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Abstract

We consider the problem of estimating a tar-
get vector by querying an unknown multi-
output function which is stochastic and ex-
pensive to evaluate. Through sequential ex-
perimental design the aim is to minimize the
squared Euclidean distance between the out-
put of the function and the target vector.
Applying standard single-objective Bayesian
optimization to this problem is both waste-
ful, since individual output components are
never observed, and imprecise since the pre-
dictive distribution for new inputs will be
symmetric and have support in the negative
domain. We address this issue by proposing
a Gaussian process model that takes into ac-
count the individual function outputs and
derive a distribution over the resulting 2-
norm. Furthermore, we derive computation-
ally efficient acquisition functions and evalu-
ate the resulting optimization framework on
several synthetic benchmark functions and
a real-world problem. The results demon-
strate a significant improvement over stan-
dard Bayesian optimization methods based
on both standard and Warped Gaussian pro-
cesses.

1 Introduction

Estimating a target vector by querying a multi-output
function is a challenging problem when the function
is stochastic, expensive to evaluate, and only accessi-
ble via its inputs and outputs. A popular methodol-
ogy for optimizing single-output functions under such
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Figure 1: Schematic illustration of the target vec-
tor estimation setup. We aim to identify an input
X = [x1,--- ,23]7 such that the quadratic Euclidean
distance between our target vector y* = [yf, -, 5|7
and the output of the unknown function A is mini-
mized.

constraints is Bayesian optimization which offers a
principled approach based on probabilistic modelling
[1, 2, 3]. By inferring a predictive distribution over
new evaluations the decision as to which input to
sample next may be informed by probabilistic mea-
sures such as expected improvement over the incum-
bent value or reduction in posterior entropy. More
recently this framework has been extended to multi-
output problems where the aim is to identify the
set of Pareto-optimal (or non-inferior) output vectors
[4,5,6,7,8,9].

A related problem, which has received less attention
within the Bayesian optimization framework, is that
of optimizing a multi-output system through an ag-
gregating, single-output objective function such as the
2-norm. In contrast to the Pareto setting we are here
willing to sacrifice the deterioration of one output
dimension if it yields sufficient improvement for an-
other. This aggregation, however, is problematic for
the assumption of Gaussianity underpinning Bayesian
optimization. We address this problem in the context
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of target vector estimation [10, 11] where the discrep-
ancy between output and target is measured through
the sum of squares. This is a class of problems anal-
ogous to classical system identification and model in-
version where we aim to estimate the parameters, set-
tings or, in a broader sense, a target vector deter-
mining the characteristics of the unknown function
(or system) under consideration. Examples include
the modelling of blood flow in the human vasculature
[12], estimation of the optimal hyper-parameters of
machine learning models [2], defining the structural
design of helicopter rotor blades [10], and estimating
emission line intensities of alumina powder [11].

The basic setup is illustrated in Figure 1 and defined
as follows: Given a multi-output function h: X — Y
for X ¢ RM,Y c RX, and target vector y* we
are interested in identifying a % which minimizes
|h(%X) — y*||?>. In the Bayesian optimization frame-
work this problem has traditionally been solved by
directly observing the the distance (or cost) and min-
imizing it through standard, single-objective Bayesian
optimization [12]. This strategy, however, suffers from
two major caveats: i) the model is only ever presented
with measurements of the aggregated distance, thus
never seeing the individual output components of h
which could potentially be informative w.r.t. the op-
timization, and ii) the predictive distribution is known
to be imprecise at critical input locations due to sym-
metry and support in the negative domain.

Given these deficiencies we suggest that a far better
noise model may be derived by observing the indi-
vidual outputs of A and using these to construct a
distribution over the norm. This will, in turn, in-
crease the predictive capacity of the model thereby
improving the optimization as a whole. Specifically,
we contribute with: i) a Gaussian process modelling
approach for target vector estimation in which we
model the individual outputs of A and derive an ap-
proximate noncentral Chi-squared distribution over
the objective ||h(x) — y*||3, and ii) the derivation
of standard acquisition functions (Expected Improve-
ment and Lower Confidence Bound [2]) having com-
putational complexity equivalent to those in standard
Bayesian optimization.!

Finally we provide an empirical evaluation of the
proposed models and associated acquisition functions
by comparing against single-objective Bayesian opti-
mization approaches reliant on two well-known surro-
gate models, namely Gaussian processes and warped
Gaussian processes [14]. The empirical results show

LAn open-source implementation of the methods ex-
tending the Emukit Bayesian optimization framework [13]
is available at: https://github.com/akuhren/target_
vector_estimation

a significant improvement for both synthetic bench-
mark functions and a practical problem when apply-
ing the proposed modelling approach.

The remainder of the paper is structured as follows:
In Section 2 we outline the theory behind Bayesian
optimization with Gaussian process surrogate models.
Section 3 describes the proposed optimization scheme
for minimizing the squared Euclidean distance. The
effectiveness of this scheme is demonstrated empiri-
cally in Section 4 for a suite of benchmark functions
and a practical problem.

2 Background

2.1 Bayesian optimization

Consider the task of minimizing a smooth, stochas-
tic cost function A : RM — R which is blackboxed
and expensive to evaluate.? Through noisy measure-
ments we are to arrive at a minimal output value in
as few iterations as possible. We thus need to trade
off learning the response surface of A in order to make
an informed choice about where to sample next (ex-
ploration) against using our limited sampling budget
to locate the optimal input in regions with low cost
(exploitation).

In Bayesian optimization we assume the measure-
ments to be evaluations of a latent function with
added noise:

d=f(x)+e,

where ¢ follows a known distribution. By placing a
suitable prior on f we can infer a predictive distri-
bution for unseen inputs conditioned on all samples
collected so far:

p(d|x,D),

where D is the set of previously observed inputs and
outputs. In line with [3] we refer to the statistical
model, through which the predictive distribution is in-
ferred, as the surrogate model. We can now select the
next sample via an acquisition function a : R — R
that assigns utility to unseen input, x, based on the
associated predictive distribution over d. While the
design of acquisition functions is a rich and fast evolv-
ing research field we will restrict attention to two of
the most popular variants: Expected Improvement
(EI) and Lower Confidence Bound (LCB) [2]. In EI
we consider how much the current incumbent value,
dmin, can be expected to improve by picking a given
input:

ag1(x; D) = Epgjx,p)[min(0, dpin — d)]. (1)

2All presented theory can equally be framed as a task
where a reward function is maximized.
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LCB, on the other hand, uses the minimum of a pre-
determined confidence interval for d when assigning
utility to x. It can be viewed as always consider-
ing the best possible outcome within that interval [3].
In the most general formulation of LCB it is defined
through the predictive distribution’s quantile function
F~1(d | x,D;q) yielding the ¢’th quantile for the dis-
tribution of d:

aLce(x;¢, D) = —F~'(d | x,D; q), (2)

where the quantile ¢ determines how optimistic (or
exploratory) a search strategy to deploy. Under a
Gaussian distribution the acquisition function takes
the more well-known form

arcs(x; 8, D) = —pu(x) + Bo(x),

where p(x) and o(x) are the mean and standard
deviation of the predictive distribution for d, and
B = —®1(q) is defined through the standard normal
quantile function.

2.2 Gaussian processes

The most commonly used surrogate model, and the
one used in the experiments carried out in this paper,
is the Gaussian process (GP) model [15]. The GP
assumption implies that any finite subset of function
evaluations will follow a multivariate normal distribu-
tion:

FX) = £ X ~ N (1, K),

where p and K are defined through appropriate mean
function m : R™ — R and covariance function
k:RM x RM 5 R. Assuming that our observations
d have isotropic Gaussian likelihood with a GP prior
on the mean we have

d|f, o ~ N(f, o), (3)

and by the marginalization properties of the normal
distribution it follows that

d| X, 0% ~ N(u, K+ o°T).

Since the output d’' for an unseen test point x’ is also
assumed to be generated from the Gaussian process,
it will be jointly Gaussian with the already observed
variables. This yields a closed-form expression for the
predictive distribution of d’ when conditioned on our
N observations D:

p(d' | x',D) = N(d' | p(x'),0*(x")),
u(x') = m(x) + KT (K +0*1) " (d - o),
o?(x') = k(x',x') = kT (K + 01) 'k,

where k = [k(x(M) %), , k(x®), x)]T.

2.3 Warped Gaussian processes

The generic GP outlined above assumes a Gaussian
likelihood for our observations. However, when the
observations are produced through the squared 2-
norm this assumption is clearly erroneous, as previ-
ously argued. A common approach to achieve a non-
Gaussian, yet analytically tractable, predictive distri-
bution is through the use of warped GP’s [14]. Here
the observations are first warped to a latent space be-
fore applying the (noise free) GP. Following [14], we
define
Z:g(d)a pZ(Z|X,f,02):N(Z|f(X),O’z),

such that the conditional distribution for d is given
by

9g(d)

pald | x.£) = p-(g(d) | x. 1) - 'M

i

for the monotonic, nonlinear function g. This allows
us to model non-Gaussian distributions within the es-
tablished GP framework.

3 Bayesian Optimization of the
2-norm

3.1 Modelling the 2-norm

We define the stochastic variable d | x = ||h(x) — y*||3
with the aim of modelling the true distribution
p(d | x) and using this in the Bayesian optimization
scheme to minimize d. In a standard setting reliant
on a GP surrogate model we would simply assume
pn(d | x,D) = N(d | p(x),0%(x)) as outlined in the
previous section.

However, this is imprecise since we know the true
p(d | x) to be asymmetric and without negative sup-
port. Furthermore, we are discarding potentially im-
portant information about the individual outputs of
h by aggregating the squared differences to y* before
presenting the observation to the surrogate model.

Instead assume that the individual outputs of the
multi-output function h can be reasonably modelled
by a set of uncorrelated functions drawn from one or
several GP priors. That is, for a given input, x, we
obtain a predictive distribution for each of the K out-
puts:

p(ye | %,D) = N(ys. | (%), 07(x)), 1<k < K.

An unbiased approximation of the distribution over
the squared 2-norm d is then given by

pe(d]x,D) = NC*(dy 2 | K, A2, (4)
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where NC? is the noncentral Chi-squared distribu-
tion which is governed by the number of outputs K
(commonly denoted degrees of freedom) and noncen-
trality parameter \. Refer to Supplementary Mate-
rial A for the derivation of Eq. 4. To incorporate
this distribution in the acquisition functions we need
an expression for its cumulative distribution function
(CDF) which we will denote Fi . For this pur-
pose we will use the results of [16] in which it is
shown that given a random variable ¢ with distribu-

tion p(t) = NCx2(t | K, \), we can transform it into
an approximately normally distributed variable as fol-
lows:
C\K+))
T3 s—1
l=1-—, rs =2°7 (s — DI(K + sA),
3rj

yielding p(z | K,\) = N(z | a, p?) with

a=1+0(0-1) (2r( —0)(1-30) %)

1 1
Or? 1-0)(1-3¢
p_TQ(l( 4)1(2 )’I”2>.
1 1

Through this approximation we obtain a closed-form
approximation of the CDF of ¢ by

Fra(t) =~ @ <Z —a) ,

p

where @ is the standard normal CDF. As such, we
obtain the following expression for the CDF of d:

F(d|x,D) ~ Fr\(dy™?). (5)

This expression is furthermore invertible, allow-
ing us to extract an approximate quantile function
F~1(d| x,D;q) which we will use when defining the
LCB acquisition function.

Comparing the standard GP and the proposed 2-norm
model, we see that the latter seeks to explain the
behaviour of each individual output dimension of h
and through these derive a distribution closer aligned
with what we would expect for p(d | x). To illus-
trate the difference between the models, refer to Fig-
ure 2 where the predictive distribution for pys and
py2 are compared for the one-dimensional function
h(z) = —3zsin(3z/4) + e 2 + ¢, e ~ N(0,0.5) with

(2) (b)
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Figure 2: Comparison of the predictive distributions.
(a) 20 samples of a single-output stochastic function
h(x) with target y* = —4. (b) 20 samples drawn from
the 2-norm d | = = ||h(z) — y*||3 with the two minima
marked with vertical, dotted lines. (c)-(d) The pre-
dictive distribution for respectively par(d | z, D) and
py2(d | z,D).

target y* = —4. The mean of d | x = ||h(z) —y*||3 has
two minima in the domain [0, 27| which the surrogate
model is to identify. Figure 2 (c) shows the predic-
tive distribution over pyr(d | «,D) for a GP that has
been fitted directly to the noisy observations of d for
6 equidistant training points. In Figure 2 (d) a GP
has been fitted to the observations of y = h(z) and
the predictive distribution for p,2(d | x, D) has been
inferred by Eq. (4). While both models have found
a good estimation of the median, pas is symmetrical
and yields negative support at low values reflecting a
flawed expectation about the behavior of d in unex-
plored regions.

The benefit of incorporating information about the
individual outputs for the multi-objective case is illus-
trated in Figure 3 where we consider the linear multi-
output function h(z) = 27z, 2] + €, e ~ N(0,0.2I)
with target y* = [r,7]7. The quadratic 2-norm
d | x = ||h(x) — y*||3 yields a convex function with
heteroscedastic noise since the variance increases away
from the minimum. In Figure 3 (d) a GP has been
fitted directly to 6 equidistant observations of d in
the domain [0,27], but due to the high noise the
model has misinterpreted the quadratic trend. In Fig-
ure 3 (e) two GP’s have been fitted to the observations
of [y1,y2]T = h(z) for the same inputs. Since each
output is linear with homoscedastic noise it is consid-
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Figure 3: Comparison of the predictive distributions
for a multi-output function. (a)-(b) 20 samples of a
two-dimensional stochastic function h(x) with target
y* = [m,7]. (¢) 20 Samples drawn from the 2-norm
d |z = ||h(z)—y*||3 with the global minimum marked
with a vertical, dotted line. (d)-(e) The predictive
distributions for par(d | #, D) and p,2(d | z, D).

erably easier for the GP’s to find a proper fit and so
the inferred distribution p,2(d | x,D) yields a more
robust estimate.

3.2 Acquisition functions

In this section we derive the new EI and LCB acquisi-
tion functions for py2(d | x,D) for the 2-norm model
proposed in Section 3.1.

Expected improvement: For EI we start from the
definition given in Eq. (1) and show that by taking
the expectation over the approximated NCx? distri-
bution we arrive at a closed-form expression that is
easy to evaluate. First define t = dy~2. We then
have

dmin
ag1(x; D) = / (dwmin — d)py2(d | x,D) dd
0

dmin/')/2
= / (dmin — tY?)NCX2(t | K, \) dt
0

= dminFK,)\(dmin/rY2)
—Y2E [t | t < dunin/7?] Fre A (dmin/7?)-
Next we apply the results from [17] stating that for
z ~ NC:(z | K,)) the truncated mean is given by

Elz |z <a] = K - Fgyo(a) + AFk4a,2(a). This lets
us arrive at the closed-form expression:

. = dminFK,)\(dmin/’)?)

— (K - Fr 2.\ (dmin/7?)
+ A Frpax(dmin/7?))-

Note that the expression from [17] is pivotal for
our derivation of the EI acquisition function. The
lack of an analogous expression for the generalized
Chi-squared distribution is what necessitates the
assumption of our observation noise being isotropic.

Lower confidence bound: For LCB we use
the definition given in Eq. (2) reliant on the negative
quantile function for the predictive distribution.
We first invert the closed-form approximation for
F(d|x,D) in Eq. (5) in order to obtain

FHd|x,D;q) = /@ Hq)p+ - (K + A7,

where ®~! is the standard normal quantile function
and ¢, p, and « are as defined in Section 3.1. To
match the signature of the Gaussian LCB, which uses
B as exploration parameter, we can set ¢ = ®(—0) as
explained in Section 2.1. As such we obtain

arce(x;8,D) = —/a — Bp - (K + A2

The two acquisition functions benefit from being
both easy to calculate and differentiable such that
they can be maximized numerically.

In Figure 4 we compare the normalized EI utilities for
pn(d | 2,D) and py2(d | x, D) for the single-output
function from Figure 2. Due to the high amount of
negative support for par(d | x, D) between low-value
training points, the associated acquisition function
vastly overestimates the utility in these regions. Fig-
ure 5 shows the EI utility for the multi-output func-
tion from Figure 3. Because py(d | x,D) has not
captured the quadratic trend of the 2-norm, the asso-
ciated acquisition function identifies multiple regions
of interest for future sampling that will not yield any

1.0

3 4 5 6
x

Figure 4: Comparison of the normalized acquisition
utility for the one-dimensional function from Fig-
ure 2. The red, solid line is the EI acquisition for
pa(d | 2, D) and the blue, stripped line is the EI ac-
quisition for py2(d | , D). The vertical, dotted lines
mark the true minima.
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Figure 5: Comparison of the normalized acquisi-

tion utility for the multi-output function from Fig-
ure 3. The red, solid line is the EI acquisition for
pa(d | x,D) and the blue, stripped line is the EI ac-
quisition for py2(d | z,D). The vertical, dotted line
mark the true minimum.

improvement. For brevity we have only compared
the EI utilities for each of the distributions but the
same tendencies were observed for the LCB acquisi-
tion functions.

4 Experiments

The proposed 2-norm model was tested against both
a standard and a warped GP model on a suite of
synthetic benchmark functions as well as a real-world
problem. For each surrogate model we evaluated the
optimization procedure for both the EI and LCB ac-
quisition functions, resulting in 6 distinct optimiza-
tion setups (BO setups). All GP’s used a Métern 5/2
kernel with lengthscale and variance as free hyper-
parameters which, along with the scale of the obser-
vation noise, were fitted between iterations using evi-
dence maximization.

The warped GP’s turned out to consistently under-
perform so to avoid clutter we have collected the
methodology and results for these BO setups in Sup-
plementary Material B.

4.1 Synthetic functions

The 6 BO setups were tested on 9 single-objective
functions from [18] and 5 multi-objective functions
from [19]. In order to make the problems stochastic
we added normally distributed noise on all function
evaluations before returning them to the surrogate
model. We scaled the noise separately for each of
the K output components to avoid dimensions with
smaller range being more heavily influenced by the
noise addition. Specifically we used

y = h(x) + ¢, e ~ N(0,diag(v)),
v=[A(h), -, Alhg)]T 1072,

where A(hg) is the difference between the highest
and lowest value of the k’th output component from
10,000 random samples of h. The above generalizes to
the single-dimensional case where y and v are scalars.

For each function h we first sampled a random target
vector, y* € RX, which then were to be estimated.
Each of the 6 BO setups were run for 30 iterations
with the same 5 initial points selected by Latin hy-
percube sampling. This process was repeated 8 times
per objective function while keeping y* fixed. Ta-
ble 1 lists the means and standard deviations over
the best collected points by the end of optimization
for each BO setup and objective. We saw an im-
proved performance for all objective functions when
optimizing according to the proposed Chi-squared dis-
tribution. However, no consistent difference in perfor-
mance was observed between EI and LCB across ob-
jective functions. As is the case for standard, single-
objective Bayesian optimization the suitability of a

103
—— 2-norm El
102 —— 2-norm LCB
—— Standard El
10! —— Standard LCB
10°
:
c 107!
0
o~
1072
1073
1074
5 10 15 20 25 30
Iterations
1012
—— 2-norm El
—— 2-norm LCB
1010
—— Standard El
—— Standard LCB
108
IS
—
8 106
~N
104
102
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15
Iterations

Figure 6: Optimization traces for the objective func-
tions Ackley (top) and Bohachevsky (bottom). The
traces comprise 8 runs of 30 iterations each in which
the surrogate models minimize the squared Euclidean
distance to a fixed target. The solid lines are the me-
dian distance to the target and the shaded regions are
the interquartile ranges.
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Objective 2-norm EI | 2-norm LCB | Standard EI | Standard LCB
BNH Mean 1.02e-01 4.67e-Q2 1.62e-01 1.96e-01
Std 1.35e-01 3.58e-02 1.97e-01 1.98e-01
SRN Mean | 7.40e400 1.12e+01 1.27e+02 5.98¢e+02
Std 5.39e+00 1.15e+401 1.85e+4-02 7.74e+02
oSy Mean 3.53e+01 1.79e—{—01 4.76e+02 3.61e+02
Std 1.70e+01 1.95e+4-01 5.92e+02 2.69e+02
. Mean | 2.34e+12 2.51e+12 2.98¢e+12 1.09e+13
TwoBarTrussDesign |~y 2136112 3360112 2.6dc+ 12 2 1de+13
. Mean 1.49e+4-02 3.19e+01 1.50e+02 1.42e+02
WeldedBeamDesign  |—gp T.330102 3266101 2316102 1516102
Rosenbrock Mean 6.416—92 2.00e-Q2 71.786—701 1.566—01
Std 5.70e-02 2.11e-02 3.24e-01 1.89e-01
Ackley Mean 5.64e-04 8.51e-04 4.93e-03 5.86e-04
Std 1.01e-03 1.19e-03 1.03e-02 1.04e-03
Bohachevsky Mean 6.00e+4-02 1.89e+402 1.05e+04 3.35e+03
Std 9.21e+02 1.99e+4-02 2.21e+04 7.06e+03
Criewank Mean 1.24e701 /1.”2766-701 5.836+QQ 2.44e+QQ
Std 1.54e-01 2.89e-01 9.56e+00 1.13e+00
H1 Mean 2.57e-05 1.98e-05 7.20e-06 2.58e-05
Std 1.13e-05 2.50e-05 7.44e-06 5.16e-05
Himmelblau Mean 3.56e+00 1.35e+00 1.48e+01 3.28e+01
Std 5.10e+00 1.39e+00 2.91e+01 6.09e+01
Rastrigin Mean 2.55e-02 —2401e+00 9:816-01 2.346—1—00
Std 3.11e-02 5.69e+00 1.32e+00 2.37e+00
Schaffer Mean 71.373e—02 3.10e-03 78._31e—072 2.04e-02
Std 1.01e-02 5.09e-03 1.52e-01 2.04e-02
Schwefel Mean 2.14e+01 1.19e+400 9.19e+4-01 3.76e+02
Std 4.21e+01 1.53e+00 9.86e+01 5.02e+02

Table 1: Distance after 30 iterations for each of the optimization setups. We denote the proposed surrogate model
with a predictive Chi-squared distribution by 2-norm and the common GP surrogate model by Standard GP.
The two rows for each function list mean and standard deviation for 8 repetitions with the same target vector.

Lowest mean values are highlighted.

given acquisition function seems to be dependent on
the response surface of the objective.

While the proposed surrogate model in the aggre-
gate outperformed the standard GP the difference was
much more pronounced in cases where the response
surface was easy to model. This is illustrated in the
optimization traces for the Ackley and Bohachevsky
objectives shown in Figure 6. The former has a rugged
response surface with a large well in the center mak-
ing it a difficult function to model with a GP rely-
ing on a stationary kernel such as the Métern 5/2.
The latter, in contrast, has a smooth surface with no
sudden jumps. This indicates to us that the advan-
tage of the proposed method is highly dependent on
the individual outputs of the objective function being
well-modelled by the surrogate GP.

4.2 Audio target estimation

To evaluate the proposed method on a real-world
problem, we considered the task of reverse engineer-
ing a musical synthesizer [20, 21, 22, 23]. A syn-
thesizer produces sound by generating waveforms in

one or more oscillators and routing the audio streams
through a processing pipeline which may include mix-
ing of separate streams, filtering, adding of noise,
and saturation. By changing the configuration of this
pipeline the musician can design the character of the
output sound. A common task, and the one consid-
ered here, is to be presented with some target sound
and then finding a configuration that approximates
this target.

output

Figure 7: Diagram of the synthesizer’s processing
pipeline.
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Figure 8: Optimization traces for the 2-norm and the standard GP model for the problem of reverse engineering
a synthesizer. Each trace comprises 8 runs of optimization for the same target with the lines being the medians
of the incumbent values and the shaded regions being the interquartile ranges.

The internal workings of a synthesizer constitutes
the manufacturer’s signature sound developed over
years or sometimes decades and the processing algo-
rithms can therefore be expected to be both highly
complex and unavailable to consumers and potential
copycats. Mapping from output sound back to con-
figuration is thus a non-trivial problem apt for the
Bayesian optimization framework. And defining the
discrepancy between the produced sound and the tar-
get through the 2-norm makes this problem suitable
for the method proposed in this paper.

The experiments were carried out using a simple, cus-
tom built synthesizer which offered 5 free parame-
ters: The mix of a sine and a sawtooth oscillator,
the amount of digital saturation, the volume of white
noise added, and the frequencies for low cut and high
cut filtering. Refer to Figure 7 for a diagram of the
processing pipeline. The frequencies produced by the
oscillators were fixed so that the output sound was
only dependent on the parameter configuration. To
get the feature space down to a feasible size we pro-
jected the log transformed FFT of the output signal
down to 10 dimensions using Principal Analysis Com-
ponent (PCA) which had been pre-estimated on 200
random outputs. Using the established terminology
we thus have X C R as the set of configuration pa-
rameters, ) C R0 as the set of output sound, while
h : X — Y encompasses the sound generation and
subsequent feature extraction.

The experiment was carried out as for the benchmark
functions by first producing a target sound for a
random configuration which each of the BO setups

then were to approximate by minimizing the squared
2-norm in Y-space. We ran the optimization 8 times
with different starting points and compared the
optimization traces. The results are depicted in
Figure 8. As before we see better performance by the
two BO setups reliant on the 2-norm model with the
LCB acquisition function on average showing faster
convergence as well as final result. The advantage
is established within the first 5 iterations for both
acquisition functions and remains stable throughout
the optimization.

5 Conclusion

In this paper we have addressed the problem of es-
timating a target vector by querying a multi-output
function that is blackboxed, stochastic, and expen-
sive to evaluate. We have put forth an approach
in which each output component is modelled sepa-
rately by a Gaussian process such that the sum of
squares between target and function evaluation ap-
proximately follows a noncentral Chi-squared distri-
bution. We have developed closed-form and compu-
tationally efficient acquisition functions for Expected
Improvement and Lower Confidence Bound based on
the adjusted predictive distribution which are better
suited for Bayesian optimization for minimizing dis-
tances. An empirical comparison between the pro-
posed model and standard methods shows a signifi-
cant improvement throughout the optimization both
when tested on synthetic benchmark functions and on
a practical problem in the audio domain.
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