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Abstract

Recent work has explored transforming data
sets into smaller, approximate summaries in
order to scale Bayesian inference. We examine
a related problem in which the parameters of
a Bayesian model are very large and expen-
sive to store in memory, and propose more
compact representations of parameter values
that can be used during inference. We focus
on a class of graphical models that we re-
fer to as latent Dirichlet-Categorical models,
and show how a combination of two sketch-
ing algorithms known as count-min sketch
and approximate counters provide an efficient
representation for them. We show that this
sketch combination – which, despite having
been used before in NLP applications, has
not been previously analyzed – enjoys desir-
able properties. We prove that for this class
of models, when the sketches are used dur-
ing Markov Chain Monte Carlo inference, the
equilibrium of sketched MCMC converges to
that of the exact chain as sketch parameters
are tuned to reduce the error rate.

1 Introduction

The development of scalable Bayesian inference tech-
niques (Angelino et al., 2016) has been the subject
of much recent work. A number of these techniques
introduce some degree of approximation into inference.

This approximation may arise by altering the inference
algorithm. For example, in “noisy” Metropolis Hastings
algorithms, acceptance ratios are perturbed because the
likelihood function is either simplified or evaluated on
a random subset of data in each iteration (Negrea and
Rosenthal, 2017; Alquier et al., 2014; Pillai and Smith,
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2014; Bardenet et al., 2014). Similarly, asynchronous
Gibbs sampling (Sa et al., 2016) violates some strict
sequential dependencies in normal Gibbs sampling in
order to avoid synchronization costs in the distributed
or concurrent setting.

Other approaches transform the original large data set
into a smaller representation on which traditional in-
ference algorithms can then be efficiently run. Huggins
et al. (2016) compute a weighted subset of the original
data, called a coreset. Geppert et al. (2017) consider
Bayesian regression with n data points each of dimen-
sion d, and apply a random projection to shrink the
original Rn×d data set down to Rk×d for k < n. An
advantage of these kinds of transformations is that by
shrinking the size of the data, it becomes more feasible
to fit the transformed data set entirely in memory.

The transformations described in the previous para-
graph reduce the number of data points under con-
sideration, but preserve the dimension of each data
point, and thus the number of parameters in the model.
However, in many Bayesian mixed membership models,
the number of parameters themselves can also become
extremely large when working with large data sets, and
storing these parameters poses a barrier to scalability.

In this paper, we consider an approximation to address
this issue for what we call latent Dirichlet-Categorical
models, in which there are many latent categorical vari-
ables whose distributions are sampled from Dirichlets.
This is a fairly general pattern that can be found as
a basic building block of many Bayesian models used
in NLP (e.g., clustering of discrete data, topic models
like LDA, hidden Markov models). The most repre-
sentative example, which we will use throughout this
paper, is the following:

zi ∼ Categorical(τ) i ∈ [N ] (1)
θi ∼ Dirichlet(α) i ∈ [K] (2)
xi ∼ Categorical(θzi) i ∈ [N ] (3)

Here, α is a scalar value and τ is some fixed hyper-
parameter of dimension K. We assume that the dimen-
sion of the Dirichlet distribution is V , a value we refer
to as the “vocabulary size”. Each random variable xi
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can take one of V different values, which we refer to as
“data types” (e.g., words in latent Dirichlet allocation).
Associated with each xi is a latent variable zi which
represents an assignment of xi to one of K possible
topics or categories.

To do Gibbs sampling for a model in which such a
pattern occurs, we generally need to compute a certain
matrix c of dimension K × V . Each row of this matrix
tracks the frequency of occurrence of some data type
within one of the components of the model. In general,
this matrix can be quite large, often with V � K, and
in some cases we may not even know the exact value of
V a priori (e.g., consider the streaming setting where
we may encounter new words during inference), mak-
ing it costly to store these counts. Moreover, if we do
distributed inference by dividing the data into subsets,
each compute node may need to store this entire large
matrix, which reduces the amount of data each node
can store in memory and adds communication overhead.
Using a sparse or dynamic representation instead of a
fixed array makes updates and queries slower, and adds
further overhead when merging distributed representa-
tions. Also, c is often nearly sparse, but not literally
so, in the sense that many entries have a very small
but non-zero count, further limiting the effectiveness
of sparse representations.

We propose to address these problems by using sketch
algorithms to store compressed representations of these
matrices. These algorithms give approximate answers
to certain queries about data streams while using far
less space than algorithms that give exact answers. For
example, the count-min sketch (CM) (Cormode and
Muthukrishnan, 2005) can be used to estimate the
frequency of items in a data set without having to use
space proportional to the number of distinct items, and
approximate counters (Morris, 1978; Flajolet, 1985) can
store very large counts with sublogarithmic number
of bits. These algorithms have parameters that can
be tuned to trade between estimation error and space
usage. Because many natural language processing tasks
involve computing estimates of say, the frequency of a
word in a corpus, there has been obvious prior interest
in using these sketching algorithms for (non-Bayesian)
NLP when dealing with very large data sets (Durme
and Lall, 2009b; Goyal and Daumé III, 2011; Durme
and Lall, 2009a).

We propose representing the matrix c above using a
combination of count-min sketch and approximate coun-
ters. It is not clear a priori what effect this would have
on the MCMC algorithm. On the one hand, it is
plausible that if the sketch parameters are set so that
estimation error is small enough, MCMC will still con-
verge to some equilibrium distribution that is close to
the equilibrium distribution of the exact non-sketched

version. On the other hand, we might be concerned that
even small estimation errors within each iteration of the
sampler would compound, causing the equilibrium dis-
tribution to be very far from that of the non-sketched
algorithm.

In this paper, we resolve these issues both theoretically
and empirically. We consider sequences of runs of the
sketched MCMC algorithm in which parameters of the
sketch are tuned to decrease the error rate between runs.
We prove, under fairly general conditions, that the
sequence of equilibrium distributions of the sketched
runs converges to that of the non-sketched version.
This ensures that a user can trade off computational
cost for increased accuracy as necessary. Then, we
experimentally show that when the combined sketch is
used with a highly scalable MCMC algorithm for LDA,
we can obtain model quality comparable to that of the
non-sketched version while using much less space.

Contribution

1. We explain how the count-min sketch algorithm
and approximate counters can be used to sketch
the sufficient statistics of models that contain la-
tent Dirichlet-Categorical subgraphs (section §2).
We then provide an analysis of a combined count-
min sketch/approximate counter data structure
which provides the benefits of both (section §3).

2. We then prove that when the combined sketch is
used in an MCMC algorithm, as the parameters
of the sketch are tuned to reduce error rates, the
equilibrium distributions of sketched chains con-
verge to that of the non-sketched version (section
§4).

3. We complement these theoretical results with
experimental evidence confirming that learning
works despite approximations introduced by the
sketches (section §5).

2 Sketching for Latent
Dirichlet-Categorical Models

As described in the introduction, MCMC algorithms
for models involving Dirichlet-Categorical distributions
usually require tabulating statistics about the current
assignments of items to categories (e.g., the words per
topic in LDA). There are two reasons why maintaining
this matrix of counts can be expensive. First, the
dimensions of the matrix can be large – the dimensions
are often proportional to the number of unique words
in the corpus. Second, the values in the matrix can
also be large, so that tracking them using small sized
integers can potentially lead to overflow.
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Sketching algorithms can be used to address these
problems, providing compact fixed-size representations
of these counts that use far less memory than a dense
array. We start by explaining two widely used sketches,
and then in the next section discuss how they can be
combined.

2.1 Sketch 1: count-min sketch

To deal with the fact that the matrix of counts is of large
dimension, we can use count-min (CM) sketches (Cor-
mode and Muthukrishnan, 2005) instead of dense ar-
rays. A CM sketch C of dimension l×w is represented
as an l × w matrix of integers, initialized at 0, and
supports two operations: update and query. The CM
sketch makes use of l different 2-universal hash func-
tions of range w that we denote by h1, . . . , hl. The
update(x) operation adjusts the CM sketch to reflect
an increment to the frequency of some value x, and is
done by incrementing the matrix at locations Ci,hi(x)

for i ∈ [1, l]. The query(x) operation1 returns an esti-
mate of the frequency of value x and is computed by
mini Ci,hi(x).

It is useful to think of a value Ca,b in the matrix as
a random variable. In general, when we study an
arbitrary value, say x, we need not worry about where
it is located in row i and refer to Ci,hi(x) simply as
Zi, and write Q(x) := mini(Zi) for the result when
querying x. Note that Zi equals the true number of
occurrences of x, written fx, plus the counts of other
keys whose hashes are identical to that of x. CM
sketches have several interesting properties, some of
which we summarize here (see Roughgarden and Valiant
(2015) for a good expository account). Let N be the
total number of increments to the CM sketch. Then,
each Zi is a biased estimator, in that:

E[Zi] = fx +
N − fx
w

(4)

However, by adjusting the parameters l and w, we
can bound the probability of large overestimation. In
particular, by taking w = k

ε one can bound the offset
of a query as

Pr [Q(x) ≥ fx + εN ] ≤ 1

kl
(5)

A nice property of CM sketches is that they can be
used in parallel: we can split a data stream up, derive
a sketch for each piece, and then merge the sketches

1 Other query rules can be used, such as the count-
mean-min (Deng and Rafiei, 2007) rule. However, Goyal
et al. (2012) suggest that conventional CM sketch has better
average error for queries of mid to high frequency keys in
NLP tasks. Therefore, we will focus on the standard CM
estimator.

together simply by adding the entries in the different
sketches together componentwise.

We want to replace the matrix of counts c in a Dirichlet-
Categorical model with sketches. There is some flex-
ibility in how this is done. The simplest thing is to
replace the entire matrix with a single sketch (so that
the keys are the indices into the matrix). Alternatively,
we can divide the matrix into sub-matrices, and use a
sketch for each sub-matrix. In the setting of Dirichlet-
Categorical models, each row of c corresponds to the
counts for data types within one component of the
model (e.g., counts of words for a given topic in LDA),
so it is natural to use a sketch per row.

2.2 Sketch 2: approximate counting

In order to represent large counts without the memory
costs of using a large number of bytes, we can employ
approximate counters (Morris, 1978). An approximate
counter X of base b is represented by an integer (po-
tentially only a few bits) initialized at 0, and supports
two operations: increment and read. We write Xn to
denote a counter that has been incremented n times.
The increment operation is randomized and defined as:

Pr(Xn+1 = k + 1 | Xn = k) = b−k (6)

Pr(Xn+1 = k | Xn = k) = 1− b−k (7)

Reading a counter X is written as φ(X) and defined
as φ(X) = (bX − 1)/(b − 1). Approximate counters
are unbiased, and their variance can be controlled by
adjusting b:

E[φ(Xn)] = n V [φ(Xn)] =
b− 1

2
(n2 − n) (8)

Using approximate counters as part of inference for
Dirichlet-Categorical models is very simple: instead of
representing the matrix c as an array of integers, we
instead use an array of approximate counters.

3 Combined Sketching: Alternatives
and Analysis

The problems addressed by the sketches described in
the previous section are complementary: CM sketches
replace a large matrix with a much smaller set of arrays;
but by coalescing increments for distinct items, CM
sketches need to potentially store larger counts to avoid
overflows, a problem which is resolved with approxi-
mate counting. Therefore, it is natural to consider how
to combine the two sketching algorithms together.

3.1 Combination 1: Independent Counters

The simplest way to combine the CM sketch with ap-
proximate counters is to replace each exact counter
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in the CM sketch with an approximate counter; then
when incrementing a key in the sketch, we indepen-
dently increment each of the counters it corresponds
to. Moreover, because there are ways to efficiently add
together two approximate counters (Steele and Tristan,
2016), we can similarly merge together multiple copies
of these sketches by once again adding their entries
together componentwise.

When we combine the CM sketch and the approximate
counters together in this way, the errors introduced by
these two kinds of algorithms interact. It is challeng-
ing to give a precise analysis of the error rate of the
combined structure. However, it is still the case that
we can tweak the parameters of the sketch to make the
error rate arbitrarily low.

To make this precise, note that we now have three
parameters to tune: b, the base of the approximate
counters, l the number of hashes, and w, the range
of the hashes. Given a parameter triple ψ = (b, l, w),
write Qψ(x) for the estimate of key x from a sketch
using these parameters. Then, given a sequence ψn =
(bn, ln, wn) of parameters, we can ask what happens
to the sequence of estimates Qψn(x) when we use the
sketches on the same fixed data set:

Theorem 3.1. Let ψn = (bn, ln, wn). Suppose bn →
1, wn → ∞ and there exists some L such that 1 ≤
ln ≤ L for all n. Then for all x, Qψn

(x) converges in
probability to fx as n→∞.

See Appendix A in the supplementary material for
the full proof. This result shows that for appropri-
ate sequences ψn of parameters, the estimator Qψn

(x)
is consistent. We call a sequence ψn satisfying the
conditions of Theorem 3.1 a consistent sequence of
parameters.

For our application, we are replacing a matrix of counts
with a collection of sketches for each row, so we want
to know not just about the behavior of the estimate
of a single key in one of these sketches, but about the
estimates for all keys across all sketches. Formally, let
c be a K×V dimensional matrix of counts. Consider a
collection ofK sketches, each with parameters ψ, where
for each key v, we insert v a total of ck,v times into
the kth sketch. then we write Qψ(c) for the random
K × V matrix giving the estimates of all the keys in
each sketch. Because convergence in probability of a
random vector follows from convergence of each of the
components, the above implies:

Theorem 3.2. If ψn is a consistent sequence, then
Qψn

(c) converges in probability to c.

Finally, we have been describing the situation where
the keys are inserted with some deterministic frequency
and the only source of randomness is in the hashing

of the keys and the increments of the approximate
counter. However, it is natural to consider the case
where the frequency of the keys is randomized as well.
To do so, we define the Markov kernel2 Tψ from NK×V
to RK×V≥0 , where for each c, Tψ(c, ·) is the distribution
of the random variable Qψ(c) considered above. Then
if µ is a distribution on count matrices, µTψ gives
the distribution of query estimates returned for the
sketched matrix.

3.2 Combination 2: Correlated Counters

Even though the results above show that the approx-
imation error of the combined sketch can be made
arbitrarily small, it is still possible for an estimate to
be smaller than the true count, fx. This underestima-
tion rules out using the so-called conservative update
rule (Estan and Varghese, 2002), a technique which can
be used to reduce bias of normal CM sketches. When
using conservative update with a regular CM sketch,
to increment a key x, instead of incrementing each of
the counters corresponding to x, we first find the min-
imum value and then only increment counters equal
to this minimum. But because approximate counters
can underestimate, this is no longer justifiable in the
combined sketch.

Pitel and Fouquier (2015) proposed an alternative way
to combine CM sketches with approximate counters
that enables conservative updates. We call their com-
bination correlated counters. Figure 1 shows the in-
crement routine with and without conservative update
for correlated counters. The idea in each is that we
generate a single uniform [0, 1] random variable r and
use this common r to decide how to transition each
counter value according to the probabilities described
in §2.2.

However, Pitel and Fouquier (2015) did not give a
proof of any statistical properties of their combination.
The following result shows that this variant avoids the
underapproximation bias of the independent counter
version:

Theorem 3.3. Let Q(x) be the query result for key x
using correlated counters in a CM sketch with one of
the increment procedures from Figure 1. Then,

fx ≤ E[Q(x)] ≤ fx +
N − fx
w

Proof. We only discuss the non-conservative update
increment procedure, since the proof is similar for the
other case. The upper bound is straightforward. The

2Throughout, we assume that all topological spaces are
endowed with their Borel σ-algebras, and omit writing these
σ-algebras.
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1: procedure incr-correlated(C, x)
2: let r ← Uniform(0, 1)
3: for i from 0 to l do
4: let v ← C[i][hi(x)]
5: if r < 1

bv then C[i][hi(x)] ← v + 1
6: end for
7:
8: procedure incr-conservative(C, x)
9: let r ← Uniform(0, 1)

10: let min ← ∞
11: for i from 0 to l do
12: let v ← C[i][hi(x)]
13: if v < min then min ← v
14: end for
15:
16: if r < 1

bmin then
17: for i from 0 to l do
18: if C[i][hi(x)] = min then
19: C[i][hi(x)] ← min+ 1

20: end for
21:

Figure 1: Increment for CM sketch with correlated
approximate counters, with and without conservative
update.

lower bound is proved by exhibiting a coupling (Lind-
vall, 2002) between the sketch counters corresponding
to key x and a counter C of base b that will be incre-
mented exactly fx times. The coupling is constructed
by induction on N , the total number of increments
to the sketch. Throughout, we maintain the invariant
that φ(C) ≤ Q(x); it follows that E[φ(C)] ≤ E[Q(x)].
Since E[φ(C)] = fx, this will give the desired bound.

In the base case, when N = 0, both φ(C) and Q(x) are
0 so the invariant holds trivially. Suppose the invariant
holds after the first k increments to the sketch, and
some key y is then incremented. If x = y, then we
transition the counter C using the same random uni-
form variable r that is used to transition the counters
X1, . . . , Xl corresponding to key x in the sketch. There
are two cases: either r is small enough to cause the
minimum Xi to increase by 1, or not. If it is, then since
C ≤ mini(Xi), r is also small enough to cause C to in-
crease by 1, and so φ(C) ≤ Q(x). If mini(Xi) does not
change, but C does, then we must have C < mini(Xi)
before the transition; since C can only increase by 1,
we still have C ≤ mini(Xi) afterward.

If the key y is not equal to x, then we leave C as
is. Since each Xi can only possibly increase while
C stays the same, the invariant holds. Finally, after
all N increments have been performed, C will have
received fx increments, so that E[φ(C)] = fx because

approximate counters are unbiased.

In Appendix D we describe various microbenchmarks
comparing the behavior of the different ways of com-
bining the two sketches.

4 Asymptotic Convergence

In the previous section, we explored some of the statis-
tical properties of the combined sketch. We now turn
to the question of the behavior of an MCMC algorithm
when we use these sketches in place of exact counts.
More precisely, suppose we have a Markov chain whose
states are tuples of the form (c, z), where c is a K × V
matrix of counts, and z is an element of some complete
separable metric space Y . Now, suppose instead of
tabulating c in a dense array of exact counters, we
replace each row with a sketch using parameters ψ.
We can ask whether the resulting sketched chain3 has
an equilibrium distribution, and if so, how it relates
to the equilibrium distribution of the original “exact”
chain. As we will see, it is often easy to show that
the sketched chain still has an equilibrium distribution.
However, the relationship between the sketched and
exact equilibriums may be quite complicated. Still,
a reasonable property to want is that, if we have a
consistent sequence of parameters ψn, and we consider
a sequence of runs of the MCMC algorithm, where
the ith run uses parameters ψi, then the sequence of
equilibrium distributions will converge to that of the
exact chain.

The reason such a property is important is that it pro-
vides some justification for how these sketched approx-
imations would be used in practice. Most likely, one
would first test the algorithm using some set of sketch
parameters, and then if the results are not satisfactory,
the parameters could be adjusted to decrease error
rates in exchange for higher computational cost. (Just
as, when using standard MCMC techniques without
an a priori bound on mixing times, one can run chains
for longer periods of time if various diagnostics suggest
poor results). Therefore, we would like to know that
asymptotically this approach really would converge to
the behavior of the exact chain. We will now show that
under reasonable conditions, this convergence does in
fact hold.

We assume the state space Se of the original chain is a
compact, measurable subset of NK×V ×Y . We suppose

3Since approximate counters can return floating point es-
timates of counts, replacing the exact counts with sketches
only makes sense if the transition kernel for the Markov
chain can be interpreted when these state components in-
volve floating point numbers. But this is usually the case
since Bayesian models typically apply non-integer smooth-
ing factors to integer counts anyway.



Sketching for Latent Dirichlet-Categorical Models

that the transition kernel of the chain can be divided
into three phrases, represented by the composition of
kernels κpre ·κ ·κpost, where in κ the matrix of counts is
updated in a way that depends only on the rest of the
state, which is then modified in κpre and κpost (e.g., in a
blocked Gibbs sampler κ would correspond to the part
of a sweep where c is updated). Moreover, we assume
that the transitions κpre and κpost are well-defined on
the extended state space RK×V≥0 × Y , where the counts
are replaced with positive reals. Formally, these condi-
tions mean we assume that there exist Markov kernels
κ′pre, κ

′
post : RK×V≥0 × Y → Y and κ : Y → NK×V such

that

κpre((c, z), A) =

∫
κ′pre((c, z), dz

′)1A(c, z′)

κ((c, z), A) =

∫
κ′(z, dc′)1A(c′, z)

κpost((c, z), A) =

∫
κ′post((c, z), dz

′)1A(c, z′)

where we write 1A for the indicator function correspond-
ing to a measurable set A. We assume this chain has
a unique stationary distribution µ. Furthermore, we
assume κpre, κ, and κpost are Feller continuous, that is,
if sn → s, then κ(sn, ·)⇒ κ(s, ·), and similarly for κpre
and κpost, where ⇒ is weak convergence of measures.

Fix a consistent sequence of parameters ψn. For each
n, we define the sketched Markov chain with transition
kernel κpre · κn · κpost, where κn is the kernel obtained
by replacing the exact matrix of counts used in κ with
a sketched matrix with parameters ψn:

κn((c, z), A)

=

∫
κ′(z, dc′)

∫
Tψn

(c′, dc′′)1A(c′′, z)

(recall that Tψn
is the kernel induced by the combined

sketching algorithm, as described in §3.1). We assume
that the set S containing the union of the states of the
exact chain and the sketched chains is some compact
measurable subset of RK×V≥0 × Y . Assuming that each
κpre · κn · κpost has a stationary distribution µn, we
will show that they converge weakly to µ. We use the
following general result of Karr:

Theorem 4.1 (Karr (1975, Theorems 4 and 6)). Let E
be a complete separable metric space with Borel sigma
algebra Σ. Let κ and κ1, κ2, . . . be Markov kernels on
(E,Σ). Suppose κ has a unique stationary distribution
µ and κ1, . . . have stationary distributions µ1, . . . .
Assume the following hold

1. for all s, {κn(s, ·)}n is tight, and

2. sn → s implies κn(sn, ·)⇒ κ(s, ·).

Then µn ⇒ µ.

We now show that the assumptions of this theorem hold
for our chains. The first condition is straightforward:

Lemma 4.2. For all x, the family of measures {(κpre ·
κn · κpost)(x, ·)}n is tight.

Proof. This follows immediately from the assumption
that the set of states S is a compact measurable set.

To establish the second condition, we start with the
following:

Lemma 4.3. If sn → s, then (κpre ·κn)(sn, ·)⇒ (κpre ·
κ)(s, ·).

Proof. To match up with the results in §3, it is helpful
to rephrase this as a question of convergence of distri-
bution of random variables with appropriate laws. By
assumption κpre ·κ is Feller continuous, so we know that
(κpre · κ)(sn, ·)⇒ (κpre · κ)(s, ·), hence by Skorokhod’s
representation theorem, there exists random matrices
C,C1, . . . , and random Y -elements Z,Z1, . . . such that
the law of (Cn, Zn) is (κpre · κ)(sn, ·), that of (C,Z) is
(κpre · κ)(s, ·), and (Cn, Zn)

p−→ (C,Z). Then the distri-
bution of (Qψn(Cn), Zn) is that of (κpre · κn)(sn, ·), so
it suffices to show that Qψn

(Cn)
p−→ C.

Fix δ, ε > 0. Let U be the union of the supports
of each Cn. Then U consists of integer matrices ly-
ing in some compact subset of real vectors (since S
is compact and the counts returned by κ are exact
integers), so U is finite. Moreover, by Theorem 3.2
we know that for all c, there exists nc such that for
all n > nc, Pr [‖Qψn(Cn)− c‖ > ε/2 | Cn = c] < δ/2.
Let m1 be the maximum of the nc for c ∈ U . We also
know that there exists m2 such that for all n > m2,
Pr [‖Cn − C‖ > ε/2] < δ/2. For n > max(m1,m2), we
then have Pr [‖Qψn

(Cn)− C‖ > ε] < δ.

Continuity of κpost then gives us:

Lemma 4.4. If sn → s, then (κpre ·κn ·κpost)(sn, ·)⇒
(κpre · κ · κpost)(s, ·).

Thus by Karr’s theorem we conclude:

Theorem 4.5. µn ⇒ µ.

In the above, we have assumed that there is a single
sketched matrix of counts, and that each row of the
matrix uses the same sketch parameters. However, the
argument can be generalized to the case where there
are several sketched matrices with different parameters.
We now explain how this result can be applied to some
Dirichlet-Categorical models:

Example 1: SEM for LDA. When using stochas-
tic expectation maximization (SEM) for the LDA topic
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model (Blei et al., 2003), the states of the Markov chain
are matrices wpt and tpd giving the words per topic
and topic per document counts. Within each round,
estimates of the corresponding topic and document
distributions θ and φ are computed from smoothed
versions of these counts; new topic assignments are
sampled according to this distribution, and the counts
wpt and tpd are updated. We can replace the rows
of either wpt or tpd with sketches. In this case κpre
and κpost are the identity, and the Feller continuity
of κ follows from the fact that the estimates of θ and
φ are continuous functions of the wpt and tpd counts.
Compactness of the state space is a consequence of the
fact that the set of documents (and hence maximum
counts) are finite, and the maximum counter base is
bounded. Finally, the sketched kernels still have unique
stationary distributions because the smoothing of the
θ and φ estimates guarantees that if a state is repre-
sentable in the sketched chain, we can transition to it
in a single step from any other state.

Example 2: Gibbs for Pachinko Allocation.
The Pachinko Allocation Model (PAM) (Li and McCal-
lum, 2006) is a generalization of LDA in which there is
a hierarchy of topics with a directed acyclic structure
connecting them. A blocked Gibbs sampler for this
model can be implemented by first conditioning on
topic distributions and sampling topic assignments for
words, then conditioning on these topic assignments to
update topic distributions – in the latter phase, one
needs counts of the occurrences of words in the differ-
ent topics and subtopics which can be collected using
sketches. Since the priors for sampling topics based on
these counts are smoothed, the sketched chains once
again have unique stationary distributions for the same
reason as in LDA.

5 Experimental Evaluation

We now examine the empirical performance of using
these sketches. We implemented a sketched version
of SCA (Zaheer et al., 2016), an optimized form of
SEM which is used in state of the art scalable topic
models (Zaheer et al., 2016; Zhao et al., 2015; Chen
et al., 2016; Li et al., 2017), and apply it LDA. Full
details of SCA can be found in the appendix.

Setup We fit LDA (100 topics, α = 0.1, β = 0.1,
291k-word vocabulary after removing rare and stop-
words as is customary) to 6.7 million English Wikipedia
articles using 60 iterations of SCA distributed across
eight 8-core machines, and measure the perplexity of
the model after each iteration on 10k randomly sampled
Reuters documents. For all experiments, we report the
mean and standard-deviation of perplexity and timing

Figure 2: LDA perplexity with count-min sketch.

across three trials. Example topics from the various
configurations are shown in the appendix. For more
details, see Appendix C.1.

In this distributed setting, each machine must store
a copy of the word-per-topic (wpt) frequency counts,
and at the end of an iteration, updated counts from
different machines must be merged. However, each
machine only needs to store the rows of the topics-per-
document matrix (tpd) pertaining to the documents
it is processing. Hence, controlling the size of wpt is
more important from a scalability perspective, so we
will examine the effects of sketching wpt.

The data set and number of topics we are using for
these tests are small enough that the non-sketched wpt
matrix and documents can feasibly fit in each machine’s
memory, so sketching is not strictly necessary in this
setting. Our reason for using this data set is to be able
to produce baselines of statistical performance for the
non-sketched version to compare against the sketched
versions.

Experiment 1: Impact of the CM sketch. In
the first experiment, we evaluate the results of just
using the CM sketch. We replace each row of the wpt
matrix in baseline plain SCA with a count-min sketch.
We vary the number of hash functions l ∈ {3, 4, 5} and
the bits per hash from {15, 16, 17}. Figure 2 displays
perplexity results for these configurations. While the
more compressive variants of the sketches start at worse
perplexities, by the final iterations, they converge to
similar perplexities as the exact baseline with arrays.
The range of the hash has a much larger effect than
the number of hash functions in the earlier iterations
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l log2(w) time (s) size (105 bytes)
NA NA 12.14 ± 1.82 1164.0
3 15 22.75 ± 4.30 393.2
3 16 23.90 ± 4.41 786.43
3 17 25.32 ± 4.68 1572.9
4 15 29.70 ± 5.82 524.3
4 16 32.75 ± 6.17 1048.6
4 17 33.35 ± 5.89 2097.2
5 15 37.76 ± 6.95 655.4
5 16 39.71 ± 7.01 1310.7
5 17 42.33 ± 7.75 2621.4

Table 1: Time per iteration and size of wpt represen-
tation for LDA with CM sketch. The first row gives
non-sketched baseline. 4-byte integers are used to store
entries in the dense matrix and sketches.

Figure 3: LDA perplexity with combined sketches.

of inference.

Table 1 gives timing and space usage (the first row
corresponds to the baseline time and space). Recall
that our main interest in sketching is to reduce space
usage. Note that some of the parameter configurations
here use more space than a dense array, so the purpose
of including them is to better understand the statistical
and timing effects of the parameters. Even though the
smaller configurations do save space compared to the
baseline, hashing the keys adds time overheads. Again,
this is relative to the ideal case for the baseline, in which
the documents and the full wpt matrix represented as
a dense array can fit in main memory.

Experiment 2: Combined Sketches For the next
experiment (Figure 3), we use the three variants
of combined sketches with approximate counters de-

l log2(w) time (s) size (105 bytes)
NA NA 12.14 ± 1.82 1164.0
3 15 12.58 ± 2.00 98.3
3 16 17.57 ± 2.78 196.6
3 17 22.69 ± 3.72 393.22

Table 2: Time per iteration results for LDA with com-
bined sketch using 1-byte, base 1.08 independent inde-
pendent counters. Timing for other update rules are
similar.

scribed in Section 3 (sketch with independent counters
(CM+A), sketch with correlated counters (CM+A Corr),
and sketch with correlated counters and the conserva-
tive update rule (CM+A CU)). We use 1-byte base-1.08
approximate counters in order to represent a similar
range as a 4-byte integer (but using 1/4 the memory).
Given the results of the previous experiment, we just
consider the case where 3 hash functions are used. In
this particular benchmark, we do not see a large dif-
ference in perplexity between the various update rules,
which again converge reasonably close to the perplexity
of the baseline.

Table 2 gives timing and space usage for the combined
sketches using the independent counter update rule.
Each iteration runs faster than when just using the CM
sketch with similar parameters. This is because the
combined sketches are a quarter of the size of the CM
sketch, so there is less communication complexity in-
volved in sending the representation to other machines.

We explore a more comprehensive set of sketch
and counter parameter effects on perplexity in Ap-
pendix E.3, run time in Appendix E.2, and example
topics in Appendix E.1.

6 Conclusion

As machine learning models grow in complexity and
datasets grow in size, it is becoming more and more
common to use sketching algorithms to represent the
data structures of learning algorithms. When used with
MCMC algorithms, a primary question is what effect
sketching will have on equilibrium distributions. In
this paper we analyzed sketching algorithms that are
commonly used to scale non-Bayesian NLP applications
and proved that their use in various MCMC algorithms
is justified by showing that sketch parameters can be
tuned to reduce the distance between sketched and
exact equilibrium distributions.
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