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Abstract

We study the problem of recovering a struc-
tured signal x0 from high-dimensional data yi =
f(aTi x0) for some nonlinear (and potentially un-
known) link function f , when the regressors ai
are iid Gaussian. Brillinger (1982) showed that
ordinary least-squares estimates x0 up to a con-
stant of proportionality µ`, which depends on
f . Recently, Plan & Vershynin (2015) extended
this result to the high-dimensional setting deriv-
ing sharp error bounds for the generalized Lasso.
Unfortunately, both least-squares and the Lasso
fail to recover x0 when µ` = 0. For example,
this includes all even link functions. We resolve
this issue by proposing and analyzing an alterna-
tive convex recovery method. In a nutshell, our
method treats such link functions as if they were
linear in a lifted space of higher-dimension. In-
terestingly, our error analysis captures the effect
of both the nonlinearity and the problem’s geom-
etry in a few simple summary parameters.

1 Introduction

We consider the problem of estimating an unknown signal
x0 ∈ Rn from a vector y = (y1, y2, . . . , ym)T of m gener-
alized linear measurements of the following form:

yi = fi(a
T
i x0), i = 1, 2, . . . ,m. (1)

Here, each ai ∈ Rm represents a (known) measurement
vector and the fi’s are independent copies of a (possi-
bly random) link function f . A few examples include:
fi(x) = x + zi, with say zi being random noise, for
standard linear regression setup; fi(x) = |x|2 + zi, for
quadratic (noisy) measurements; fi(x) = Qb(|x|), where
Qb(·) denotes a quantizer on b number of bits. In the
statistics and econometrics literature, (1) is popular under
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the name single-index model (also regarded as a special
case of the sufficient dimension reduction problem). As a
slight generalization of (1), we allow measurements that
are drawn independently according to a conditional distri-
bution of some probability density function as follows:

yi ∼ p(y | aTi x0), i = 1, 2, . . . ,m. (2)

This expands the model by including instances such as
logistic-regression and yi ∼ Poisson(|aTi x0|), i ∈ [m].

We seek recovery methods that ensure the following fa-
vorable features: (i) computational efficiency; (ii) prov-
able performance guarantees; (iii) flexibility to exploit var-
ious forms of possible prior structural knowledge about x0

(e.g., sparsity); and (iv) flexibility to the underlying link-
function. Here, “flexible” refers to a method that can easily
adapt to different structural information on x0 and different
link-functions with minimal changes, such as appropriate
tuning of involved regularization parameters. Lastly, we
remark that information about the magnitude of x0 might
in general be lost in the nonlinearity. Thus, for partial iden-
tifiability, we assume throughout that ‖x0‖2 = 1 and aim
to recover an estimate that is highly correlated with the true
signal (often referred to as weak recovery, e.g., [17]).

1.1 Prior art

In the simplest case with linear link function, i.e., fi(x) =
x+zi, perhaps the most popular approach of estimating x0

is via solving the generalized Lasso:

x̂ := arg min
x

m∑

i=1

(yi − aTi x0)2 s.t. x ∈ KR. (3)

Here, for a properly chosen regularizer functionR : Rn →
R,KR ⊂ Rn is a set that encodes the available information
about x0. For instance, KR = {x ∈ Rn | R(x) ≤ K},
where K > 0 is a (tuning) parameter. The generalized
Lasso comes with provable performance guarantees under
general assumptions on the choice of R and on the mea-
surement vectors. The Lasso objective is by nature tailored
to linear measurement models, but one can always employ
it as a candidate recovery algorithm for the more general
model (1). This immediately raises the following question:
For such non-linear measurements, when (if ever) is the so-
lution x̂ of the Lasso still a good estimate of x0?
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This question has been recently addressed in a quantita-
tive way in [22], under the assumption that the measure-
ment vectors are independent Gaussians. Naturally, the an-
swer depends on both: (i) the specific non-linearity f in
(1); and (ii) the structure of x0 and the associated choice
of the regularizer. The dependence on these factors can
be conveniently summarized in terms of a few easily com-
putable model parameters. In particular, the effect of the
non-linearity is entirely captured by the following:

µ` := E[γf(γ)] and τ2` := E[(f(γ)− µγ)2], (4)

where, the expectations are over γ ∼ N (0, 1) and the (pos-
sibly) random link function f . For simplicity, we focus on
the case of sparse recovery, but the results of [22] are more
generally applicable. When, x0 is k-sparse and x̂ is the
solution to (3) with `1-regularization, then [22, Thm. 1.4]
shows the following. Provided that m & k log(n/k) and n
is large enough, it holds with high probability that1:

‖x̂− µ` · x0‖2 . τ` ·
√
k log(n/k)

/√
m. (5)

What if the Lasso fails? It becomes clear from this discus-
sion that (at least for Gaussian regressors) the generalized
Lasso satisfies all the four aforementioned favorable prop-
erties that we seek in our recovery methods. However, a
closer inspection of (5) reveals that the Lasso fails to pro-
duce a good estimate for all functions for which µ` = 0;
e.g., this includes all even link functions!

1.2 Our contribution

In this paper, we provide an affirmative answer to the fol-
lowing natural questions that arise from the inadequacy of
the Lasso for a large class of link functions: Is there a
generic convex program that can recover structured sig-
nals from even non-linear measurements? And if so, can
we quantify its error performance?

As we discuss next, our algorithm is motivated by a simple
observation. It is well known that one can expand the link
function f as a series in terms of the Hermite polynomials,
i.e., f(x) =

∑+∞
i=0 µiHi(x), where Hi(x) is the ith-order

Hermite polynomial with leading coefficient 1, and, µi =
1
n!Eγ [f(γ)Hi(γ)] for γ ∼ N (0, 1). In particular, we may
expand yi = f(aTi x0), i ∈ [m] as follows:

yi = µ0 + µ1(aTi x0) + µ2((aTi x0)2 − 1) + . . . (6)

with µ0 = E[f(γ)], µ1 = E[γf(γ)], and µ2 = 1
2E[(γ2 −

1)f(γ)]. First, observe that µ1 = µ` in (4); thus, we may
interpret the objective function of the Lasso in (3) as one

1Here and in the rest of the paper, a statement is said to hold
with high probability if it holds with probability at least 0.99 (say).
Also, the symbol “.” is used to hide universal constants (in par-
ticular ones that do not depend on f ).

that attempts to approximate (in `2-sense) each yi in (6)
by only keeping the first-order (linear) term. Clearly, this
approximation fails if µ1 = 0, and so does the Lasso. For
such cases, we naturally propose keeping only the second-
order (quadratic) term of the expansion in (6). Moreover, in
order to obtain a favorable convex program, we apply the
lifting technique. In particular, approximating (6), we write

yi ≈ µ2((aTi x0)2 − 1) = tr((aia
T
i -I) · µ2x0x

T
0 )

= tr((aia
T
i -I) · X̃0), (7)

where X̃0 denotes the rank-1 matrix µ2X0 = µ2x0x
T
0 , and

the first equality follows as ‖x0‖2 = 1. Note that (after
lifting) the quantity on the right-hand side (RHS) in (7) is
now a linear function of the unknown rank-1 matrix X̃0.

We are now ready to describe our algorithm. From (7),
one can attempt to reconstruct X̃0 (i.e., a scaled version of
X0 = x0x

T
0 ) by searching for a positive-semidefinite and

low-rank matrix X that minimizes the residual between yi
and tr((aia

T
i -I) ·X). Further relaxing the rank constraint

leads to the following convex method:

X̂ = arg min
X�0

m∑

i=1

(
yi − tr((aia

T
i -I) ·X)

)2
+ λ · tr(X),

subject to X ∈ KR, (8)

where λ > 0 is a regularization parameter. We have further
added a constraint X ∈ KR to promote the structure of the
signal-defined matrixX0 (inherited by the structure of x0).
For instance, if x0 is k-sparse, then X0 is k2-sparse and a
natural choice becomes X ∈ K`1 := {W | ‖W‖1 ≤ K},
for ‖W‖1 =

∑n
i,j=1 |Wij | and regularizer K > 0. As

a last step, our algorithm obtains a final estimate x̂ of (a
scaled) x0 by the leading eigenvector of X̂ .

Error guarantees. We characterize the estimation perfor-
mance of the following constrained version of (8):

X̂ = arg min
X�0

m∑

i=1

(
yi − tr((aia

T
i -I) ·X)

)2

subject to tr(X) ≤ µ̃ and X ∈ KR, (9)

where µ̃ > 0 is a tuning parameter. Here, we state a version
of our result in the ideal case where µ̃ = µ2 (cf. (6) and
recall that the goal of (9) is to recover X̃ = µ2X0 for which
tr(X̃) = µ2). In Sec. 3.4), we also analyze the performance
of (9) when µ̃ is not ideally tuned. Our result captures the
effect of f via two simple parameters. For γ ∼ N (0, 1):

µq := µ2 =
1

2
E[(γ2 − 1)f(γ)] and

τ2q := E
[(
f(γ)− µ · (γ2 − 1)

)2]
. (10)

For example, for recovery of a k-sparse signal we show the
following about (9) with `1-regularization (Thm. 2.1 for
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details): Form & k2 log(n/k) and n large enough, it holds
with high probability that

‖X̂ − µqX0‖F . τq · k log(n/k)
/√

m. (11)

From eigenvalue perturbation theory, this further bounds
the deviation of the leading eigenvector x̂ of X̂ from x0

(cf. Sec. 2.1). Observe the resemblance between (5) and
our result in (11). The Lasso-related parameters µ` and τ`
are replaced by µq and τq , respectively. It is evident from
(11) that (9) is efficient for those link functions f for which
µq is nonzero. In contrast with (5), in terms of sample com-
plexity, (11) pays a penalty of O

(
k2 log(n/k)

)
rather than

O (k log(n/k)). This is not surprising since the same gap
holds for the known algorithms for quadratic measurements
(e.g., [20]), a special case of even link function.

We note that (11) is only an instantiation to sparse sig-
nals of our general result that characterizes the recovery
performance of (9) for general convex regularizers R (cf.
Sec. 2.2). Also, inherent in the formulation of (9) is the
condition µq > 0 (since, X � 0 implies that tr(X) ≥ 0).
Note that if µq < 0, then the same method works only by
replacing the constraint X � 0 with X � 0. Overall, the
proposed algorithm requires that µq 6= 0.

Remark 1 (Extensions). Our algorithm is motivated by the
expansion of the link function in (6), which we attempt
to approximate in (8) by solely keeping the second-order
term. Naturally, one can imagine the possibility of devel-
oping extensions to (8) that achieve better performance by
more accurate approximations in (6). For example, one
may keep both the zeroth- and the second-order terms:

X̂ = arg min
X�0

m∑

i=1

(yi − µ̂0 − tr((aia
T
i -I) ·X))2

subject to tr(X) ≤ µ̃ and X ∈ KR, (12)

where, µ̂0 = 1
m

∑m
i=1 yi. Note that for large enough num-

ber of measurements m, it holds µ̂0 ≈ E[f(γ)] = µ0. We
remark that our analysis of (9) directly translates to guar-
antees about (12) when µ̂0 is estimated by a fresh batch of
measurements (for example, this is achieved in practice by
sample splitting). Other interesting extensions of this flavor
are certainly possible, albeit may require additional effort.

Remark 2 (Relation to PhaseLift). The lifting technique
is by now well established in the literature, the most
prominent example being its use in phase retrieval (i.e.,
quadratic measurements). In fact, the popular PhaseLift
method [5] is very similar to (8), the only difference being
in the loss function: the PhaseLift penalizes

∑m
i=1(yi −

tr(aia
T
i ·X))2, instead. In reference to (6), note that in

the special case of quadratic measurements, it holds µ0 =
µ2 = 1, which explains the choice of that particular loss
function in the PhaseLift. However, our arguments show
the need for modifications to be able to treat a wide class of
functions beyond quadratics. This leads to (12), which can

be viewed as a canonical extension or robust version of the
PhaseLift to more general link-functions.

1.3 Relevant literature and outlook

The vast majority of the literature on structured signal re-
covery in the high-dimensional regime assumes a linear
measurement model. In this vanilla setting, convex meth-
ods offer many desired features: computational efficiency,
tractable analysis, flexibility to adjust to different problem
instances (such as, sparse recovery with `1-regularization
and low-rank matrix recovery with nuclear-norm mini-
mization). By now, performance guarantees for these meth-
ods are well-established ([9] and references therein).

Extensions to nonlinear link functions, have been only
more recently considered in high dimensions. While, the
key observation that for Gaussian measurement vectors it
holds µ`x0 = arg minx E(f(〈a,x0〉)−〈a,x〉)2 goes back
to [4] (also, [14]), Plan and Vershynin [22, 23] were the
first to show how that idea extends to the high-dimensional
setting by applying it to the generalized Lasso. Subse-
quently [29] extended [22] to the regularized Lasso, ob-
tained the exact constants in the analysis, and used the
results to design optimal quantization schemes. More re-
cent works involve extensions to other loss-functions be-
yond least squares [10], to elliptically symmetric distri-
butions [11], to projected gradient-descent [21], to signal-
demixing applications [24], and to demonstrating compu-
tational speedups compared to maximum-likelihood esti-
mation [8]. Finally, Yang et al. [32] have appropriately
modified Brillinger’s original observation to sub-Gaussian
vectors, based on which they propose and analyze generic
convex solvers that work in this more general setting.

Unfortunately, all these works, starting with the original
result by Brillinger, assume that the link function satisfies
µ` 6= 0. Instead, our method and analysis works for these;
and more generally for link functions satisfying µq 6= 0.
In that sense, our paper is a direct counterpart of [22] for
“even-like” nonlinearities. Given the aforementioned ex-
tensions that followed [22], it is natural to expect analo-
gous extensions of our results as part of future research.
Also, perhaps an interesting research question that is raised
is related to unifying the efficacy of the Lasso and of (8)
in a single generic algorithm that would combine the best
of the two worlds and would apply to nonlinearities satis-
fying either µ` 6= 0 or µq 6= 0 (cf. Remark 1). On the
one hand, since µ` 6= 0, one can obtain an estimate of
x0 by the Lasso; however, this entirely ignores the hidden
“quadratic part” in the measurements . On the other hand,
seemingly natural lifting procedure leads to a semidefinite-
optimization estimator that successfully accounts for both
“linear and quadratic parts”, but suffers from worse sample
complexity. We point out the interesting and relevant work
by Yi et al. [35] in this direction. Their algorithm is appli-
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cable to such a wide class of link-functions, but, it imposes
other restrictions compared to our work, such us requiring
binary measurements and a sparse signal x0.

Out of all the nonlinear link functions, the quadratic case
(cf. phase-retrieval) deserves special attention; there has
been a surge in the provable recovery methods for this case
over the past few years. Among the most well-established
and the first chronologically to enjoy rigorous recovery
guarantees are the methods based on semidefinite relax-
ation [3, 5]. Such methods operate by lifting the original
n-dimensional natural parameter space to a higher dimen-
sional matrix space. Here, we extend the lifting idea and
the recovery guarantees to general link functions beyond
quadratics. Naturally, the increase in dimensionality of-
ten introduces challenges in computational complexity and
memory requirements. To overcome these issues, subse-
quent works on phase retrieval develop non-convex formu-
lations that start with a careful spectral initialization (see
[25, Sec. 6] for references), which is then iteratively re-
fined by a gradient-descent-like scheme of low computa-
tional complexity. See also [2, 12] for an alternative convex
formulation of the problem in the natural parameter space.
Naturally, many of these solution methods can be combined
with the ideas introduced in this paper to extend their reach
to non-quadratic link functions. In fact, while preparing our
paper, we became aware of the recent work by Yang et al.
[34] exactly along these lines, which proposes an iterative
non-convex method for sparse-signal recovery from link
functions beyond quadratics. Interestingly, in order to ar-
rive at their algorithm, Yang et. al. identify necessary mod-
ifications to the vanilla non-convex methods for quadratics,
which are in exact agreement with our modification to the
PhaseLift needed to arrive at (8). Thus, (8) and (12) can
be interpreted as the convex counterparts to the algorithm
of [34]. Despite the similarities, (a) the two papers arrive
at the proposed algorithms through different ideas (cf. Re-
mark 2); (b) our algorithm and analysis support structures
beyond sparsity; (c) our performance bounds precisely cap-
ture the effect of the link-function.

Another closely related work [33] takes a somewhat differ-
ent view than ours on the measurement model in (1) and
arrives at a different semidefinite optimization algorithm
closer to the algorithms for sparse PCA. Notably, [33] also
addresses the design matrices with sub-gaussian entries.
For Gaussian regressors, a parallel work to ours [28] ex-
tends the analysis of [33] beyond sparse recovery. Finally,
[18, 15, 17] study the performance of spectral initialization
for measurements as in (1). In contrast to our work, the re-
sults in [15, 17] are asymptotic and do not exploit structural
information on x0. Also, compared to [18, 33, 28] our anal-
ysis is sharp with respect to the link function f . Such sharp
results are directly useful in various applications where one
has control over some parameters of f , and also, to the de-
sign of pre-processing functions h (see [29, 15, 17] for pre-

cursors of this idea). For example, by inspecting (11), the
estimation error is minimized by choosing h so that µq and
τq result in the effective noise parameter τq/µq being as
small as possible (see Sec. 4). We postpone further inves-
tigations of such implications to future work.

Notation. We use Sn (S+n ) to denote the sets of real
n×n symmetric (resp., positive semidefinite) matrices. For
U, V ∈ Sn, 〈U, V 〉 = tr(UV) denotes the standard inner
product in Sn, ‖V ‖2 (‖V ‖F ) denotes the spectral (resp.,
Frobenius) norm, and ‖V ‖1 =

∑
j∈[m]

∑
i∈[n] |Vji|. For

x ∈ Rn, ‖x‖p denotes its `p norm, p ≥ 1. We de-
note by SF,n the unit sphere in Sn, i.e., SF,n := {V ∈
Sn | ‖V ‖F = 1}.
Organization. We formally state our results along with
some technical background in Sec. 2. The case of sparse
recovery is formally treated in Sec. 2.1, while error guaran-
tees for the general setting are provided in Sec. 2.2. We
highlight the key steps of the proofs in Sec. 3 (full de-
tails are relegated to the supplementary material). Also, in
Sec. 3.4, we study the performance of (9) under imperfect
tuning. Numerical simulations are presented in Sec. 4.

2 Error bounds for nonlinear measurements

2.1 An example: Sparse recovery

Assume that the true signal x0 is k-sparse. Then, X0 =
x0x

T
0 is at most k2-sparse. Thus, we solve (9) with an `1-

norm constraint. Thm. 2.1 below characterizes the perfor-
mance of the algorithm. Before that, recall the definitions
of µq and τq in (10). Here onwards, for ease of exposition,
we refer to µq and τq simply as µ and τ , respectively. If
f is twice differentiable with f ′′ being its second deriva-
tive, then by integration by parts we have µ = E[f ′′(γ)]/2.
Moreover, it is easily shown that τ2 = E[f2(γ)]− 2µ2.

For all the theorems that follow: a statement is said to hold
with high probability if it holds with probability at least
0.99 (say). Also, the appearing constants c, C > 0 may
only depend on the probability of success.

Theorem 2.1 (Sparse recovery). Suppose that x0 is k-
sparse, ai ∼ N (0, I), and that y follows the generalized
linear model of (1). Assume that µ > 0, and let X̂ be the
solution to (9) with µ̃ = µ and KR = {X : ‖X‖1 ≤
µ‖X0‖1}. There exist universal constants c, C > 0 such
that, if the number of observations obeys

m ≥ c · k2 log(n/k) (13)

for sufficiently large n, then, with high probability, we have

‖X̂ − µX0‖F ≤ C · τ · k log(n/k)/
√
m. (14)

We defer the proof of Theorem 2.1 to Sec. A.1 in the sup-
plementary. The theorem does not claim that X̂ is rank one.
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As usual, we obtain an estimate x̂ of x0 by extracting the
rank-one component (e.g. [5]). In particular, if λ1 and v1

denote the maximum eigenvalue and the principal eigen-
vector of X̂ , respectively, then we obtain x̂ =

√
λ1v1. It

follows from (19) that ‖x̂−√µx0‖2 ≤ C ·min
{√

µ, E√µ
}
,

where E denotes the expression in the RHS of (14). The
proof is based on the Davis-Kahan sin(θ)-theorem and is
the same as in [5, Sec. 6]; thus it is omitted for brevity.

Thm. 2.1 implies the sample complexity of
O
(
k2 log(n/k)

)
. Notably, for quadratic measure-

ments, this is the same as the guarantees of [5]. In fact,
the same k2-barrier appears in most of the algorithms that
have been proposed for sparse recovery from quadratic
measurements (e.g., [25, Sec. 6] and references therein).
However, given more information about the link-function
(e.g., f having sub-exponential moments), the numerator
of the RHS in (14) can be improved to k2

√
log(n/k).

2.2 General result

Thm. 2.2 below characterizes the performance of (9) for
general signal structure and KR. The bounds are given in
terms of specific summary parameters. We distinguish be-
tween: (i) Geometric parameters that capture the efficacy
of the imposed geometric constraints in (9) in promoting
solutions of desired structure (positive semidefinite, low-
rank, sparse, etc.); (ii) Model parameters that capture f .

2.2.1 Geometric parameters

First, we introduce the notions of the tangent cone and the
(local) Gaussian width.

Definition 1 (Tangent cone). The tangent cone of a subset
K ⊂ Sn at X ∈ Sn is defined as D(K, X) := {τV : τ ≥
0, V ∈ K −X}.
Definition 2 ((Local) Gaussian width). The local Gaussian
width of a set C ⊂ Sn is a function of a scale parameter
t > 0, which is defined as

ωg,t(C) := EG
[

sup
V ∈C∩tSF,n

〈G,V 〉
]
, (15)

where G is a matrix from the Gaussian orthogonal ensem-
ble (GOE), i.e. G = GT , Gii

iid∼ N (0, 1) for i ∈ [n], and,

Gij
iid∼ N (0, 1/2) for i > j ∈ [n].

For t = 1, we refer to ωg,1(C) simply as the Gaussian
width, and, we use the shorthand ωg(C).

The results of this section only involve the Gaussian width
ωg,1(C) = ωg(C) (t = 1, above). The general definition
of local Gaussian width becomes useful when we study
the performance of (9) under imperfect parameter tuning in
Sec. 3.4. The Gaussian width plays a central role in asymp-
totic convex geometry. It also appears as a key quantity in
the study of random linear inverse problems [7, 1]: for a

cone C ⊂ Sn, ωg(C)2 can be formally described as a mea-
sure of the effective dimension of the cone C [31, 1]. Impor-
tantly, while it is an abstract geometric quantity, it is pos-
sible in many instances to derive sharp numerical bounds
that are explicit in terms of the parameters of interest (such
as sparsity level, rank) [26, 7, 1]. We make use of these
ideas in the proof of Thm. 2.2 (see Sec. 3.3.2).

Finally, we need two more geometric parameters: Tala-
grand’s γ1 and γ2-functionals. To streamline the presen-
tation, we defer the formal definitions of these parameters
to Sec. C in the supplementary. For a set K ⊂ Sn we
write γ1(K, ‖ · ‖2) and γ2(K, ‖ · ‖F ) for the γ1 and γ2-
functionals with respect to the spectral and the Frobenius
norms, respectively. The γ-functionals are fundamental
in the study of suprema of random processes and specif-
ically in the theory of generic chaining [27]. In general,
explicit calculation of the γ-functionals can be challeng-
ing depending on the specific set K; however, it is of-
ten possible to control them in a sufficient way. Specif-
ically, for the term γ2(C; ‖ · ‖F ), one can appeal to Ta-
lagrand’s majorizing measure theorem that establishes a
tight (up to constants) relations to the Gaussian width [27,
Thm. 2.1.1], which can in turn be often well approximated:
γ2(K; ‖ · ‖F ) ≤ C · ωg(K). More generally, Dudley’s in-
tegral produces bounds on γ1, γ2 in terms of the metric en-
tropy of the set (see (66) in the supplementary) 2.

2.2.2 Model parameters

First, recall the definition of µ and τ in (10). Moreover, for
γ ∼ N (0, 1) and all expectations take over γ and f :

υ2 := E
[
γ2 ·

(
f(γ)− µ · (γ2 − 1)

)2]
and

χ2 := E
[
(γ2 − 1)2 ·

(
f(γ)− µ · (γ2 − 1)

)2]
. (16)

Remark 3. The results extend to the more general model
of (2) with a natural modification in (10) and (16). In par-
ticular, f(γ) is substituted by a (random variable) y ∼
p(y|γ), and the expectation is over the conditional distribu-
tion p(y|γ) and γ, e.g., µ = 1

2

∫
yEγ [(γ2 − 1)p(y|γ)]dy.

2.2.3 Main result

We are now ready to state the main result of this section.
Theorem 2.2 (General result). Suppose that ai ∼ N (0, I),
and that y follows the model in (1). Recall the definitions
of µ, τ, υ, χ in (10) and (16). Assume that µ > 0 and that
µ̃ = µ and µX0 ∈ KR in (9), where X0 = x0x

T
0 . Denote

Γ := min
{ √

n , γ2
(
D(KR, µX0) ∩ SF,n, ‖ · ‖F

)
+

γ1
(
D(KR, µX0) ∩ SF,n, ‖ · ‖2

) }
. (17)

2See also [19] for recent progress on bounding the γ1 func-
tional of constraint sets with “good” covering number in terms
of their Gaussian width. In particular, [19, Lemma D.19] can be
combined with Thm. 2.2 to obtain specific results for other struc-
tures beyond sparsity.
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There exist universal constants c, C > 0 such that, if

m ≥ c · Γ2, (18)

then, with high-probability, the solution X̂ of (9) satisfies

‖X̂ − µX0‖F ≤
C√
m
·
(
τ · Γ + χ+

υ ·min
{√

n, ωg
(
D(KR, µX0)

)})
, (19)

Note that Thm. 2.2 holds for all values of n. Typically, for
large enough n, the first term in the right hand side (RHS)
of (19), i.e., τ · Γ/√m, becomes the dominant term. For
a simple illustration of the theorem, consider the case of
a generic true signal x0 without any prior structural infor-
mation. In this case, we solve (9) with no additional con-
straints other than X � 0 and tr(X) ≤ µ. Hence, Γ ≤ √n
and from (18) the sample requirement is m ≥ c′ · n.

3 Technical results and proofs

We now outline the proof of Thm. 2.2, which has two
main steps. First, in Thm. 3.1, we upper bound the error
‖X̂ − µX0‖F of (9) in terms of an appropriate geometric
quantity, namely the weighted empirical width. We state
the theorem and outline its proof in Sec. 3.1 and 3.2, re-
spectively. Next, in Sec. 3.3, we show how to control the
weighted empirical width to finally arrive at Thm. 2.2.

3.1 General upper bound

We begin the section by defining the local weighted empir-
ical width. Similar to the definition of the local Gaussian
width, this geometric is also a function of a scale parameter
t. In this section, we only make use of the case t = 1, but
the generality of the definition will prove useful in Sec. 3.4.

Definition 3 ((Local) empirical width). Let a1, . . . ,am ∈
Rn be independent copies of a standard normal vector
N (0, In) and ε1, . . . , εm be independent Rademacher ran-
dom variables. For a set C ⊂ Sn and a vector p :=
(p1, . . . , pm) the local weighted empirical width ωe,t(C;p)
is a function of a scale parameter t > 0 defined as follows:

ωe,t(C;p) := E
[

sup
V ∈C∩tSF,n

〈V,Hp〉
]
, (20)

where Hp := 1√
m

∑m
i=1 pi · εi · aiaTi , and, the expecta-

tion is over the randomness of {ai} and of {εi}. In partic-
ular, when p = 1 we write ωe,t(C) := ωe,t(C;1), and call
this the local empirical width.

If t = 1, we simply call ωe,1(C;p) the weighted empirical
width, and, we use the shorthand ωe(C;p).

We study further the weighted empirical width in Sec. 3.3.
Now, we are ready to state a general upper bound on the

error of the estimate obtained by (9). For convenience, let:

K0 := {X : X � 0 and tr(X) ≤ µ̃}. (21)

Theorem 3.1. Let the same assumptions as in Thm. 2.2
hold (including µ̃ = µ). Further let

C0 := D(K0, µX0) ∩ D(KR, µX0). (22)

Finally, define η := (η1, . . . , ηm) with ηi :=
(
f(γi) − µ ·

(γ2i −1)
)

and γi
iid∼ N (0, 1), i ∈ [m]. There exist constants

c, C > 0 such that, if the number of observations obeys

m ≥ c · (ωe(C0))
2
, (23)

then, the solution X̂ of (9) satisfies with high probability:

‖X̂ − µX0‖F ≤
C ·
(
Eη

[
ωe(C0;η)

]
+ υ
√

2 · ωg(C0) + χ
)/√

m. (24)

3.2 Proof outline of Theorem 3.1

Let y = (y1, . . . , ym) consist of m observations: yi =

fi(a
T
i x0), i ∈ [m]. We use X0 and X̂ to denote x0x

T
0

and the solution to (9), respectively. For convenience, we
write the loss function in (9) as L(X) := ‖y − A(X)‖22,
where the operator A : Rn×n → Rm returns A(X) :=(
aT1Xa1 − tr(X) , . . . , aTmXam − tr(X)

)T
. We define

the error matrix V̂ = X̂ − µX0. We need to upper bound
‖V̂ ‖F to establish Thm. 2.2. Towards this direction, let us
consider the excess loss function

0 ≤ L(µX0)− L(X̂)

= ‖y −A(µX0)‖22 − ‖y −A(µX0 + V̂ )‖22. (25)

The nonnegativity follows by optimality of X̂ and feasibil-
ity of µX0 (recall that µ > 0 and µ̃ = µ). Therefore,

‖A(V̂ )‖22 ≤ 2〈y − µ · A(X0),A(V̂ )〉. (26)

On the one hand, recall from (9) that V̂ satisfies tr(V̂) ≤ 0,

µX0 + V̂ � 0, and µX0 + V̂ ∈ KR, i.e., V̂ ∈ C0. Thus,

V̂ /‖V̂ ‖F ∈ E := C0 ∩ SF,n. (27)

On the other hand, observe in (26) that the LHS (resp.,
RHS) is homogeneous of degree 2 (resp., 1). With these,
it follows from (26) that

‖V̂ ‖F · inf
V ∈E
‖A(V )‖22 ≤

2 sup
V ∈E
〈A(V ),y − µ · A(X0)〉. (28)

The strategy is now clear: we will obtain high-probability
lower and upper bounds on the LHS and on the RHS, re-
spectively. This will immediately upper bound ‖V̂ ‖F .

Lower bound: We lower bound the LHS of (28) by em-
ploying Mendelson’s Small Ball method [16]. We defer
details to Sec. B.1 of the supplementary material.
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Lemma 3.1 (Lower bound). There exists positive absolute
constant c > 0 such that for any s > 0 it holds with proba-
bility at least 1− e−s2/4:

inf
V ∈E
‖A(V )‖2 ≥ c

√
m− 4ωe(C0)− s. (29)

Upper bound: The key observation for upper bounding the
RHS of (28) is that we have set up the objective function of
(9) and we have chosen the value of µ in such a way that the
following holds. Let zi = f(aTi x0)−µ·((aTi x0)2−1), i ∈
[m]. Then, setting γi := aTi x0, i ∈ [m], observing that
γi ∼ N (0, 1), and recalling the definition of µ, we obtain

E
[
zi · (γ2i − 1

)
] = 0. (30)

Therefore, zi is uncorrelated with ((aTi x0)2 − 1), and
(by definition) it only depends on the measurement vec-
tor ai through aTi x0. Using these, it can be shown that
E〈y − µA(X0),A(V )〉 = 0 for each fixed V (see (59) in
Sec. B.3 of the supplementary material). On the other hand,
in (28), we need to uniformly bound the deviation over all
V . To do that while exploiting the key observation above,
we decompose the measurement vectors as follows:

ai = x0x
T
0 ai +

(
I− x0x

T
0

)
ai =: Pai + P⊥ai,

where P, P⊥ denote the projection operators to the direc-
tion of x0 and to its orthogonal subspace, respectively.
With this representation, it can be shown that

〈y − µ · A(X0),A(V )〉 = Term I + Term II + Term III

where,

Term I :=
∑

i∈[m]

tr(VX0) (γ2i − 1) zi, (31a)

Term II :=
∑

i∈[m]

(
aTi,⊥V ai,⊥ + tr(V(X0-I))

)
zi, (31b)

Term III :=
∑

i∈[m]

(
xT0 V ai,⊥ + aTi,⊥V x0

)
γi zi. (31c)

and, we denote ai,⊥ = P⊥ai and zi = f(γi)− µ(γ2i − 1).
In Sec. B.2 we upper bound E[supV ∈E Term ?] for all three
terms, i.e., ? = I, II, III; each one giving rise to one of
the terms in the final upper bound of the following lemma.

Lemma 3.2 (Upper bound). Let υ, χ and η be defined as
in the statement of Thm. 3.1. Then,

E sup
V ∈E
〈y − µA(X0),A(V )〉 ≤
√
m
(
χ+ 2E

[
ωe(C0;η)

]
+
√

2 υ ωg(C0)
)
. (32)

While we defer the proof to the supplementary material, it
is not hard to see that (30) is key in bounding the supremum
of Term I by χ

√
m, rather than a trivial bound of order m.

Putting things together: First, Lemma 3.1 and (13) im-
ply that there exists constant c > 0 such that, with prob-
ability at least 0.995, we have: infV ∈E

1
m‖A(V )‖22 ≥ c.

Second, Lemma 3.2 combined with Markov’s inequal-
ity imply that, with probability at least 0.995, we have:
supV ∈E〈y − µ · A(X0),A(V )〉 ≤ C · √m ·

(
χ +
√

2 ·
υ · ωg(C0) + 2E

[
ωe(E ;η)

])
. Then, by union bound, (28)

holds with probability 0.99.

3.3 Controlling the weighted empirical width

Note that ωe(C;p) depends both on the geometry of the
cone C and on the weights pi. We present two ways of con-
trolling ωe(C;p) in terms of simpler geometric quantities.

3.3.1 First bound: generic chaining

This general bound captures the geometry by the γ1 and γ2-
functionals with respect to appropriate metrics, and quanti-
fies the role of the weights by `∞ and `2-norms of p.

Lemma 3.3 (Generic chaining bound). For a cone
C ⊂ Sn and p ∈ Rm there exists universal con-
stant C > 0 such that ωe(C;p) ≤ (C/

√
m) ·(

‖p‖2 · γ2(C; ‖ · ‖F ) + ‖p‖∞ · γ1(C; ‖ · ‖2)
)
. In particu-

lar, ωe(C) = ωe(C;1) ≤ C ·
(
γ2(C; ‖ · ‖F ) + γ1(C;‖·‖2)√

m

)
.

See Sec. C of the supplementary for a proof. Note that
further using the crude bound ‖p‖∞ ≤ ‖p‖2 implies:

ωe(C;p) ≤ C‖p‖2√
m
·
(
γ2(C; ‖ · ‖F ) + γ1(C; ‖ · ‖2

)
. (33)

3.3.2 Second bound: polarity

Alternatively, one can apply polarity arguments, by extend-
ing recent results regarding the Gaussian width to more
general notions such as the weighted empirical width. The
idea is as follows. By using polarity it can be shown that
ωe(C;p) is upper bounded by the expected distance of Hp

(cf. Definition 3) to the polar cone C◦. When C is the tan-
gent cone of some convex proper function (say) R, then,
C◦ is the cone of subdifferential of R. Thus, we arrive at
the result below that is based on techniques from [26, 7].

Proposition 3.1 (Polarity bound). Let R : Sn → R be
a proper convex function, fix X0 ∈ Sn, and let K̃R :=
{V : R(X0 +V ) ≤ R(X0)}. Assume that the subdifferen-
tial ∂R(X0) is non-empty and does not contain the origin.
Then, for Hp = 1√

m

∑
i∈[m] pi · εiaiaTi it holds:

ω2
e

(
D(K̃R, X0);p

)
≤ E

[
inf
λ≥0

inf
V ∈∂R(X0)

∥∥Hp−λ ·V ‖2F
]
.

For illustration, in Lemmas 3.4 and 3.5 below we apply
Proposition 3.1 to obtain bounds for the following two
cones: (a) D(K0, µX0); and, (b) D(KR, µX0). We defer
the proofs to Sec. D in the supplementary material.
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Lemma 3.4 (Weighted empirical width of C+). For p :=
(p1, . . . , pm) and C+ = {V : µX0 + V � 0 and tr(V) ≤
0}, there exists constant C > 0 such that ωe(C+;p) ≤
C√
m

(‖p‖2
√
n + ‖p‖∞n). In particular, ωe(C+;1) ≤

C
√
n, provided that m ≥ cn for some constant c > 0.

Lemma 3.5 (Weighted empirical width of Csparse). Let
X0 = x0x

T
0 where x0 is k-sparse. For p := (p1, . . . , pm)

and the cone Csparse := {V : ‖µX0 + V ‖1 ≤ ‖µX0‖1},
there exists constant C > 0 such that ωe(Csparse;p) ≤
C√
m
k
√

log (n/k)
(
‖p‖2 + ‖p‖∞

√
2log (n/k)

)
. In par-

ticular, ωe(Csparse,1) ≤ Ck
√

log (n/k), provided that
m ≥ ck2 log (n/k) , for c > 0.

3.4 Signal recovery with imperfect tuning

Thm. 3.1 assumes ideal tuning µ̃ = µ in (9), which guar-
antees thatX0 belongs to the boundary of the constraint set
K0 (cf. (21)). Moreover, its bounds in terms of the Gaus-
sian/empirical widths of D(KR,x0) are most informative
when X0 is at the boundary of KR. Thm. 3.2 below re-
laxes these assumptions, via a local analysis that gives rise
to the local versions of the Gaussian/empirical widths. The
proof is deferred to the supplementary material. For exam-
ple, the theorem shows that the error performance of (9) is
controlled as long as µ̃ ≥ µ (but, not necessarily equal).

Theorem 3.2 (Imperfect tuning). Suppose that ai ∼
N (0, In), and that y follows the model in (1). Recall the
definitions of µ and of τ, υ, χ. Further let

Kx0 := {K0 − µX0} ∩ {KR − µX0}. (34)

Finally, define η := (η1, . . . , ηm), where ηi :=
(
f(γi) −

µ · (γ2i − 1)
)
, i ∈ [m] for γi

iid∼ N (0, 1). For any t > 0,
there exist constants c, C > 0 such that, if the number of
observations obeys

m ≥ c ·
(
ωe,t(Kx0

)/t
)2
, (35)

then, with high probability, the solution X̂ of (9) satisfies:

‖X̂ − µX0‖F ≤
C√
m
·
(
Eη

[ωe,t(Kx0
;η)

t

]
+ υ
√

2
ωg,t(Kx0

)

t
+ χ

)
+ t.

4 Simulations

In this section, we show numerical results regarding the
performance of the proposed method. In order to solve
the optimization in (9), we use PhasePack library [6] (de-
signed for quadratic measurements) with appropriate mod-
ifications to account for the different objective function
compared to the PhaseLift [5] (cf. Remark 2), as well as
for the regularization in case of structured signal recovery.

In our setup, the unknown unit-norm signal x0 has dimen-
sion n = 50. m measurements are generated according to
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Figure 1: Performance for unstructured signal recovery.
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Figure 2: Performance of (9) for sparse signal recovery.

(1) with ai ∼ N (0, I), for the following link functions: (1)
f (1)(u) =

(
b|u|c + 1

2

)
· 1{|u|<3} + 7

2 · 1{|u|≥3}; and (2)
f (2)(u) = 1

2 ·
(
b2|u|2c + 1

2

)
· 1{|u|2<4} + 17

4 · 1{|u|2≥4}.
Note that f (1) and f (2) correspond to quantized measure-
ments with alphabets sizes 4 and 9, respectively. We also
experiment with random link functions as per (2); in partic-
ular, yi ∼ Poisson(|aTi x0|2), for all i ∈ [m]. In all cases,
we solve (9) with µ̃ = µ, with appropriate µ for each link
function. The results shown are averages over 40 trials.

Figure 1 shows the estimation error of (9) as a function of
m for a generic x0 (aka no constraint X ∈ KR). We also
compare the proposed method with the PCA-based method
in [33, 28]; we empirically observe that the former method
outperforms the latter for all tested link functions. Simi-
larly, Figure 2 illustrates the performance of (9) in a sparse-
signal recovery setting with sparsity levels k ∈ {5, 10}.
Our simulations also confirm the point briefly made in
Sec. 1.3. The precise nature of our results can be useful
in optimal design of system parameters. In particular, our
analysis suggests that link functions with smaller effective
noise parameter τ/µ result in smaller error. Indeed, the ra-
tio τ/µ of f (1) and f (2) is equal to 2.25 and 1.51, respec-
tively, which is in agreement to the better recovery perfor-
mance of f (2) in our simulations.
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