Safe Convex Learning under Uncertain Constraints

A Proof of Fact 2

Proof. Recall that the safety set S:(d) after iteration ¢
is defined by the following inequalities:

Si(5) = {xeRd:Vi—l,...,m [[ag]%féﬂ n

+¢ ' (6/m)o

(XTX,)~Y? {_“TJ H < o}. (13)

Remember that z; = XTTl is an average of the measured
points. Using the inversion formula for block matrix,
we obtain
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Let us denote by ¢5 = c¢ '(6/m) and by i =
bi — (@%)Tzs. Then, the i-th inequality in (13) can
be rewritten as follows:

2
\/f]‘; + ¢2(x — 2)TRy(z — 7) < €.
t

Substituting z = z; to the above and combining the
inequalities together, we obtain that the condition z; €
S¢(0) is equivalent to

1 .
¢5\/72\] + (ve — 7)) Re(y — T¢) < min_ ¢}
f i=1,....m

B DFS solution proof

Let us recall that for the polytope D € R, by an
active set B we denote a set of indices of d linearly
independent constraints active in a vertex V € R? of D,
i,V =VE =[AB]~1pB. Here, AP is a corresponding
sub-matrix of A and b? is the corresponding right-hand-
side of the constraint.

Lemma 2. Iff € £:(8) then for any vertex VB and
its estimation VP defined by the active set B we have
that its estimation error is bounded by

Cs

‘A/B*VB S )
Vi = 7%

5 2

Proof. The vertex estimate ‘A/'tB of a polytope is de-
scribed by the system of linear equations APz = b5.
Since the LSE (Least Squares Estimation) is unbiased,

EAP = AP EbP =05,

Let us denote by (; = 5? - b the uncertainty in
estimation of b, and G; = AP — AP the uncertainty
in estimation of AB.

Opr aim is to bound the error of the vertex estimation
V.2 — VB|. Recall that

VP - VP = [AP] - (AP =

= (AP + GO +¢) — [AP] TP
Note that for any matrices A, B it holds that

(A+B)'=A"1—(I+A'B)71A'BA™L.

Therefore, we can modify the expression for the ‘A/'tB —
VB as follows

VtB _yB_
= [[AP]71 = (I 4+ [AP]71G) AP GU AP (08 + ¢h)
_ [AB]—le _

= [AP]7WF + [AP] 1 G—

— (I 4 [AB]71G) AP IGAP) (b8 + ¢)—

_ [AB]AbB _

AP — (T4 [AP]71G) AP IGLAPTH (0 + ).

The norm of the difference between the vertex VE of
the set D and its estimation can be bounded by

V2 = VEI < I[P +
—_——

(@
+ [[AP] LG VP + [AP] G| [T+ [AP) 7G|

() (e) (d)

(15)

To obtain the bounds on the terms (a),(b),(c),(d), let
us first obtain the bounds on ||G|| and ||]|.

Assume that for each i = 1,...,m f° € £/(J), where
Ei6) = {2 € ™V (B = 2SN B - 2) <7107,
i.e., that for any active set B describing the vertex V2

we have 8B € £P(5). Consequently, ||a} — a’||? + |b —
bi|2 < ¢=1(8)[|S;”?||. Then, for each row of G; we have
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di — ai]| < ¢=1(8)||£1/%|l, and for each element of ¢,

we have [bi — bf| < ¢>_1(5)||Z%/2||. Hence, for ||G|| we

obtain
IG < IGF = [3 lai —al3 < Vdg~(8)|=)”.
1€B

(16)

Similarly, we obtain a bound on || |:

Gl = [> o0 - b2 < Ve @)= (17)

i€EB

. . 1/2
For the LSE covariance matrix norm ||Zt/ || we have

1S = ol|(XT X)) V2 =
I _ 0 0

1
< U\/Ilfwit\ll\a'ttl\2 R+ 5

1/2
=0

where R; was defined in (14).

Note that we make measurements as it is described
in Step 4 of the SFW algorithm, i.e., we make mea-
surements at all coordinate directions within small
step size wp from points generated by the method.
Then, each new 2d measurements result in addition
+2d _
of a matrix Z] UGy — )Gy — )T = Wil to
the matrix R, ' = Z;V_I(:L’(J) Zy)(2(j) — )" Hence,

R >~ N“‘JOI Hence, the minimal eigenvalue of the
covariance matrix R is bounded from below by the

value Apin(R; 1) > Ntng. Thus, we obtain the following
bound on the norm of R;:

d
. 1
Ntwg ( 8)

[ Rl <

Recall that ||Z;]| < T'g. It follows that

1

1/2 _

0 < oy Nz + 1R+ 5 <
t

< d |Z]|? + d + L

o1 —— _

- NtUJ2 ! Ntwg Nt -
U\/E 0-',—1 + d U\/7 1" +1

< <

- \/Nt \/Nt

(19)

In order to bound terms (a),(b),(c),(d) in inequality
(15), let us also bound the norm of the matrix [AZ]~1:

Bi—1y _ Bi-1y = ! !
NEATT = pmax (A7) = —— < oy
(20)

Then, combining inequalities (16),(17),(
bound terms (a) and (b) as follows:

19),(20), we

a) : [IIAB12¢) < AP Gl < —=

(0) = [[AZ)71G| < APl <

5

where U we defined by

¢sd T2 +1
pmin(D) w

Further, let us bound term (d). For N, > 4U? it holds
that

U= +1.

(=)

A% G <

H[AB}_lCtH <

As such, for N; > 4U? we have
1 +[AP]7'G| " <2 (21)

Finally, term (c) we can bound as follows:

[VZ +[AP] 1| §F0+\/LN—t» (22)

Combining these all together, we obtain

. U U
VB -vE <—+2 <F+ ><
V; | o o Dot o
U Cs
<2 To+1)= ,
VoA (o VN,
where
2¢5d(To+1) T3 +1
Cs;=2U(Ty+1) = +1.
Pmln(D) w(2)
Since Ny = C,,t?(Int?) > C,,, above bound holds under
the proper choice of the constant
C, >4U% = i = Ad; <F3+1+1>.
- (FO + 1)2 pmin(D) w(Q)

Proposition 1

Proof. Let us find how far is the solution of the random
linear DFS from its expected value. Estimated DFS is
a linear program defined by

§; =arg min (c,x),
Apae<b,
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where ¢ = V f(z;). Any solution of such a linear pro-
gram is a vertex (or convex hull of vertices) of the
polytope A,z < by. Let By = {iy,...,iq} be a sub-
set of d indices corresponding to linear independent
active constraints (which form a basis) at the esti-
mated DFS solution point. And correspondingly, let
By = {j1,...,ja} be a subset of indices active at the
true DF'S solution point.

Assume that V1! is a true solution of DFS

1_ ; — (AB1)-1pB1
v arggré%l(c, s) = (A°Y) 7D

(see Lemma 1 for the definition), and correspondingly
V= (APl
Assume also that V2 is the estimated solution of DFS

V2 = arg min (¢, s) = (AP?)~1bP2,

.sEDf

and correspondingly V? = (AB2)~1pB2 We have that
V1 €D, V2eDis always the case starting from some
N;. Then, from the definitions above it follows that

TV < TV,
v < v,
From Lemma 2 for the vertices V1, V2 corresponding to

the active sets By, Bs we have that if B € £(6)NEr11(9),

Cs Cs
then [V — V2| < S5 and [[T2 - V2 < 5.
we have

Hence,

Cs
vV Ny
N Cx
< Tvl< Tv2< Tv2 5‘
~cC >cC >c t + HC” \/ﬁt
Thus, we obtain that if 8 € £(8) N & 41(d), then F; =
(3 —s1) = [[TVE =TV <]

R CS N
V- ”CH\/iNj < V=l

Note that ||c|| < M, where M is the Lipschitz constant
of the objective. Thus, if § € £:(d) N &41(0), then

E, <%

M .
S W, 1.e.,

CsM -
P E, < >1—20.
{ t_\/Nt}_

C Proof of Lemma 1

First, we provide some preliminary lemmas for the
proof of Lemma 1.

Let us denote by &; = x; — Ty, Af = §; — x, and recall

that ef = bi — [a}]T ;. Let us fix some vertex V of the

polytope D corresponding to the basic active set B.

By V, and V;_; we call the estimates of V' based on
the parameter estimations 8;, B;_1.

Lemma 3. If B € £(6) N&_1(8) holds, then we have
min(ag, Af) >(1 - y-1) min{ay, A7)~

2951 max; [a4|C5

Nt
Proof.
V3, : mln(dt7 b = mln( 8 — )
—%1311( 08t — i1 —Ye—1(8i-1 — T4-1))
= minaf, (1~ ye2) (50— 7o)t
+v—1(8e-1 — &) =

Let j = ATt
(Let j argirgg:(am ¢ )

= (1 - ’Vt—l)(fb{, 8¢ — 3€t71>+
+ ye—1(a7, $1—1 — 8¢).

Let us fix V' as a vertex of D corresponding to active
set Bi_1, then 8;_1 = V;_1 and (a7, 8;) = 0 < (af, V4),
thus we have

min(a;, Ay) >

1
> (1- ’Ytﬂ)(d{ﬁt —T1) + %4(61{, Vi1 — ‘Zs)
>(1- %—1)111}11@%,% —Ty_1)—

Yot max [|a ||V = Vil (23)

Using the result of Proposition 1 we can obtain

Vi1 — Vt” <|Vis1 = V| + |V - Vt”
< W1 = VI[+ |V = V|| <
<oVi-vizSEp S ()

Then, combining (24) with (23), we have
min(ay, Aj) >

29;1 max; ||a;|Cs

vV Ni—1

> (1 5-1) minfa}, AL -
||

Lemma 3 above is an induction step in the proof of
Lemma 4. Lemma 4 below bounds the fastest rate of
decreasing the distance to the boundaries of D for the
SCFW algorithm. Recall that F; = {8 € Nt _,Ex(0)}.

Lemma 4. If F; holds, then we have

mini<dia A?) (1 _

min(a}, AY) >
7

CsInlntmax; ||a¢ ||
t+2 '

vV C(nn’llﬂ7 <d%, A0>
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Proof. By induction, from Lemma 3 we have

¢
min(di, St —xy) >
1

1
(1—75) miin(di, o — §t)—

7=0
t—1 t—1
2C5;
=t max [lagl| TT(1 = ).
Jj=0 N; k=j
Note that 1 — v = z—ié, and
t]:[l(l—v): OYG+D 42
N G VR
Thus, min{al,3; — x¢) >
t—1
; N J +2 C”}/j
> i _ _ J = : —
Z g3 min{an wo — &) ot \/ﬁjm?xﬂat”

o yad o
= ——min(a}, xg — 5
t+1 (@,

|
N
]

Recall that N; = C,,t2(Int)?,

hence we have

5 mjin(d{, §t — o) —

t+
t
1 2In(j + 1) +In1/6C5 ,
B - L E LV e
t+24~ VC,(j+1)n(+1)
1 o Cs1n(Int)
— g (oGl af) - 2D el

where A? = 3; — x.

With Lemmas 3 and 4 in place, we are ready to prove
Lemma 1.

C.1 Lemma 1

If B € &(S) for k = 1,...,m and n; = 4C,t(Int)?,
with the constant parameter C,, satisfying

4(InlnT)2 L3 1 }
el T (To+1)2 )7

C, > C§ max{

205d(To + 1) Fg +1
Pmin(D) w(2)

then 2; € S;(8). Furthermore, the total number of
measurements then satisfies N; = C,,t2(Int)2.

where C5 = +1,

Proof. From Fact 2, the condition z; € Sy(8) is equal
to

2 .
ﬁ‘; + ¢3(x — 2¢)" Ry(y — ;) < min[e}]*.
t K3

From the bound on ||R;|| given in (18) and knowing
that I is a diameter of the set, we have

2
>+ @3y — T) Ry — 34) < N
t

Ny

From Lemma 4 we have

: 1 o Cj5In(Int) )
e > gy (minGat,a8) — 50 )
(25)
Hence, we can guarantee that a; € S;(0) if
(t+2)203 (1+4)
N; > (26)
. ~i CjsIn(In
(mmi(at7 AYY — ‘STQ max; HatH)

We denote by L4 = max; |la;]|. Let us derive how
far are min;(ai, A?) from gy and max; ||ai|| from L.
These are needed for obtalmng a bound on the de-
nominator above. If C,, > T +1)2, then with prob-
ability P > 1 —§ we have ||AY — Ag|| < \/C‘L We
also can bound the difference Hdt —a?|| by ||lai — af| <
—1(5 1/2 Cs
OIS < 73 Vo morn
equality follows from (19) and definition of Cj (11).

The second in-

Combining above inequalities together with the bound
(26) on N; we can conclude the following. If

4C3(InlnT)?L%

n 2 bl

min,[ed]
then we can guarantee that z; € S;(8) by requiring

(t+2203 (1+ %)

min,[e}]?

Y,

Since ny = Cp,(t + 1)(In(t + 2))? and N; =
we obtain that

ZZ:O Nk,
Ny > O (t +1)%(In(t + 2))%

2 <1+dr°
Hence, C,, > B is enough to ensure that

(In(t+2))2 min;[e})
z; € S¢(6). Note that C5 > qb(% (1 + %) Thus, under
0

the proper choice of constant parameter C,:

2 272 2
anmax{zxcé(lnlnT) 15N e; }

[0]? "(To +1)?

we conclude that z; € S;(6). |
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Remark Note that if we use a step size as in classical
FW -, = H% or in more general form ; = %H then we
obtain that the distance to the boundaries min; [e}] will
decrease with rate at most szo(l — V) = % =
O(3) instead of (25) and will reach this bound e.g. in
the case if the algorithm always moves in the same
direction towards the boundary. This implies that in
order to keep the convergence rate as in original FW
at the same time satisfying z; € S;(9), due to Fact 2
we have to reduce the uncertainty of the boundaries
faster, i.e., we need to take more measurements at each

iteration.

D Theorem 2

Proof. Let u; denote a constant such that E;(d) =
% 17:Cy. Then we have

1
(8, Vf(xy)) < f}éiB<8’ Vf(zy)) + E#t%cﬂ

For the proof we refer to the following result from Jaggi
(2013). This result holds in our setting since we use
the same notions of g; and s; defined in (7).

Lemma 5. (Lemma 5 Jaggi (2013)) For a step x141 =
xt +v(8 — z¢) with the arbitrary step-size v € [0,1], it
holds that

2
J(ep1) < f(@e) —vge + ’Y?Cf(l + ),

if § is an approximate linear minimizer, i.e.

(5,95 () < mins, ¥ (e0)) + 3p1C.

The step-size of the SCFW algorithm is equal to v; =

t—t-%‘ Let us define h; as follows

he = h(zy) = f(we) — f(2s).
Then we obtain that
C
hiyr < hg — 9 + %27)0(1 + 1)
Cr
2
C

< he —vehe + 77 L (1+ pe)

If we continue in the same manner, we obtain

t t t
c
b < [T =200 + 702 5H A+ ) TT( =)
=0 k=0 i=k
t t

7Hi+1

i:0i+2

1 Cy
ho +I;m7(1 + k)

S 1 G4 m) (t+

1
- h
t+2 °+k§(k+2)2 2

‘L1 o1
<h0+2(k+2) f(;uk))

t+2

k=0

Recall that E;(d) denotes the upper bound on E; with
the confidence level 1 —§.

Due to Proposition 1, we have
MGy MCj5
VNe VO, (k+2)In(k+2)

Hence, we obtain that

Ey(6)

2B (k+2)  2MCj
Hke = C; TGkt 2)

Therefore, we obtain

- ho +1n (¢ +2)5 + 3t Coe

h =
= t+2
~ ho+In(t+ 2)% + Inln(t + 2)%
N t+2 ’
where ¢ = M%% ]

Cn’
Corollary 1

Proof. Note that we can bound ¢~*(5)? (Laurent and
Massart, 2000) as follows

¢ (0)* <d+1+2log (%) +24/(d+1)log (%)

Hence, we have

)+2 (d+1)log (%)

<J<M+z log <(1$>)

§Jmax{\/(m,2 log <(15>} :0( ln(1;>.

SO

o5 <o d—|—1+210g(



