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A Proof of Fact 2

Proof. Recall that the safety set St(�̄) after iteration t

is defined by the following inequalities:

St(�̄) =

(
x 2 Rd : 8i = 1, . . . , m

h
[âi

t]
T
x � b̂

i
t

i
+

+ �
�1(�̄/m)�

����(X̄
T
t X̄t)

�1/2


x

�1

�����  0

)
. (13)

Remember that x̄t = XT 1
N is an average of the measured

points. Using the inversion formula for block matrix,
we obtain

(X̄T
t X̄t)

�1 =


X

T
t Xt �X

T
t 1

�1T
Xt Nt

��1

=


Rt Rtx̄t

x̄
T
t Rt

1
Nt

+ x̄
T
t Rtx̄t

�
,

where

Rt =
⇥
X

T
t Xt � Ntx̄tx̄

T
t

⇤�1

=

2

4
NtX

j=1

(x(j) � x̄t)(x(j) � x̄t)
T

3

5
�1

. (14)

Let us denote by ��̄ = ��
�1(�̄/m) and by "

i
t =

b̂
i
t � (âi

t)
T
xt. Then, the i-th inequality in (13) can

be rewritten as follows:
s

�2
�

Nt
+ �2

�(x � x̄t)T Rt(x � x̄t)  "
i
t.

Substituting x = xt to the above and combining the
inequalities together, we obtain that the condition xt 2
St(�̄) is equivalent to

��̄

r
1

Nt
+ (xt � x̄t)T Rt(xt � x̄t)  min

i=1,...,m
"

i
t.

⌅

B DFS solution proof

Let us recall that for the polytope D 2 Rd, by an
active set B we denote a set of indices of d linearly
independent constraints active in a vertex V 2 Rd of D,
i.e., V = V

B = [AB ]�1
b
B . Here, A

B is a corresponding
sub-matrix of A and b

B is the corresponding right-hand-
side of the constraint.
Lemma 2. If � 2 Et(�̄) then for any vertex V

B and
its estimation V̂

B
t defined by the active set B we have

that its estimation error is bounded by

kV̂ B
t � V

Bk  C�̄p
Nt

,

where C�̄ = 2��̄d(�0+1)
⇢min[AB ]

q
�2
0+1
!2

0
+ 1.

Proof. The vertex estimate V̂
B
t of a polytope is de-

scribed by the system of linear equations Â
B
t x = b̂

B
t .

Since the LSE (Least Squares Estimation) is unbiased,

EÂ
B
t = A

B
, Eb̂

B
t = b

B
.

Let us denote by ⇣t = b̂
B
t � b

B the uncertainty in
estimation of b

B, and Gt = Â
B
t � A

B the uncertainty
in estimation of A

B .

Our aim is to bound the error of the vertex estimation
kV̂ B

t � V
Bk. Recall that

V̂
B
t � V

B = [ÂB
t ]�1

b̂
B
t � [AB ]�1

b
B =

= [AB + Gt]
�1(bB + ⇣t) � [AB ]�1

b
B

.

Note that for any matrices A, B it holds that

(A + B)�1 = A
�1 � (I + A

�1
B)�1

A
�1

BA
�1

.

Therefore, we can modify the expression for the V̂
B
t �

V
B as follows

V̂
B
t � V

B =

=
⇥
[AB ]�1 � (I + [AB ]�1

Gt)
�1[AB ]�1

Gt[A
B ]�1

⇤
(bB + ⇣t)

� [AB ]�1
b
B =

= [AB ]�1
b
B + [AB ]�1

⇣t�
� (I + [AB ]�1

Gt)
�1[AB ]�1

Gt[A
B ]�1(bB + ⇣t)�

� [AB ]�1
b
B =

= [AB ]�1
⇣t � (I + [AB ]�1

Gt)
�1[AB ]�1

Gt[A
B ]�1(bB + ⇣t).

The norm of the difference between the vertex V
B of

the set D and its estimation can be bounded by

kV̂ B
t � V

Bk  k[AB ]�1
⇣tk| {z }

(a)

+

+ k[AB ]�1
Gtk| {z }

(b)

kV B + [AB ]�1
⇣tk| {z }

(c)

kI + [AB ]�1
Gtk�1

| {z }
(d)

.

(15)

To obtain the bounds on the terms (a),(b),(c),(d), let
us first obtain the bounds on kGtk and k⇣tk.

Assume that for each i = 1, . . . , m �
i 2 E i

t (�̄), where

E i
t (�̄) =

n
z 2 R

d+1 : (�̂i
t � z)T ⌃�1

t (�̂i
t � z)  �

�1(�̄)2
o

,

i.e., that for any active set B describing the vertex V
B

we have �
B 2 EB

t (�̄). Consequently, kâi
t � a

ik2 + |b̂i �
b
i|2  �

�1(�̄)k⌃1/2
t k. Then, for each row of Gt we have
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kâi
t � a

ik  �
�1(�̄)k⌃1/2

t k, and for each element of ⇣t

we have |b̂i
t � b

i|  �
�1(�̄)k⌃1/2

t k. Hence, for kGtk we
obtain

kGtk  kGkF =

sX

i2B

kâi
t � aik22 

p
d�

�1(�̄)k⌃1/2
t k.

(16)

Similarly, we obtain a bound on k⇣tk:

k⇣tk =

sX

i2B

(b̂i
t � bi)2 

p
d�

�1(�̄)k⌃1/2
t k. (17)

For the LSE covariance matrix norm k⌃1/2
t k we have

k⌃1/2
t k = �k(X̄T

t X̄t)
�1k1/2 =

= �

����


I

x̄
T
t

�
Rt

⇥
I x̄t

⇤
+


0 0
0 1/Nt

�����
1/2



 �

r
kRtkkx̄tk2 + kRtk +

1

Nt
,

where Rt was defined in (14).

Note that we make measurements as it is described
in Step 4 of the SFW algorithm, i.e., we make mea-
surements at all coordinate directions within small
step size !0 from points generated by the method.
Then, each new 2d measurements result in addition
of a matrix

PNt+2d
j=Nt+1(x(j) � x̄)(x(j) � x̄)T ⌫ !

2
0I to

the matrix R
�1
t =

PNt

j=1(x(j) � x̄t)(x(j) � x̄t)T . Hence,

R
�1
t ⌫ Nt!

2
0

2d I. Hence, the minimal eigenvalue of the
covariance matrix R

�1
t is bounded from below by the

value �min(R
�1
t ) � Nt!

2
0

d . Thus, we obtain the following
bound on the norm of Rt:

kRtk  d

Nt!
2
0

. (18)

Recall that kx̄tk  �0. It follows that

k⌃1/2
t k  �

r
kRtkkx̄tk2 + kRtk +

1

Nt


 �

s
d

Nt!
2
0

kx̄tk2 +
d

Nt!
2
0

+
1

Nt



�
p

d

q
�2
0+1
!2

0
+ 1

dp
Nt


�
p

d

q
�2
0+1
!2

0
+ 1

p
Nt

. (19)

In order to bound terms (a),(b),(c),(d) in inequality
(15), let us also bound the norm of the matrix [AB ]�1:

k[AB ]�1k = ⇢max([A
B ]�1) =

1

⇢min[AB ]
 1

⇢min(D)
.

(20)

Then, combining inequalities (16),(17),(19),(20), we
bound terms (a) and (b) as follows:

(a) :
��[AB ]�1

⇣t

��  k[AB ]�1kk⇣tk  Up
Nt

,

(b) :
��[AB ]�1

Gt

��  k[AB ]�1kkGtk  Up
Nt

,

where U we defined by

U =
��̄d

⇢min(D)

s
�2
0 + 1

!2
0

+ 1.

Further, let us bound term (d). For Nt � 4U2 it holds
that

��[AB ]�1
Gt

��  Up
Nt

 1

2
,

��[AB ]�1
⇣t

��  Up
Nt

 1

2
.

As such, for Nt � 4U
2 we have

��I + [AB ]�1
Gt

���1  2. (21)

Finally, term (c) we can bound as follows:

��V B + [AB ]�1
⇣t

��  �0 +
Up
Nt

. (22)

Combining these all together, we obtain

kV̂ B
t � V

Bk  Up
Nt

+ 2
Up
Nt

✓
�0 +

Up
Nt

◆


 2
Up
Nt

(�0 + 1) =
C�̄p
Nt

,

where

C�̄ = 2U(�0 + 1) =
2��̄d(�0 + 1)

⇢min(D)

s
�2
0 + 1

!2
0

+ 1.

Since Nt = Cnt
2(ln t

2) � Cn, above bound holds under
the proper choice of the constant

Cn � 4U
2 =

C
2
�̄

(�0 + 1)2
=

4d
2
�
2
�̄

⇢2min(D)

✓
�2
0 + 1

!2
0

+ 1

◆
.

⌅

Proposition 1

Proof. Let us find how far is the solution of the random
linear DFS from its expected value. Estimated DFS is
a linear program defined by

ŝt = arg min
Âtxb̂t

hc, xi,
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where c = rf(xt). Any solution of such a linear pro-
gram is a vertex (or convex hull of vertices) of the
polytope Âtx  b̂t. Let B2 = {i1, . . . , id} be a sub-
set of d indices corresponding to linear independent
active constraints (which form a basis) at the esti-
mated DFS solution point. And correspondingly, let
B1 = {j1, . . . , jd} be a subset of indices active at the
true DFS solution point.

Assume that V
1 is a true solution of DFS

V
1 = arg min

s2D
hc, si = (AB1)�1

b
B1

(see Lemma 1 for the definition), and correspondingly

V̂
1 = (ÂB1

t )�1
b̂
B1
t .

Assume also that V̂
2
t is the estimated solution of DFS

V̂
2
t = arg min

s2D̂t

hc, si = (ÂB2
t )�1

b̂
B2
t ,

and correspondingly V
2 = (AB2)�1

b
B2 . We have that

V̂
1
t 2 D̂t, V

2 2 D is always the case starting from some
Nt. Then, from the definitions above it follows that

c
T
V̂

2
t  c

T
V̂

1
t ,

c
T
V

2  c
T
V

1
.

From Lemma 2 for the vertices V
1
, V

2 corresponding to
the active sets B1, B2 we have that if � 2 Et(�̄)\Et+1(�̄),
then kV̂ 1

t �V
1k  C�̄p

Nt
and kV̂ 2

t �V
2k  C�̄p

Nt
. Hence,

we have

c
T
V̂

2
t � kck C�̄p

Nt
 c

T
V̂

1
t � kck C�̄p

Nt

 c
T
V

1  c
T
V

2  c
T
V̂

2
t + kck C�̄p

Nt
.

Thus, we obtain that if � 2 Et(�̄) \ Et+1(�̄), then Et =
c
T (ŝt � st) = kcT

V̂
2
t � c

T
V

1k  kck C�̄p
Nt

.

Note that kck  M , where M is the Lipschitz constant
of the objective. Thus, if � 2 Et(�̄) \ Et+1(�̄), then
Et  C�̄Mp

Nt
, i.e.,

P
⇢

Et 
C�̄Mp

Nt

�
� 1 � 2�̄.

⌅

C Proof of Lemma 1

First, we provide some preliminary lemmas for the
proof of Lemma 1.

Let us denote by x̆t = xt � x̄t, �k
t = ŝt �xk, and recall

that "
i
t = b̂

i
t � [âi

t]
T
xt. Let us fix some vertex V of the

polytope D corresponding to the basic active set B.
By V̂t and V̂t�1 we call the estimates of V based on
the parameter estimations �̂t, �̂t�1.

Lemma 3. If � 2 Et(�̄) \ Et�1(�̄) holds, then we have

min
i
hâi

t, �
t
ti �(1 � �t�1) min

i
hâi

t, �
t�1
t i�

� 2�t�1 maxi kâi
tkC�̄p

Nt�1

.

Proof.

8ŝt : min
i
hâi

t, �
t
ti = min

i
hâi

t, ŝt � xti

= min
i2Bt

hâi
t, ŝt � xt�1 � �t�1(ŝt�1 � xt�1)i

= min
i2Bt

hâi
t, (1 � �t�1)(ŝt � xt�1)+

+ �t�1(ŝt�1 � ŝt)i =

(Let j = arg min
i2Bt

hâi
t, �

t�1
t i)

= (1 � �t�1)hâj
t , ŝt � xt�1i+

+ �t�1hâj
t , ŝt�1 � ŝti.

Let us fix V as a vertex of D corresponding to active
set Bt�1, then ŝt�1 = V̂t�1 and hâj

t , ŝti = 0  hâj
t , V̂ti,

thus we have

min
i
hâi

t, �
t
ti �

� (1 � �t�1)hâj
t , ŝt � xt�1i + �t�1hâj

t , V̂t�1 � V̂ti
� (1 � �t�1) min

i
hâi

t, ŝt � xt�1i�

�t�1 max
i

kâi
tkkV̂t � V̂t�1k (23)

Using the result of Proposition 1 we can obtain

kV̂t+1 � V̂tk  kV̂t+1 � V k + kV � V̂tk
 kV̂t+1 � V k + kV � V̂tk 

 2kV̂t � V k  C�̄p
Nt

+
C�̄p
Nt+1

. (24)

Then, combining (24) with (23), we have

min
i
hâi

t, �
t
ti �

� (1 � �t�1) min
i
hâi

t, �
t�1
t i � 2�t�1 maxi kâi

tkC�̄p
Nt�1

.

⌅

Lemma 3 above is an induction step in the proof of
Lemma 4. Lemma 4 below bounds the fastest rate of
decreasing the distance to the boundaries of D for the
SCFW algorithm. Recall that Ft = {� 2 \t

k=0Ek(�̄)}.
Lemma 4. If Ft holds, then we have

min
i
hâi

t, �
t
ti �

minihâi
t, �

0
t i

t + 2

✓
1 � C�̄ ln ln t maxi kâi

tkp
Cnminihâi

t, �̄0i

◆
.
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Proof. By induction, from Lemma 3 we have

min
i
hâi

t, ŝt � xti �
t�1Y

j=0

(1 � �j) min
i
hâi

t, x0 � ŝti�

�
t�1X

j=0

2C�̄�jp
Nj

max
i

kâi
tk

t�1Y

k=j

(1 � �k).

Note that 1 � �k = k+1
k+2 , and

t�1Y

k=j

(1 � �k) =
(t)!/(j + 1)!

(t + 1)!/(j + 2)!
=

j + 2

t + 1
.

Thus, min
i
hâi

t, ŝt � xti �

� 1

t + 1
min

i
hâi

t, x0 � ŝti �
t�1X

j=0

j + 2

t + 1

C�̄�jp
Nj

max
i

kâi
tk =

=
1

t + 1
min

i
hâi

t, x0 � ŝti �
1

t + 1

t�1X

j=0

C�̄p
Nj

max
i

kâi
tk.

Recall that Nt = Cnt
2(ln t)2, hence we have

"
i
t � min

j
hâj

t , ŝt � xti �
1

t + 2
min

j
hâj

t , ŝt � x0i�

� 1

t + 2

tX

j=0

p
2 ln(j + 1) + ln 1/�̄C�̄p
Cn(j + 1) ln(j + 1)

max
j

kâj
tk =

=
1

t + 2

✓
min

j
hâj

t , �
0
t i �

C�̄ ln(ln t)p
Cn

max
j

kâj
tk
◆

,

where �0
t = ŝt � x0.

⌅

With Lemmas 3 and 4 in place, we are ready to prove
Lemma 1.

C.1 Lemma 1

If � 2 Ek(�̄) for k = 1, . . . , m and nt = 4Cnt(ln t)2,
with the constant parameter Cn satisfying

Cn � C
2
�̄ max

⇢
4(ln ln T )2L2

A

["0]2
,

1

(�0 + 1)2

�
,

where C�̄ =
2��̄d(�0 + 1)

⇢min(D)

s
�2
0 + 1

!2
0

+ 1,

then xt 2 St(�̄). Furthermore, the total number of
measurements then satisfies Nt = Cnt

2(ln t)2.

Proof. From Fact 2, the condition xt 2 St(�̄) is equal
to

�
2
�̄

Nt
+ �

2
�̄(xt � x̄t)

T
Rt(xt � x̄t)  min

i
["i

t]
2
.

From the bound on kRtk given in (18) and knowing
that � is a diameter of the set, we have

�
2
�̄

Nt
+ �

2
�̄(xt � x̄t)

T
Rt(xt � x̄t) 

�
2
�̄

⇣
1 + d�2

!2
0

⌘

Nt
.

From Lemma 4 we have

["i
t]
2 � 1

(t + 2)2

✓
min

i
hâi

t, �
0
t i �

C�̄ ln(ln t)p
Cn

max
i

kâi
tk
◆2

.

(25)

Hence, we can guarantee that xt 2 St(�̄) if

Nt �
(t + 2)2�2

�̄

⇣
1 + d�2

!2
0

⌘

⇣
minihâi

t, �
0
t i �

C�̄ ln(ln t)p
Cn

maxi kâi
tk
⌘2 . (26)

We denote by LA = maxi kaik. Let us derive how
far are minihâi

t, �
0
t i from "0 and maxi kâi

tk from LA.
These are needed for obtaining a bound on the de-
nominator above. If Cn � C2

�̄
(�0+1)2 , then with prob-

ability P � 1 � �̄ we have k�0
t � �0k  C�̄p

Nt
. We

also can bound the difference kâi
t � a

ik by kâi
t � a

ik 
�
�1(�̄)k⌃1/2k  C�̄p

Nt

1p
d⇢min(D)(�0+1)

. The second in-
equality follows from (19) and definition of C�̄ (11).

Combining above inequalities together with the bound
(26) on Nt we can conclude the following. If

Cn �
4C

2
�̄
(ln lnT )2L2

A

mini["i
0]

2
,

then we can guarantee that xt 2 St(�̄) by requiring

Nt �
(t + 2)2�2

�̄

⇣
1 + d�2

!2
0

⌘

mini["i
0]

2
.

Since nt = Cn(t + 1)(ln(t + 2))2 and Nt =
Pt

k=0 nk,
we obtain that

Nt � Cn(t + 1)2(ln(t + 2))2.

Hence, Cn �
�2
�̄

✓
1+

d�2
0

!2
0

◆

(ln(t+2))2 mini["i
0]

2 is enough to ensure that

xt 2 St(�̄). Note that C�̄ � �
2
�̄

⇣
1 + d�2

!2
0

⌘
. Thus, under

the proper choice of constant parameter Cn:

Cn � max

(
4C

2
�̄
(ln lnT )2L2

A

["0]2
,

C
2
�̄

(�0 + 1)2

)

we conclude that xt 2 St(�̄). ⌅
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Remark Note that if we use a step size as in classical
FW �t = 2

t+2 or in more general form �t = l
t+l then we

obtain that the distance to the boundaries mini["i
t] will

decrease with rate at most
Qt

k=0(1� �k) = l!
t·...·(t+l) =

O( 1
tl ) instead of (25) and will reach this bound e.g. in

the case if the algorithm always moves in the same
direction towards the boundary. This implies that in
order to keep the convergence rate as in original FW
at the same time satisfying xt 2 St(�̄), due to Fact 2
we have to reduce the uncertainty of the boundaries
faster, i.e., we need to take more measurements at each
iteration.

D Theorem 2

Proof. Let µt denote a constant such that Et(�) =
1
2µt�tCf . Then we have

hŝ,rf(xt)i  min
s2D

hs,rf(xt)i +
1

2
µt�tCf .

For the proof we refer to the following result from Jaggi
(2013). This result holds in our setting since we use
the same notions of gt and st defined in (7).

Lemma 5. (Lemma 5 Jaggi (2013)) For a step xt+1 =
xt + �(ŝ � xt) with the arbitrary step-size � 2 [0, 1], it
holds that

f(xt+1)  f(xt) � �gt +
�
2

2
Cf (1 + µt),

if ŝ is an approximate linear minimizer, i.e.

hŝ,rf(xt)i  min
s̄2D

hs̄,rf(xt)i +
1

2
µt�Cf .

The step-size of the SCFW algorithm is equal to �t =
1

t+2 . Let us define ht as follows

ht = h(xt) = f(xt) � f(x⇤).

Then we obtain that

ht+1  ht � �tgt + �
2
t
Cf

2
(1 + µt)

 ht � �tht + �
2
t
Cf

2
(1 + µt)

= (1 � �t)ht + �
2
t
Cf

2
(1 + µt).

If we continue in the same manner, we obtain

ht+1 
tY

i=0

(1 � �i)h0 +
tX

k=0

�
2
k
Cf

2
(1 + µk)

tY

i=k

(1 � �i)

=
tY

i=0

i + 1

i + 2
h0 +

tX

k=0

1

(k + 2)2
Cf

2
(1 + µk)

tY

i=k

i

i + 2

=
1

t + 2
h0 +

tX

k=0

1

(k + 2)2
Cf (1 + µk)

2

(t + 1)!(k + 2)!

(t + 2)!(k + 1)!

=
1

t + 2

 
h0 +

tX

k=0

1

(k + 2)

Cf (1 + µk)

2

!
.

Recall that Et(�̄) denotes the upper bound on Et with
the confidence level 1 � �̄.

Due to Proposition 1, we have

Ek(�̄) =
MC�̄p

Nk
=

MC�̄p
Cn(k + 2) ln(k + 2)

.

Hence, we obtain that

µk =
2Ek(�̄)(k + 2)

Cf
=

2MC�̄

Cf
p

Cn ln(k + 2)
.

Therefore, we obtain

ht+1 
h0 + ln (t + 2)Cf

2 +
Pt

k=0
Cfµk

2

t + 2
=

=
h0 + ln(t + 2)Cf

2 + ln ln(t + 2)C0

2

t + 2
,

where C
0 = MC�̄p

Cn
. ⌅

Corollary 1

Proof. Note that we can bound �
�1(�̄)2 (Laurent and

Massart, 2000) as follows

�
�1(�̄)2  d + 1 + 2 log

✓
1

�̄

◆
+ 2

s

(d + 1) log

✓
1

�̄

◆
.

Hence, we have

��̄  �

vuut
d + 1 + 2 log

✓
1

�̄

◆
+ 2

s

(d + 1) log

✓
1

�̄

◆

 �

 
p

d + 1 + 2

s

log

✓
1

�̄

◆!

 � max

(
p

d + 1, 2

s

log

✓
1

�̄

◆)
= O

 r
ln

1

�̄

!
.

⌅


