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A Incorporating additive error for Nesterov acceleration

For this section, we assume an additive error in the the strong growth condition implying that the following
equation is satisfied for all w, z.

E. |Vf(w,2)|* < p|Vf(w)]* + 0

In this case, we have the counterparts of Theorems 1 and 2 as follows:

Theorem 7 (Strongly convex). Under L-smoothness and p strongly-convezity, if f satisfies SGC with constant
p and an additive error o, then SGD with Nesterov acceleration with the following choice of parameters,
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results in the following convergence rate:
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Theorem 8 (Convex). Under L-smoothness and convezity, if [ satisfies SGC with constant p and an additive
error o, then SGD with Nesterov acceleration with the following choice of parameters,
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results in the following convergence rate:

[Ef (i) — fw")] < 2—2 o — w2 + 221

The above theorems are proved in appendices B.1.1 and B.1.3

B Proofs

B.1 Proofs for SGD with Nesterov Acceleration

Recall the update equations for SGD with Nesterov acceleration as follows:

W1 = G — NV [ (Crs 21)
Cr = agvr + (1 — ag)wg
Vpg1 = Brvr + (1= Br)C — venV f(Ck, 2k)
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Since the stochastic gradients are unbiased, we obtain the following equation,

E.[Vf(y,2)] = V[(y) (9)
For the proof, we consider the more general strong-growth condition with an additive error o2.
E. ||V f(w,2)|* < p |V f(w)|* + 0> (10)

We choose the parameters v, ok, Bk, ak, br such that the following equations are satisfied:
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p Qg
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a = —Wﬂj Bl (12)
Wkﬁkbk_;'_l/r] + ay
Br > 1 —yepun (13)
Apy1 = ’Y/m/ Npbr+1 (14)
b1 < — i (15)

We now prove the following lemma assuming that the function f(-) is L-smooth and p strongly-convex.

Lemma 3. Assume that the function is L-smooth and u strongly-convexr and satisfies the strong-growth condition
mn Equation 10. Then, using the updates in Equation 3-5 and setting the parameters according to Equations 11-
15, if n < <o , then the following relation holds:
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1V [Ef (wit) — f7] < o [f(zo) = f7] + 20m lzo — w*[|* + P ; 0744]
Proof.
Let ri11 = ||vg+1 — w*||, then using equation 5

21 = 1Beor + (1= Bl — w* — eV (Cr 210) ||
201 = 11Brvk + (1= Bi)Cr — w*||> + 202 IV £ (Chy 26) )P+ 29m(w™ = Brok — (1= Bi)Ch, VF (Crr 2))

Taking expecation wrt to zp,

E[rg 1] = EllBvve + (1= Bi)Cr — w*|*] + v20°E [V £ (e, 21) 12 + 2vim [E(w* — Brv — (1 = Bi)Cry V f (Cror 21))]
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< B lloi — w*)|* + (1 = Be) G — w*|* + %0 IV F (G 1> + 27un [(w* = Brok — (1 = Bi)Ce, V()] + vino?
(By convexity of ||-||*)

= Bur + (1= Bi) 166 — w* 1> + 2o IV £ ()1 + 29 [(w* — Brv, — (1 — Br)Cr, VF(C))] + viEn*o?
= Bry + (1= Bi) IGe — w*l” + 42020 IV £ (o)1 + 29n [(Br (G — vi) + w* = G VF(G))] + 10?0
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) (From equation 4)
= furt+ (1= 516~ 0 + R IV HGI + 2w | L0 (G s = )+ (TG0 G -+
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(By convexity)
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By strong convexity,

Elrg ] < Birk + (1= Bi) 16 — ™| + e [V (G|

2 |0 (b - 1G) + £ = (60 = 5 16— I + oiato? (16)

By Lipschitz continuity of the gradient,

Flwrs) = F(G) < (VFGR) wkr = G+ 5 s — Gl

L?]Q 2
< =V F(Ck), VI (Cry2x)) + > IV £ (Cs 20) |l

Taking expectation wrt z; and using equations 9, 10
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E[f(wis1) = F(G)] < —nlIVF(G)II* + L% IV £l + LUTU
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2
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From equations 16 and 17,
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Multiplying by b% 115
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Lemma 4. Under the parameter setting according to Equations 11- 15, the following relation is true:

Proof.
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B.1.1 Strongly-convex case

We now consider the strongly-convex case,

Using Lemma 4,

1
Vo — Wk L - /“77]%1:| =i,
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The above equation implies that ag = 1. This gives us the parameter settings used in Theorem 1.

Using the result of Lemma 3 and the above relations, we obtain the following inequality. Note that ¢p41 =
E[f (wk+1)]-
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B.1.2 Proof of Theorem 1

We use the above relation to complete the proof for Theorem 1. Substituting n = p% and o = 0, we obtain the
following:

B B 177 A N PV
Bl = £ (1= 20) [sta0) = 7+ oo = ')

B.1.3 Convex case

We now use the above lemmas to first prove the convergence rate in the convex case. In this case, p = 0 and the
result of Lemma 4 can be written as:

2 Tk 2 0

Tk — ; — V-1 =
% + 4/ ,%z +4vi_y
— ’yk =
2
Let 79 = 0. From equation 13, for all &,
Br=1

b1 =br=by=1 (From equation 15)
k1 = Yey/NPbo = k1 = YE\/1P (From equation 14)

The above equation implies that ag = 0. This gives us the parameter settings used in Theorem 2.

Using the result of Lemma 3 by setting 4 = 0 and the above relations, we obtain the following inequality. Note
that g1 = E[f (wp41)).

Rloess = 1< 2 oo -+ 2130
+1— S5 - — i
g 20m p =
By induction, v; > QLP’
k’2 1 2 0'217 ! 2
A < ¥ e .
4p2 [¢k+1 f ] = 2p7,] H‘TO w || + 4p3 i:]_[Z ]
k—1
[ 2P q2 L TN N2
_ < 27 _
[¢k+1 f ] = k277 ||£L'0 H + kgp lzl[z ]
2p 2 | ko’n
[Pr1 = f] < o5 lwo —w™|" +
k2n p
B.1.4 Proof of Theorem 2
We use the above relation to complete the proof for Theorem 2. Substituting n = % and ¢ = 0, we obtain the

pL
following:

2
LS ()] — 7] < 22F g —
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B.2 Proof of Theorem 3
Proof. Recall the stochastic gradient descent update,
Wit1 = wg — NV f(wy, 2x)

By Lipschitz continuity of the gradient,
L 2
fwig1) = f(wr) <V F(wk), wes1 — wi) + 5 lwi+1 — wel|
L772 2
—n(V f(wr), V f(wy, zx)) + - IV f(wg, z2) ||

Taking expectation wrt z; and using equations 9, 10

Ln?c?
2

E[f (wis1) = fwp)] < =n ||V f (wp)]® L Lor IIVf( OlI” +

Ln?c?
2

E[f (wes1) — flun)] < [ n+L} IV fw )H2+
Ifn <,

Ln?c?
2

Blf (i) - fwn)] < (51) 970l +
— V)] < (f?) E[f(w) — f(wesr)] + Lno®

Taking expectation wrt 2g, 21, . .. 2,—1 and summing from k =0to ¢t — 1,

ZE[Wf Wi M ( >Z]E Fwpyr)] + Lipto?

= Zkzonlﬁ [”Vf(wk H } ( > ZE wk+1)] + Lno
k=0 o

min, 2 [I19501"] < (2) Utwn) = Bl ] + oo’

1, nt
win, B IV w0l] < (2

k=0,1,...t— nt

) [ (wo) — f(w")] + Ino®

If o =0,

=4,

— [||Vf<wk>||]§ 08 L#wo) ~ ()]

B.3 Proof of Theorem 4

(19)

(20)

. _ 1
(Setting n = %)

O

Proof. Similar to the proof of Theorem 3, we can use the SGD update and Lipschitz continuity of the gradient

. . . . 1.
to obtain the following equation for the stepsize n < oL

2 2

Bl e — flw)] < (1) 197w+ 257

2
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We now use the PL inequality with constant p as follows:
IV £ (wi)lI* > 2 [ f (wr) = 1]
Combining the above two inequalities,

Ln?c?
2

E[f (wis1) — flw)] < —nu[f(wr) — f*]+
Ifo =0,

E[f (wit1) = fwr)] < —np[f (wr) = 7]
= E[f(we+1) — [T < (1= np) [f (wi) = f7]

Substituting n = =+

(21)

B.4 Proof of Theorem 5

Proof.

2 2
w1 — w || = [Jwe =V f(wk, 2) — w"|

= [lwx = w*||* = 20(V f(wy, 2), wy = w*) + 07 |V f (wy, 2)]|*
E:[wpsr — w*[|*) = lwg — w*||* = 20E[(V f (wy, 2), wi — w*)] + 7°E[|V f (wy, 2)]%]

= [lwy = w*|[* = 20(V f(wy), w = w*) + P°E[|V f (wy, )]
(From the unbiasedness of stochastic gradients.)

< Jwg — w*||* = 20(V f (wg), wx — w*) + 200°Lf (wi.) — f*] (From equation 6)

* * I'L * *
< Jw — w*|* + 21 [f = flwr) = 5 llwk —w |I2] +2pn”L{f (wi) - £7]
(By strong convexity)

= (1 — ) [lwe — w*||* + (20°pL — 2n) [f (wi) — ]

* (12 1% *(12 .
s = < (1= 22 ) Ju - '] (Setting n = 1)
k
— s — w2 < (1—;;) —
O

B.5 Proof of Theorem 6

Proof.

By convexity,

flwg) < fw®) + (Vf(w), wp — w”)
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For any 8 <1,
flwg) < Bf(we) + (1= B)f(w*) + (1 = BV f(wk), w — w")

By Lipschitz continuity of Vf(f),

(i) < S + (T ) wrss = we) + 5 s —

’L
— flwsn) < Fwn) = n(TF(we), V flw, 2)) + L2 |V f s 2)|
From the above equations,
2

(k) < BF(wi) + (1 B)F(w) + (1= B)(V (), i —w*) — (¥ (w), ¥ w, 2)) + L |9 fa, )

Note that,

1 * * (12
oy (how = w7l = g - wn) fw, = w* =, = 19 f(wy, 2) = ")

(
(

IV f (wr, 2)||* + (wr — w*, V f (wy, 2))

ok = w|* = flwn = w* > = 72 |7 £ (wr, 2)| + 20w — w*, V f(wx, 2)))
1 * (12 *
5= (Il =" |* = llwss = w| )
n

= (wr —w",Vf(wg,2)) =

yHngHyH

* * 77
(e = w** = Neows = w*2) + 219 f (e 2)|

Taking expectation

B [(wox =", V(w2 = 5 (o =" = E [Jnes =017 ) + 55 19w 2) 1]
= (o =" Y (w) = 5= (o =" = E s =017 + 55 19w 2) ]

Using the above equations,

Flunss) £ 87w + (1= 9 )+ 222 (o= 0l = B [Junss - 0 1]) + S8 190,92

oV F k), Vi (w 2)) + T 1V f w2

Taking expectation,

Blf(wnr)] < 8(w) + (1= 8)(w) + 5 (o = = B [unes = w]) + S22k 197 )17
— 0 (). B[V f (i ) + L (19 (e )]
= 8fw) + (1 A ) + 2 (g - w1~ [juncs —w?]) + S22 B [0 s, )]
k 217 k k+1 2 k>

2
95w+ IR, )]
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The term —n ||V f(w)]|* < 0

— E{f(wen)] < Bf (i) + (- B)fw) + 7 (||wk — 0 |* — B | fwpss — )

2n
A= 50) [19 s, 2] + L [I9 fwn 1]

() = £+ 722 (= = B [Jonsa = w']])

20 B 8 [19 a2

From equation 6,

B{f ()]~ £ < B wn) = @) + 752 (s = w’l* B [Juoesr = w"|])
+ (p(1 = B)nL +n°pL?) (f (wy) — f(w*))
Let us choose 1 — 8 =1L,

1

ELS (we)] = F(w*) < 8 (f(wp) = flw*)) + ;—f (k= w** = B [Jwnsa = w*P]) + 2002L2 (f () = f(w*))

E[f(n1)] — (') < (84 207 L7) (Flu) — 7)) + 2 (o w2 B [Jugn — )]
Let 051 = E[f (wpr1)] — f(w*) and Ay = E [||w,€+1 - w*ﬂ

= 1 < (B+20m°L) 61 + = [Ak — Apt1]

Summing from ¢ =0 to k — 1,

k—1 k—1 L k—1
> G < (B+200°L%) Z ity D 1A= M)
=0 i=0 i=0
k—1 - L
= Y b1 < (B+20m°L?) Z&l + 58
=0 1=0

k L
(B+20m*L?) 6o + LA,
— ; <
251— (1— B —2pn2L2)

i=1
Let wy = [Z;C:kl wi] . By Jensen’s inequality,
k
k
— E[f(wy)] ) < Z

(ﬁ +2pm2L?) 6o + £ Ay
(1-8-— 2pn2L2) k
(1 — 0L+ 20m2L?) [f(wo) — f(w*)] + & |lwo — w*||”
(nL —2pn>L?) k

(Since 1 — 8 =nL)
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o [f(wo) = F(w*)] + & flwo — w|®

L

8p

7(f(wo) — f(w")] +4pL |Jwo — w*|?
k

(7L/2) |lwo — w*|* + 4pL [|wo — w*||?
k

4(1 + p) [Jwo — w*||*

k

B.6 Proof for Proposition 1

Proof.
For the first part, we use the PL inequality which states the for all w,

2(f(w) = flw")] < — [V f(w)|

==

Combining this with the WGC gives us the desired result

For the converse, we use smoothness and the convexity of f(-). Specifically, for all points a, b,

1
fla) = £(0) 2 {f(b),a=b) + 57 [V f(a) = Vi)’
Substituting ¢ = w and b = w* and rearranging,
IVF@)I* < 2L [f(w) = f(w)]

Combining this with the SGC gives us the desired result.

B.7 Proof for Proposition 2

Proof.
E VA = - 3 IV iw)]? (22
=1

By Lipschitz continuity of V f;(w) and convexity,

1
2L;

filw) = fi(w*) > (Vfi(w"),w — w*) + =— |V fi(w) — V fi(w")|?
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For all i, V f;(w*) = V f(w*) = 0. Hence,

* 1 2
i) — fitw") 2 51 VA

= |IVfi(w)|* < 2Li [fi(w) = fiw")]

Using Equation 22,

VA < 3 |22 Liw) - fiw)]

< ZEmes S [fy(w) — fulw’)]

i=1

E; |V fi(w)|* < 2L [ (w) — f(w")] (23)

B.8 Proof for Lemma 1

Proof. Let a =y - x. For the squared-hinge loss, the strong growth condition is equivalent to
E[(1 - wTa)2] < pl[E[(1 ~ wTa)a] P

IE[(1 —wTa)sa]

WV

E[(1- wTa)JraTw*]

1
[ |

>1E[(1-w'a)4]

We thus need to upper bound E[(1 —w"a)2 ] by a constant ¢ times (E[(1 — wTa)+])2. We must have ¢ > 1 (as
a consequence of Jensen’s inequality). Then we have p = ¢/72. Next, we prove that if the distribution of a is
uniform over x values, then ¢ = k.

Consider a random variable A € R+ taking k values ay,...,a, with probabilities pi,...,p.. Then (EA)? =
>iPipjaiaj = >, aip; = ming p; Y-, aipi, O

B.9 Proof for Lemma 2

Proof. Let a =y - x.

Pla"w <0) <P((1—a'w)} >1)
<E(l-a'w)?
— P(a"w < 0) <Ef(w,a)

C Additional experimental results

In this section, we propose to use a line-search heuristic for both constant step-size SGD and its accelerated

variant. For SGD, we use the line-search proposed in SAG [31]: start with an initial estimate L = 1 and in

each iteration, we double the estimate when the condition fj (wk - %ka(wk)) < fr(wg) — ﬁ IV fi(wi)|)? is

not satisfied. We denote this variant as SGD(LS) and the corresponding variant that uses a 1/L step-size as
SGD(T). For the accelerated case, we use the same line-search procedure as above, but search for an appropriate
value of pL. We denote the accelerated variant with and without line-search as Acc-SGD(LS) and Acc-SGD(T)
respectively.

We make the following observations: (i) Accelerated SGD in conjunction with our line-search heuristic is stable
across datasets. (ii) Acc-SGD(LS) either matches or outperforms Acc-SGD(T). (iii) In some cases, SGD(LS)
can result in faster empirical convergence as compared to the accelerated variants. We plan to investigate better
line-search methods for both SGD [31] and Acc-SGD [21] in the future.
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Figure 3: Comparison of SGD and variants of accelerated SGD on a synthetic linearly separable dataset with

margin 7.
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Figure 4: Comparison of SGD and accelerated SGD for learning a linear classifier with RBF features on the (a)

CovType and (b) Protein datasets.



