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Abstract

Kernel methods have been successfully used
in various domains to model nonlinear pat-
terns. However, the structure of the kernels is
typically handcrafted for each dataset based
on the experience of the data analyst. In
this paper, we present a novel technique to
learn kernels that best fit the data. We ex-
ploit the measure-theoretic view of a shift-
invariant kernel given by the Bochner’s the-
orem, and automatically learn the measure
in terms of a parameterized quantile function.
This flexible black box quantile function, eval-
uated on Quasi-Monte Carlo samples, builds
up quasi-random Fourier feature maps that
can approximate arbitrary kernels. The pro-
posed method is not only general enough to
be used in any kernel machine, but can also be
combined with other kernel design techniques.
We learn expressive kernels on a variety of
datasets, verifying the methods ability to au-
tomatically discover complex patterns without
being guided by human expert knowledge.

1 Introduction

Even though we live in an era where data is abundant,
it still requires expertise knowledge to infer useful infor-
mation from data. In order to make machine learning
algorithms accessible to data analysts without pro-
longed experience, it is vital to automate all phases of
machine learning algorithms. To this end, there have
been several initiatives to automate both inference and
parameter optimization in machine learning algorithms
[T 2, B, 4 [5]. Although these black box [6] [7] and gray
box [§] algorithms are becoming popular in various
sub-disciplines of machine learning, these concepts are
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scarcely discussed in kernel methods [9] irrespective of
their popularity and widespread applications.

As with connectionists paradigms such as deep neu-
ral networks, kernel methods gained popularity due
to their capacity to capture nonlinear patterns [9] [10].
Although kernel methods are valuable when data are
scarce, they are equally flexible in big data settings
[11, 12, 13]. In order to use kernel methods such as
support vector machines, Gaussian process regression,
etc., it typically requires an experienced user to pick a
kernel or a composition of kernels from a known pool
of kernels such as periodic, squared-exponential radial
basis function (RBF), Matérn, etc. [I4]. Therefore, it is
necessary to automate the art of choosing kernels so as
to perform data analysis in an end-to-end fashion. On
another facet, there are a variety of applications in the
real-world where pre-defining the kernel is inexpedient
because data becomes available only after deploying
the algorithm. For instance, in online robotics appli-
cations, the robot is required to adapt the kernel to
account for the changes in the terrain [I5] or to adjust
the properties of the control policies according to the
feedback [16], [17].

The majority of kernel learning techniques focuses on
choosing the kernel from a mixture of popular known
kernels and learning their weights [I8], 19]. In contrast,
in this paper, we attempt to learn kernels in a more
general and black box fashion without being restricted
to known kernels. We represent a shift-invariant kernel
with a parameterized quantile function. This enables
us to seamlessly change the structure of the kernel (i.e.
the kernel function) by merely adjusting the parame-
ters of the quantile function. This process generates
novel shift-invariant kernels that are guaranteed to be
positive-definite. For this reason, these kernels can
simply be used in any kernelized inference algorithm
such as kernelized regression or classification by opti-
mizing the parameters of the black box quantile (BBQ)
alongside the parameters of the inference algorithm.
Treating the underlying quantile as a black box does
not hinder the interpretability of the inference algo-
rithm since the reconstructed kernel itself can still be
understood as a similarity function.
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2 Related work and background

2.1 Kernel learning

For a non-empty set X C R, let us denote the kernel
function as k : X x X — C. By adding the inner
product structure (-, -), a kernel can be represented as
k(x,x") = (p(x), p(x'))3 for x,x" € X, where ¢ : X —
‘H is a mapping from the low dimensional input space
X into a possibly infinite-dimensional Hilbert space
‘H. Intuitively, these inner product kernels quantify
the similarity between two input points. The simplest
kernel is the linear kernel given by k(x,x’) = x*x'.
However, arguably, the most popular kernel is the
squared-exponential kernel k(x, x") = o2 exp(—272||x—
x'||3) with parameters o2 and 2. If less smooth fittings
are intended, then the user would choose kernels such as
the neural network or Matérn 2 [14]. Similarly, if there
is a seasonal pattern it is desirable to use a periodic
kernel k(x,x’) = o?exp(—2y?sin®(& |x — x|)) with
the periodicity parameter p.

Because of the inner product, the kernel function is,
i) positive-definite, ii) conjugate symmetric k(x,x’) =
k*(x',x), and iii) satisfies linearity in the first argu-
ment of the kernel. Due to these properties, functional
composition, and convolution of kernels result in an-
other valid kernel. Even though kernels constructed
with these operations are capable of computing com-
plex patterns, the choice of kernels and their combi-
nations often depend on the domain knowledge and
physical observations of the data analyst. An intuitive
guide on how to combine popular kernels is given in
[20]. Nonetheless, because the manual construction of
a sophisticated kernel is not straightforward, similar
to a typical model selection problem in statistics, re-
searchers have attempted to learn kernels as multi-task
learning and through expensive optimization techniques
[18, 211 [22]. These approaches to finding sophisticated
kernels is known as kernel learning. In this paper, we
revisit kernel learning with novel techniques developed
in recent years to approximate kernels by a dot product
of basis functions. In this regard, the spectral domain
representation of the kernel defined in Theorem [I| and
Corollary |1 has gained popularity [19] [23].

Theorem 1 (Bochner’s Theorem) [24] The sufficient
and necessary conditions for the existence of a con-

tinuous positive-definite function ji : RP — C for all
x € RP is,

Alx) = / e Teduw) (1)

where 1 is a finite non-negative Borel measure on RP.

Corollary 1 If the measure p in Theorem|[1] is a prob-
ability measure with [1(0) = 1 and has a probability
density function (pdf) fa on the random variable 2
with its realization w € RP | then i(x — x') =: k(x,x’)
s a continuous, stationary, and positive-definite covari-
ance function that satisfies,

k(x,x') = /RD e*i(x*x/)wasz(w)dw. (2)

In a series of pioneering work by Wilson et al. [19 [25],
the covariance function of a Gaussian process prior is
modeled by making use of a result similar to Corollary|I]
as a spectral representation [14]. Taking advantage of
mixture representations and sampling from a pdf has
been explored in [26] 27]. We leave this discussion for
Section |5l In the next section, we discuss the generic
sampling based approximation for kernels with a fixed
structure (i.e. kernels are not learned).

2.2 Random Fourier features

Although dot product kernels can capture non-linear
patterns as their features are represented in an infinite
dimensional space, naively computing these kernels
for large datasets is computationally prohibitive as it
requires to evaluate the kernel for each pair of points.
To alleviate this issue, Rahimi et al. [23] proposed to
pick a known probability density function fqo(w) in such
a way that the required kernel can be reconstructed
using Corollary [I] For instance, samples drawn from a
standard normal distribution can reconstruct a squared
exponential kernel. More generally, representing the
known pdf using a finite number of Monte-Carlo (MC)

samples {wn, id fa(w)IM_,

approximation of the feature map ¢(x) € CM [28, 29
30]. That is,

creates a finite dimensional

M

ko) = g7 D 0T — (3. e
m=1

(3)
The approximate feature map can be decomposed into,
b(x) = ﬁ[e‘ixTwl, ... e"x"wm] € CM For real val-
ued kernels, can be further reduced into cosine and
sine terms [23]. This work has gained attention in re-
cent years because of the simplicity, solid theoretical
basis [31], 32], and superiority in various applications
[17, B3|]. Further advantages and outstanding perfor-
mance of randomization based algorithms have been

discussed in [34], 35, 36}, 37].

3 Black box quantile kernels

In this section, we propose black box quantiles (BBQ)
as an alternative parameterization of the probability
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Figure 1: A summary of the algorithm.

measure to capture complex patterns in data. The
method is general and can be used with other kernel
composition techniques. Without loss of generality,
BBQ features are introduced for univariate data x in
Sections [3.1] to [3-3] and a summary of the algorithm is
given in Figure[T[]and Algorithm [l The treatment for
multidimensional data is discussed in Sections [ and Bl

3.1 Parameterized quantiles

As discussed in Section [2:2] known pdfs are used in
[23] to construct popular kernels using Corollary
Unfortunately, to approximate complicated kernels,
the method requires the specification of generic pdfs
which can be notoriously difficult as pdfs need to sat-
isfy [ fo(w)dw = 1. Observing the definition of
Bochner’s theorem (Theorem (1) given in a measure-
theoretic view, we can alternatively prescribe the prob-
ability distribution in terms of a parameterized quantile
function.

If the measure in Theorem [I]is defined by the cumula-
tive distribution function (cdf), p = P(Q < w) =:
Fo(w) : R — [0,1], then its quantile function is
inf{w € R;p < Fo(w)} =: Qq : [0,1] — R. Intuitively,
with strict monotonicity and continuity assumptions,
the quantile can be regarded as the inverse of the cdf.
Quantile functions of known distributions are widely
used in many application domains in statistics [38] [39].
In Corollary [2, we obtain the kernel by a parameterized
quantile function.

Corollary 2 Following Theorem |1}, if Qa(p;0) is a
quantile function associated with a random wvariable
Q and parameterized by 0, the associated continuous,
positive-definite, and shift invariant kernel, k(z,z';6),
18 gien by,

k(z,2';0) = /[0 . e @=2)Qamf) gy, (4)

Our objective is to implicitly learn a sophisticated

Data: Z¢rain, Yirains Ttest, Yeest
Result: Optimal kernel parameters 6,
Optimal inference algorithm parameters w,
p = {pm}M_, low discrepancy sequence
Initialize 0
while inference loss not converged do
Construct quantile Q(-; ) from 6
QAS(Q) + Compute features as in

Train inference model using giA)(Q)

Compute inference loss as in Sec. 3.3]

f < Next parameter from optimiser
end

return Best 0, corresponding w,
Algorithm 1: BBQ algorithm

kernel by explicitly learning the parameters 6 that
define a quantile function. To this end, the properties
that need to be satisfied are given in Theorem

Theorem 2 The function Qq is a quantile function

iff,
1. lim,,0 Qo (p) = —oo and lim,_1 Qa(p) = oo,

2. Qa(p) is a nondecreasing function of p,

3. limptp, Qa(p) = Qo(po),¥po € 0,11, ice. Qa(p)
1s left-continuous.

Proof sketch: Writing Qg using probability functions
verifies the necessary conditions. For sufficiency, the
existence of a sample space S, a probability function
P on S, and a random variable ) defined on S such
that Qq is a quantile function should be verified. A
more detailed axiomatic description of probability and
quantiles can be found in [40, 41, 42].

Since building kernels by direct integration in Equation
is intractable, we adopt a Monte Carlo approxima-
tion similar to random Fourier features discussed in
Section such that k(x,x';0) ~ (d(x;0), p(x';0))c.
However, in this setting, the parameterized quantile
is evaluated on a low-discrepancy sequence of quasi-
Monte Carlo (QMC) samples. QMC approximations
are known to be superior over MC approximations ir-
respective of the dimensionality [43] [44] [45] and with
known kernels [45]. With {p,, }*!_,; QMC samples, the
approximated feature map is given by,

b(x;0) = L [e~i2@api)

m ,eTiQalpaif)] ¢ M.

(5)

For real valued kernels, this can be further simplified
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Figure 2: Diagram of the offset parameterized quantile

as

o(z;0) = 1\24[

cos (mQQ(pl; 9)), ...,COS (mQQ(pM; 9)), (6)

sin (2Qq(p130)), - - ., sin (zQq(par; 0)) |,

where ¢(x;60) € R2M . The objective is to learn Qg (p; 0)
by adjusting 6.

3.2 BBAQ parameterization

In this section we demonstrate how to parameterize
an arbitrary quantile such that it can be evaluated for
p € [0,1]. We restrict ourselves to fully continuous
functions and therefore condition 3 in Theorem [2lis not
of our interest. Intuitively, we are interested in seek-
ing a parameterization technique to represent a non-
decreasing continuous function with vertical asymp-
totes at 0 and 1.

In order to satisfy properties listed in Theorem [2] there
are numerous ways to parametrize a valid quantile func-
tion such as Bernstein polynomials [46]. While such
complex quantile formulations can surely be advanta-
geous, the aim of this paper is to lay the foundation to
quantile induced kernels and demonstrate their impor-
tance through various applications. Therefore, in the
following sections we restrict ourselves to coordinates
in the space of the quantile function Q(p) € R. This
allows using isotonic regression or constrained interpo-
lation on monotonically increasing points to interpolate
the quantile function. Specifically, we use two inter-
polation methods that enjoy flexible coordinate based
parameterization and also ensure the necessary condi-
tion of functional monotonocity: Linear and Mono-
tonic Cubic Hermite interpolation. While the simplest
method of linear interpolation guarantees monotonicity

on monotonic interpolating coordinates, naive cubic
interpolation does not. Strict conditions must be set on
the interpolant’s tangents [47] in order to guarantee the
induced kernel is valid. Specifically, we use the Piece-
wise Cubic Hermite Interpolation (PCHIP) method
[47] however various other methods exist [48] [49].

As shown in Figure 2] we represent our N interpolating
points in terms of horizontal and vertical offsets from
some vertical origin Q). Specifically, for N interpolat-
ing points,

learn Axq,..

Ay, ..
N+1

s.t. Z Az, =1,
i=1

Q06R7

where Qg is a vertical origin from which all offsets are
defined, Ax; and Ay; are offsets with respect to Q.
To enforce the necessary constraint that all Ax; sum
up to 1, Az; are simply chosen in [0, 1] and normalized.

'anN-I-l € [07 1]7
.,AyN eR,

Even with this simple and explicit parameterization of
the quantile function, we demonstrate that we are able
to learn complex kernels as well as avoid overfitting as
the number of interpolating points increases, by using
the negative log-marginal likelihood as a loss function.

Handling asymptotes. Valid quantile functions
feature asymptotes at p = 0 and p = 1 which interpo-
lation techniques do not guarantee. Asymptotes are
constructed by using modified inverse functions %0 +bo
and 1a_1p + by around p = 0 and p = 1 respectively. Pa-
rameters ag, by, a1, and by are chosen to ensure quantile
function and derivative continuity at both interpolation

end points.

3.3 Learning BBQ parameters

Quantile parameters 6 are learned by minimizing the
inference algorithm loss Lip ference (€g. regression loss).
Examples of losses include Mean Square Error (MSE),
computed on an validation data, and Negative Log
Marginal Likelihood (NLML), computed on training
data. Depending on the quantile parameterization used,
constraints on € may apply, and hence, one generally

needs to solve,
minimizeo Einference (0) (7&)
subject to g(#) < b, (7b)

where g and b reflect constraints from the chosen quan-
tile parameterization. Extended literature on optimiza-
tion provides a wide range of local and global derivative-
free optimizers to efficiently solve this problem, such
as ADAM, Bayesian optimization [50], DIRECT [51]
or COBYLA [52].
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Figure 3: Experiment Reconstructing corresponding kernels from two different quantile functions. Though not
used in the algorithm, as visualized in the second column, kernels generated by BBQ can have corresponding pdfs
that are arbitrarily complex and almost impossible to explicitly learn. BBQ parameterization allows implicitly
modeling such complex distributions. The last column shows normalized Frobenius errors for different sampling

methods.

4 Experiments

The BBQ algorithm with parameterizations discussed
in Section [3] and supplementary materials was imple-
mented in python. We conducted a series of experi-
ments on a computer with 16 GB RAM to validate
the proposed method. All datasets were normalized
between -1 and 1. Bayesian Linear Regression (BLR)
[53] was used for inference, similar to [26]. Further de-
tails are provided in the supplementary materials. The
code is available at |github.com/MushroomHunting/
black-box-quantile-kernels!

4.1 Quality of kernel approximation

In this section, we verify that the parameterized quan-
tile functions can easily construct expressive black box
kernels with popular kernels. Furthermore, by utilizing
QMC sequences, we also demonstrate that the true
kernel can be approximated significantly faster than
standard MC samples which are used in pdf-based
methods such as [23] 27]. To show this, as shown in
Figure [3| and supplementary materials, complex proba-
bility distributions whose kernels are known in closed
from were chosen. In order to show the importance
of QMC sampling on BBQ kernel learning, kernels
were approximated using three low-discrepancy sam-
pling methods—Sobol, Halton, and generalized Halton
sequences—in addition to Monte-Carlo sampling.

Fit on Toy 1 dataset Fit on Toy 2 dataset

04 X data 1.0
: —— predictive mean
predictive variance
0.2 i 0.5
0.0 0.0 X data
—— predictive mean
-0.2 predictive variance
-0.5
-1 0 1 0 1

X

Figure 4: Experiment [4.2} Fits on toy datasets (peri-
odic and steps) using BBQ features.

In order to assess the quality of approximation, we
calculated the normalized Frobenius norm error ||K; —
K||p/||K¢||p where K; and K are the true and approxi-
mated kernel Gram matrices, respectively. For the true
and approximate kernel Gram matrices 4000 points
were sampled on the interval [—10,10] and vary the
number of features over the range [50, 1000].

While low-discrepancy sequences have been considered
for standard kernels [45], their efficacy has not been
demonstrated for the more general family of kernels
induced by arbitrary quantile functions. For the vari-
ous complicated quantiles in Figure [3] and their corre-
sponding pdfs and kernels, irrespective of the number
of features, the error is always smaller with QMC.
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Figure 5: Experiment An example of loss (NLML)
surface for 2-parameter quantile and loss per optimiza-
tion iteration.

4.2 Various aspects of learning BBQ kernels

Using two toy datasets (Figure {4)) we illustrate that
Bayesian linear regression with BBQ features can model
nonlinear patterns. Interestingly, rather than hand-
crafting and composing periodic and RBF kernels, the
BBQ parameterization allowed automatically learning
the appropriate kernel, making both interpolation and
extrapolation possible. Figure [Fp shows the error sur-
face. The objective is to determine quantile parameters
f that minimize the loss. An instance of gradient de-
scent to find an optima is shown in Figure [5p.

In order to demonstrate the BBQ algorithm’s capac-
ity to learn highly complex kernels, two toy datasets
(Figure {4)) were used to learn the quantile functions.
Even though pdfs and quantiles are merely two dif-
ferent representions of the probability, the proposed
quantile parameterization leads to generating flexible
and arbitrarily complex kernels. Highlighting this prop-
erty, as shown in Figure [f] the proposed method was
able to learn complex quantiles that would otherwise
have been challenging, if not impossible, to pragmati-
cally learn even with a large finite mixture of pdfs or a
composition of known kernels.

4.3 Learning complex patterns and
extrapolation

We experiment on various real-world datasets from the
UCI machine learning repositoryﬂ CO2 and passenger
are periodic datasets evaluating extrapolation capa-
bilities. Datasets concrete and noise feature higher
dimensions of 5 and 8 respectively. We further tests on
three in-filling texture datasets from [54] pores, rubber
tread. For multidimensional datasets, one black-box
quantile per dimension was learned. For extrapolation
datasets, passenger and CO2 we compose BBQ features
with a linear kernel k;;, +kppg and ki + kiin X kBBQ,
respectively, as discussed in Section

"https://archive.ics.uci.edu/ml/index.php
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Figure 6: Experiment Learned kernel quantile
functions and their corresponding kernel pdfs. Slight
variation in quantile function result varied PDFs: uni-
modal, diracs, multimodal or skewed.

Conventionally, different Gaussian process methods
such as [55], 56] with fixed kernels are used to capture
nonlinear patterns. In addition to these, we compare
Bayesian linear regression augmented with BBQ fea-
tures against the standard Random Fourier Features
(RFFs) for the RBF kernel [23] as well as Spectral Mix-
ture (SM) kernels [19]. Since SM kernels are somewhat
sensitive to initialization, we run SM kernels 10 times
and report the best result. In order to compare textures
that are in a regular grid, we used 3000 inducing points
with bicubic interpolation, in a sparse approximation
method akin to, though not exactly the same, KISS-GP
[57]. We also compare with Doubly Stochastic Deep
GPs [68] which can learn complex patterns in data
because of the deep structure, though a complex kernel
is not explicitly learned.

Methods are evaluated in terms of RMSE and Mean
Negative Log Loss (MNLL). The smaller these metrics
are the more accurate the model is. Unlike RMSE,
MNLL takes into account both the mean and variance
of predictions [53]. Occasionally full GPs with SM
kernels perform better which could be explained by
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Figure 7: Experiment [4.3t (a)-(b) Extrapolation on
two real datasets. On both datasets, BLR with BBQ,
SM both discover periodicity while RBF only finds the
general trend. This shows BBQ features can easily
be composed with non-stationary kernels (here linear)
to learn global trends. (c) Intra-filling task on pores
texture dataset (train set outside red square, test set in-
side) and prediction with 300 BBQ features respectively.
See supplementary materials for all plots.

better estimates of uncertainty. Results displayed in
Table [T] show the superior performance of using BBQ
features. In comparison, indicating the importance of
learning the kernel, the standard RFFs (RFF-RBF)
consistently scores higher errors.

Fits on individual data sets for various methods are dis-
played in Figure[7} showing both SM and BBQ identify
the data periodicity, while RFF-RBF only manages to
follow the global trend. All three textures with corre-
sponding qunatiles (one quantile per dimension) are
shown in the supplementary materials. Finally, BLR
with BBQ features has complexity O(M?N) resulting
in much faster runtime than SM of complexity O(N3).
This difference is especially noticeable on moderately
sized datasets such as textures, where BLR-BBQ runs
in minutes on a desktop computer compared to hours
for SM.

4.4 Effect of the number of quantile
parameters

We designed an experiment to show the empirical
influence of increasing number of qunatile parameters
on BBQ regression error. See Figure [] for results

Error on Toy 1 dataset

e tost
016 = train
0.14
0.12
w 0.10
n
=
& 008
0.06
0.04
0.02
0 20 40 60 80 100 120

number of quantile parameters

Figure 8: Effect of increasing number of quantile pa-
rameters.

on CO2 dataset. The training and testing errors
decrease with the increased number of parameters and
then levels off. In this case, training by optimizing
NLML (using Bayesian linear regression as the model)
does not lead to overfitting, even when the model is
overparameterized. Nevertheless, note that this is not a
straightforward comparison because the errors depend
not only on the quantile parameterization, but also
on the inference model, loss function, and the optimizer.

5 Discussion

A non-negative definite kernel fully defines a probabil-
ity distribution and this representation is commonly
referred to as a characteristic function in statistics.
It is possible to specify the uncertainty of a quan-
tity using the characteristic function, cdf, pdf, or
quantile, and with some assumptions the following
equalities hold: ¢(z) = E[e %] = [ e7 " dFq(w) =
Sz e fo(w)dw = fol e~ @Qa(P)dp. In this paper, we
demonstrated that the quantile representation can be
conveniently used to learn complex kernels in a data-
driven way.

BBQ features have inherent similarities to SM
kernels—the former uses the quantile representation
while the later uses the pdf representation. Although
SM kernels are attractive, as with any periodic kernel
based methods, they are sensitive to initialization
of hyperparameters. In a more generic Bayesian
nonparametric setting, Oliva et al. [27] further scale
this as a mixture of pdfs by exploiting sampling
based techniques which require expensive Markov
chain Monte Carlo (MCMC) techniques. In BBQs,
we attempt to circumvent these issues by a different
representation which leads to flexible parametrization
and optimization. Parameter optimization in this
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Table 1: Experiment Loss metrics on all real datasets. We used RMSE and MNLL for spectral mixture, RBF
with random Fourier features, the proposed technique (BBQ), Sparse Gaussian Process Regression (SGPR) [56],
Sparse Variational Gaussian Process (SVGP) [55], and Doubly Stochastic Deep GP (DSDeepGP) [5].

Loss Method CO2  Passenger Concrete Noise Rubber  Pores Tread
BBQ 0.068 0.096 0.124 0.138 0.248 0.256 0.114

SM 0.083 0.102 0.465 | 0.132 0.395 0.795 0.513

2 | RFF-RBF 0.245 0.270 0.164 0.184 0.687 1.739 0.326
5 SGPR 0.190 0.262 0.138 0.164 0.315 0.586 0.276
SVGP 0.191 0.262 0.176 0.201 | 0.3176 | 0.5853 | 0.1436
DSDeepGP 0.446 0.396 0.178 0.174 | 0.3256 | 0.5853 | 0.1508
BBQ -1.242 -0.610 -0.577 | -0.173 1.336 0.337 | -0.754

SM -0.604 -0.441 0.743 | -0.570 0.523 1.386 1.022

= | RFF-RBF -0.368 14.310 3.173 7.569 | 18.351 | 122.689 1.057
é SGPR -0.695 0.516 -0.545 | -0.392 0.268 0.885 0.328
SVGP -0.686 0.503 -0.308 | -0.181 0.274 0.885 | -0.501
DSDeepGP 1.454 1.361 0.111 0.032 0.306 0.884 | -0.339

framework uses NLML and is less prone to overfitting.

It is straightforward to combine BBQ features with
other potentially non-stationary kernels to enable ad-
ditional expressiveness. We support this notion with

Claim [

Claim 1 We have the equivalence of kernel composi-
tion operations in the kernel space and feature space
[59].

(k1 + k2)(x,x") = k1(x,%') + ka2(x,x)
= [p1(x) P2 (%)][01 (x) 2 (x)] T,

defines the sum of two feature maps, and

(8)

(k1 X k2)(x,x') = k1(x,x") x ka(x,x")

— i (9)
= h 015,
defines the product of two feature maps, where ¢1 2(x) =
@1 X ¢o is the Cartesian product.

In experiments, to handle multiple dimensions, different
quantiles were used on a per-dimension basis analogous
to Automatic Relevance Determination (ARD) in ker-
nel based methods [60}[61]. As an alternative method to
deal with multi-dimentional data, it is possible to con-
catenate feature vectors for multiple dimensions. Con-
sider a D-dimensional dataset having N data points
X = (x1,X2,...,xp) € R¥VXP_If f is an inference
model such as linear regression, a composite model
similar to Generalized Additive Model (GAM) [62]
fX) = 25:1 fa(x4q) can be composed. For instance,
consider the linear model f(x) = w¢ T (x;0) with BBQ
features gi; € RNV*2M and corresponding coefficients

w € R'2M " Then, the model for multidimensional
data is f(X) = 25, wad| (x4;04) = WTH(X;0)
where ®(X;0) = ||2_,¢(x4;04) € RN*2MD and W =
|2, wq € RP>2MP with || indicating vector concatena-
tion. Algorithmically, it is possible to learn an individ-
ual quantile for each dimension and then concatenate
corresponding features to create a 2M D dimensional
feature vector for the inference algorithm.

Although the aforementioned treatments to handle
multi-dimentional data are straightforward, note that
they cannot capture correlation between covariates.
Though the out of scope of this paper, the parameter-
ized quantile representation naturally opens the door
to explicitly representing multidimensional variations
using copulas that are widely studied in Statistics [63].

6 Conclusion

We proposed a technique to automatically learn highly
expressive kernels that fit the data best. To do this,
we parameterized a quantile function and learned the
parameters using stochastic gradient descent. With
the use of Bayesian linear regression, we have shown
that inducing a kernel by a quantile function allows
one to precisely take advantage of Quasi-Monte Carlo
sampling to reduce approximation error.

Inspired by recent ideas in automated machine learning,
fundamental connections with harmonic analysis and
measure theory, we believe more general and flexible
representations of kernels will open doors to compelling
new directions in Bayesian inference techniques and
kernel learning. As future work, it would be interesting
to investigate connections with Copula methods [63],
non-stationary kernels [64], and alternative quantile
function parameterizations.
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