prop. 1 as
1/
p
⌧k. Solving the recursion for the specific choice of

tk in the theorem provides the final bound.

Remark (rate). The most striking di↵erence be-
tween this bound and the result of Carpentier et al.
(2011) and Antos et al. (2010) in MAB is the worse
rate of convergence, O(t�1/3) vs O(t�1/2). This gap
is the result of trading o↵ the “optimization” conver-
gence speed of FW and the tracking performance ob-
tained by executing b⇡+

k+1
. Berthet and Perchet (2017)

show that in MAB, the learning rate �k is set to 1/t
(as in standard FW) to achieve a O(t�1/2) convergence
rate. In our case, we can obtain such learning rate by
setting episodes of constant length ⌧k = ⌧ . Unfor-
tunately, this scheme would su↵er a constant regret.
In fact, while a FW instance where the solution e�k
is updated directly using b +

k+1
would indeed converge

faster with such episode scheme, our algorithm can-
not “play” the distribution b +

k+1
but needs to execute

the corresponding policy b⇡+

k+1
, which gathers samples

with frequency e k+1, then used to update e�k. The
gap between b +

k+1
and e k+1 reduces the e�ciency of

the optimization step by introducing an additive error
of order O(1/

p
⌧) (see Prop. 1), which is constant for

fixed-sized episodes. As a result, the episode length is
optimized to trade o↵ between the optimization speed
and tracking e↵ectiveness. Whether this is an intrin-
sic issue of the active exploration in MDP or better
algorithms can be devised is an open question.

Remark (problem-dependent constants). Inves-
tigating the proof reveals a number of other depen-
dencies on the algorithm’s and problem’s parameters.
First, the regret bound depends on the inverse of
the parameter ⌘ used in FW-AME to guarantee the
smoothness of the function. While this may suggest
to take ⌘ as large as possible, this may over-constrain
the optimization problem (i.e., the set ⇤⌘ becomes
artificially too small). If �? is the solution on the
“unconstrained” ⇤, then 2⌘ should be set exactly at

mins
P

a �
?(s, a). Furthermore, the gap between b +

k+1
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Figure 1: Deterministic 3-state 2-action MDP with
�2

1
=�2

3
=1 and �2

2
⌧ 1.

and e k+1 is bounded using Prop. 1. Since the policy
executed at each step is random (it depends on the
samples observed at previous episodes), we need to
take the worst case w.r.t. all possible stationary poli-
cies. Thus the regret presents an inverse dependency
on �min, which could be very small. Finally, the bound
has a direct dependency on the number of states.

4 The Mixing Issue

When the budget n is small, the solution of (7) may
be very ine�cient compared to the optimal finite-time
policy. As an illustrative example, consider the MDP
in Fig. 1. In the “unconstrained” version of the prob-
lem, where states can be directly sampled (i.e., the
bandit setting), the optimal continuous allocation for
problem (2) tends to (0.5, 0, 0.5) as �2(s2) tends to
0. As soon as we introduce the constraint of the MDP
structure, such allocation may not be realizable by any
policy. In this MDP, solving problem (7) returns a pol-
icy that executes the self-loop actions in s1 and s3 with
high probability (thus moving to s2 with low probabil-
ity) and takes a uniformly random action in s2. The re-
sulting asymptotic performance does indeed approach
the optimal unconstrained allocation, as the station-
ary distribution of the policy (⌘(s1), ⌘(s2), ⌘(s3)) tends
to (0.5, 0, 0.5) for any arbitrary initial state s. How-
ever for any finite budget n, this policy performs very
poorly since the agent would get stuck in s1 (or s3 de-
pending on the initial state) almost indefinitely, thus
making the mean estimation of s3 (or s1) arbitrar-
ily bad. As a result, the optimal asymptotic policy
mixes arbitrarily slowly as �2(s2) tends to zero and its
finite-time performance is then arbitrarily far from the
optimal performance.

This e↵ect is also illustrated by Lem. 1, where the
performance loss of the asymptotic policy depends on
`n(⇡�?), which critically scales with the inverse of the
spectral gap �⇡�? . This issue may also significantly
a↵ect the performance of FW-AME, as the gap be-
tween b +

k+1
and e k+1 may be arbitrarily large if b⇡+

k+1

is slowly mixing. This problem together with Lem. 1
suggest regularizing the optimization problems (i.e.,
problem (5) for optimization and the computation of
b +

k+1
for learning) towards fast mixing policies.

Optimization. As a direct application of Lem. 1 we
could replace problem (5) with

min
⇡2⇧

SR

⌘2�(S)

Lreg(⇡, ⌘) := L(⇡, ⌘) + `n(⇡)

s.t. 8s 2 S, ⌘(s) =
X

s0,a

⇡(a|s0)p(s|s0, a)⌘(s0)
. (11)

The main advantage of solving this problem is illus-
trated in the following lemma.

Lemma 2. Let ⇡?
reg be the solution of problem (11),

its performance loss is bounded as

Ln(⇡
?
reg)� Ln(⇡

?
n)  2`n(⇡

?
n). (12)

Since in general we expect ⇡?
n to mix much faster than

⇡�? (i.e., �⇡?
n

� �⇡�? ), the performance loss of ⇡?
reg

may be much smaller than the loss in Lem. 1. As
problem (11) is not convex, we replace it by heuristic
convex algorithm. We isolate from `n(⇡) the spectral
gap �⇡ and the convergence rate ⇢n := S/n and, using
the norm formulation of the SLEM in (4), we introduce
a proxy to the regularized loss as

L(⇡, ⌘) + ⇢n

1� kD1/2
⌘ P⇡D

�1/2
⌘ �p

⌘
p
⌘Tk2

. (13)

Building on this proxy and the study on computing
fastest mixing chains on graphs by Boyd et al. (2004),
we derive FMH (Faster-Mixing Heuristic) that solves a
convex surrogate problem that favors fast mixing poli-
cies with limited deviation w.r.t. a target stationary
distribution. While we postpone the full derivation
to App. B.1, we report the main structure of the al-
gorithm. FMH receives as input a budget n and the
optimal asymptotic policy ⇡? obtained by solving (5),
then it returns a stationary policy ⇡?

FMH. The algo-
rithm proceeds through two steps.

Step 1 (improvement of the mixing properties). We
first reparametrize the problem by introducing the
variable X 2 RS⇥S as X = D⌘P⇡ and we reduce the
di�culty of handling the stationary constraint on ⌘ by
constraining X to respect the adjacency matrix of the
MDP Q. Notably, we introduce the constraints5

X = XT , Xss0 = 0 if Qss0 = 0, (14)

which correspond to reversibility and adhering to the
“structure” of the MDP. Furthermore, since we can re-
cover a state distribution fromX as ⌘X(s) =

P
s0 Xss0 ,

we also need to enforce
X

s02S

Xss0 � ⌘,
X

s2S

� X

s02S

Xss0 � ⌘?s
�2  �2n, (15)

5We omit constraints X � 0, kXk1 = 1 for clarity.
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where we lower bound the state distribution and we
require X to be close to the target state stationary
distribution ⌘? in `2-norm. Since L is smooth when ⌘ is
lower bounded by ⌘, the `2-norm constraint guarantees
that the performance of X does not deviate much from
⌘?. FMH then proceeds by solving

min
X

X

s2S

�2(s)P
s02S

Xss0

+
⇢n

1� kD�1/2
⌘? XD�1/2

⌘? �
p
⌘?
p
⌘?

T k2
s.t. (14), (15)

. (16)

Unlike the proxy loss (13), this problem is convex in X
and can be solved using standard convex optimization
tools.

Step 2 (projection onto the set of feasible stationary

policies). Unfortunately ⌘X(s) =
P

s0 Xss0 may not be
feasible in the MDP (i.e., it may not be stationary).
Thus we finally proceed with the computation of a
policy ⇡ whose stationary distribution is closest to ⌘
by solving the convex problem

min
⇡

X

s2S

⇣
⌘X(s)�

X

s02S,a2As0

⌘X(s0)p(s|s0, a)⇡s0,a
⌘2

s.t. ⇡s,a � 0 and
X

a2As

⇡s,a = 1.

FMH thus returns a policy that may have better mix-
ing properties than ⇡? at the cost of a slight loss
in asymptotic performance. The performance loss of
FMH approaches the one of ⇡?

reg
as shown in the fol-

lowing lemma.

Lemma 3. Let ⇡?
FMH be the policy returned by FMH,

then the performance loss is bounded as

Ln(⇡
?
FMH)� Ln(⇡

?
n)

 2`n(⇡
?
n) +

2�2

max

p
S

⌘2
�n +

2

�min

⇢n +O(n�3/2).

This suggests that the slack variable �n should de-
crease at least as O(n�1) to guarantee the algorithm’s
consistency and not worsen the overall performance.

Finally, we introduce in App. B.2 a more computa-
tionally e�cient variant of step 1 of FMH that uses
semidefinite programming, which we later refer to as
FMH-SDP.

Learning. As discussed above and shown in the proof
of Thm. 1, the regret of FW-AME depends on the
mixing properties of the policy b⇡+

k+1
. While the op-

timization problem to compute b +

k+1
is di↵erent than

problem (5), the surrogate optimization procedure de-
scribed above can be readily applied to this case as

well. In fact, ⌘? received in input is now the target
state-action stationary distribution b +

k+1
and, since

the objective function is still smooth, the deviation
constraint does limit the performance loss that could
be incurred because of the deviation �n. App. D.4
provides more discussion on the resulting learning al-
gorithm that we call FW-AME w/ FMH-SDP.

5 Numerical Simulations

Experimental settings. We consider ⌫(s) =
N (0,�2(s)) and when T (s) = 0, we set default vari-
ance and mean predictions to �2

max
and 3�max. The

initial state is drawn uniformly at random from S. The
episodes of FW-AME are set so that tk = ⌧1+(k�1)3

(for k > 1, otherwise t1 = 1), where ⌧1 is the
(adaptive) time needed for the initial policy to col-
lect at least one sample of each state (so as to sat-
isfy Asm. 1 after the first episode). We set ⌘ =
0.001 and the confidence intervals to ↵(t, s, 1/t) =
0.2�2

max

p
log(4St2)/Tt(s). We run simulations on a

set of random Garnet MDPs (Bhatnagar et al., 2009).
A Garnet instance G(S,A, b,�2

min
,�2

max
) has S states,

A actions, b is the branching factor and state variances
are random in [�2

min
,�2

max
]. GR denotes the reversible

Garnet MDPs (see App. E for more details). We set
�2

min
= 0.01 and �2

max
= 10 to have a large spread

between the state variances. For any budget n and
policy ⇡ ran over R runs, the estimation loss is

LOSS(⇡, n,R) =
1

SR

X

s2S

X

1rR

h�
bµ(r)
⇡,n(s)� µ(s)

�2i
,

while the normalized loss is nLOSS(⇡, n,R). Finally,
we measure the competitive ratio w.r.t. the optimal
asymptotic performance as

RATIO(⇡, n,R) =
nLOSS(⇡, n,R)

L(�?) � 1. (17)

Results. We first verify the regret guarantees of
Thm. 1. Fig. 3 reports the competitive ratio aver-
aged over 100 randomly generated Garnet MDPs for
FW-AME and a uniform policy ⇡unif(a|s) = 1/|As|.
As expected the ratio (which is a proxy for the regret)
of FW-AME is much smaller than for ⇡unif and it ap-
proaches zero as the budget increases. While we report
only the aggregated values, this result is consistently
confirmed across all Garnet instances we have tried.

We then study the e↵ectiveness of FMH in improv-
ing the optimization performance. In Fig. 2 we report
LOSS(⇡, n) for the asymptotic optimal policy ⇡�? and
the surrogate policy ⇡?

FMH as a function of n in the sim-
ple 3-state MDP illustrated in Fig. 1, where ⇡? mixes
poorly. We notice that in this case, the impact of
favoring faster mixing policies does translate to a sig-
nificant improvement in finite-time performance. This
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Figure 2: LOSS(⇡, n,R = 100) as a function of n in
the 3-state MDP of Fig. 1 (with �2

2
= 0.001).

⇡ ⇡FW-AME ⇡unif
n 500 1000 500 1000

GS=5 0.31 0.10 2.18 1.04
GS=10 0.35 0.19 1.98 1.15

Figure 3: RATIO(⇡, n,R = 100) for n 2 {500, 1000}
and for ⇡FW-AME and ⇡unif, averaged over 100 Garnet in-
stances randomly generated from G(S,A = 3, b = 2) for
S 2 {5, 10}.

(a) An instance of GR(S = 5, A = 3, b = 3) with fast mixing
policies. The average SLEM is roughly 0.55, w/ or w/o
FMH-SDP.

(b) An instance of GR(S = 10, A = 2, b = 2) where policies
mix poorly. The average SLEM is 0.95 and it is decreased
to 0.88 by FMH-SDP.

Figure 4: nLOSS(⇡, n,R = 1000) as a function of n. The dashed curves report 5% and 95% quantiles.

finding is also confirmed when FMH is applied to FW-

AME. We first show a specific reversible Garnet MDP
where all the policies generated by FMH are mixing
relatively fast (see the normalized loss in Fig. 4a). In
this case, FMH-SDP has the same performance as FW-

AME (and both are significantly better than uniform).
This is confirmed by evaluating the average SLEM of
the policies generated by the two algorithms, which is
roughly 0.55 in both cases. On the other hand, there
are Garnet MDP instances where FW-AME may in-
deed generate very poorly mixing policies that are ex-
ecuted for relatively long episodes, thus compromis-
ing the performance of the algorithm (see Fig. 4b).6

In this case, FMH-SDP successfully biases the learn-
ing process towards faster mixing policies and obtains
a much better finite-time performance. In fact, the
average SLEM of the policies generated FW-AME is

6The algorithm is still able to recover from bad mixing
policies thanks to ergodicity and changing episodes, but it
takes much longer to converge.

successfully reduced from 0.95 to 0.88 for FMH-SDP.

6 Conclusion and Extensions

We introduced the problem of active exploration in
MDPs, proposed an algorithm with vanishing regret
and proposed a heuristic convex optimization problem
to favor fast mixing policies. This paper opens a num-
ber of questions: (1) A lower bound is needed to de-
termine the complexity of active exploration in MDPs
compared to the MAB case; (2) While the ergodic-
ity assumption is not needed in regret minimization in
MDPs (Jaksch et al., 2010), it is unclear whether it is
mandatory in our setting; (3) A full regret analysis of
the case of unknown MDP (see App. A.3). This paper
may be a first step towards formalizing the problem of
intrinsically motivated RL, where the implicit objec-
tive is often to accurately estimate the MDP dynamics
and e↵ectively navigate through states (see e.g., Auer
et al., 2011; Hazan et al., 2018).
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