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Abstract

Modern machine learning focuses on highly
expressive models that are able to fit or inter-
polate the data completely, resulting in zero
training loss. For such models, we show that
the stochastic gradients of common loss func-
tions satisfy a strong growth condition. Un-
der this condition, we prove that constant
step-size stochastic gradient descent (SGD)
with Nesterov acceleration matches the con-
vergence rate of the deterministic accelerated
method for both convex and strongly-convex
functions. We also show that this condition
implies that SGD can find a first-order sta-
tionary point as efficiently as full gradient de-
scent in non-convex settings. Under interpo-
lation, we further show that all smooth loss
functions with a finite-sum structure satisfy a
weaker growth condition. Given this weaker
condition, we prove that SGD with a con-
stant step-size attains the deterministic con-
vergence rate in both the strongly-convex and
convex settings. Under additional assump-
tions, the above results enable us to prove
an O(1/k?) mistake bound for k iterations of
a stochastic perceptron algorithm using the
squared-hinge loss. Finally, we validate our
theoretical findings with experiments on syn-
thetic and real datasets.

1 Introduction

Modern machine learning models are typically trained
with iterative stochastic first-order methods [9, 41, 16,
31, 14, 8]. Stochastic gradient descent (SGD) and
related methods such as Adagrad [9] or Adam [16]
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compute the gradient with respect to one or a mini-
batch of training examples in each iteration and take
a descent step using this gradient. Since these meth-
ods use only a small part of the data in each itera-
tion, they are the preferred way for training models
on large datasets. However, in order to converge to
the solution, these methods require the step-size to
decay to zero in terms of the number of iterations.
This implies that the gradient descent procedure takes
smaller steps as the training progresses. Consequently,
these methods result in slow sub-linear rates of con-
vergence. Specifically, if k is the number of iterations,
then SGD-like methods achieve a convergence rate of
O(1/k) and O(1/v/k) for strongly-convex and convex
functions respectively [23]. In practice, these methods
are augmented with some form of momentum or accel-
eration [27, 25] that results in faster empirical conver-
gence [37]. Recently, there has been some theoretical
analysis for the use of such acceleration in the stochas-
tic setting [7]. Other related work includes algorithms
specifically designed to achieve an accelerated rate of
convergence in the stochastic setting [1, 19, 10].

Another recent trend in the literature has been to
use variance-reduction techniques [31, 14, 8] that ex-
ploit the finite-sum structure of the loss function in
machine-learning applications. These methods do not
require the step-size to decay to zero and are able to
achieve the optimal rate of convergence. However,
they require additional bookkeeping [31, 8] or need
to compute the full gradient periodically [14], both of
which are difficult in the context of training complex
models on large datasets.

In this paper, we take further advantage of the opti-
mization properties specific to modern machine learn-
ing models. In particular, we make use of the fact
that models such as non-parametric regression or over-
parameterized deep neural networks are expressive
enough to fit or interpolate the training dataset com-
pletely [42, 22]. For an SGD-like algorithm, this im-
plies that the gradient with respect to each training ex-
ample converges to zero at the optimal solution. This
property of interpolation is also true for boosting [30]
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and for simple linear classifiers on separable data. For
example, the perceptron algorithm [29] was first shown
to converge to the optimal solution under a linear sep-
arability assumption on the data [26]. This assump-
tion implies that the linear perceptron is able to fit the
complete dataset without errors.

There has been some related work that takes advan-
tage of the interpolation property in order to obtain
faster rates of convergence for SGD [32, 22, 5]. Specif-
ically, Schmidt and Le Roux [32] assume a strong
growth condition on the stochastic gradients. This
condition relates the ¢ norms of the stochastic gra-
dients to that of the full gradient. Under this assump-
tion, they prove that constant step-size SGD can at-
tain the same convergence rates as full gradient descent
in both the strongly-convex and convex cases. Other
related work has used the strong growth condition to
prove convergence rates for incremental gradient meth-
ods [34, 38]. Ma et al. [22] show that under weaker
conditions, SGD with constant step-size results in lin-
ear convergence for strongly-convex functions. They
also investigate the effect of batch-size on the conver-
gence and theoretically justify the linear-scaling rule
used for training deep learning models in practice [12].
Recently, Cevher and Vu showed the linear conver-
gence of proximal stochastic gradient descent under a
weaker growth condition for restricted strongly con-
vex functions [5]. They also analyse the effect of an
additive error term on the convergence rate.

In contrast to the above mentioned work, we first show
that the strong growth condition (SGC) [32] implies
that SGD with a constant step-size and Nesterov mo-
mentum [25] achieves the accelerated convergence rate
of the deterministic setting for both strongly-convex
and convex functions (Section 3). Our result gives
some theoretical justification behind the empirical suc-
cess of using Nesterov acceleration with SGD [37]. Fur-
ther, in Section 4 we consider non-convex objectives
and prove under the SGC that constant step-size SGD
is able to find a first-order stationary point as effi-
ciently as deterministic gradient descent. To the best
of our knowledge, this is the first work to study accel-
erated and non-convex rates under the SGC.

After the release of the first version of this work, Liu
et al. [20] also considered minimizing strongly-convex
loss functions using a variant of Nesterov acceleration
assuming interpolation. In this setting they show ac-
celerated rates for the squared loss, and under addi-
tional assumptions give accelerated rates for general
strongly-convex functions. However, it is not clear if
these additional assumptions are satisfied by common
loss functions. Indeed, these additional assumptions
imply the SGC (see Section 6.1) so the result presented
in Section 3 is more widely-applicable. Similarly, the

work of Jain et al. [13] uses tail-averaging to obtain
accelerated rates but only for the special case of the
squared loss under interpolation. Furthermore, unlike
these works, we show accelerated rates for convex func-
tions (that are not strongly-convex) under the SGC.

Another work appearing after the release of the initial
version of this work is Bassily et al. [3], who consid-
ered minimizing non-convex functions satisfying the
Polyak-Lojasiewicz [28] (PL) inequality (a generaliza-
tion of strong-convexity) under the interpolation con-
dition. This is a much stronger assumption than we
make in Section 4 to analyze non-convex functions
(since it implies all local optima are global optima),
but under this condition they show that SGD can
achieve a linear convergence rate. However, the step-
size needed to achieve this rate is proportional to the
PL constant which is typically extremely small (and is
often is both unknown and difficult to estimate). By
exploiting the stronger SGC, in this version of the pa-
per we have added a result under the PL inequality
(Section 4) that achieves a faster rate by using a step-
size that depends only on the smoothness properties
of the functions.

In this work, we also relax the strong growth condition
to a more practical weak growth condition (WGC). In
Section 5, we prove that the weak growth condition
is sufficient to obtain the optimal convergence of con-
stant step-size SGD for smooth strongly-convex and
convex functions. To demonstrate the applicability of
our growth conditions in practice, we first show that
for models interpolating the data, the WGC is satis-
fied for all smooth and convex loss functions with a
finite-sum structure (Section 6.1). Furthermore, we
prove that functions satisfying the WGC and the PL
condition also satisfy the SGC. Under additional as-
sumptions, we show that it is also satisfied for the
squared-hinge loss. This result enables us to prove
an O(1/k?*) mistake bound for k iterations of an ac-
celerated stochastic perceptron algorithm using the
squared-hinge loss (Section 7). Finally, in Section 8,
we evaluate our claims with experiments on synthetic
and real datasets.

2 Background

In this section, we give the required background and
set up the necessary notation. Our aim is to minimize
a differentiable function f(w). Depending on the con-
text, this function can be strongly-convex, convex or
non-convex. We assume that we have access to noisy
gradients for the function f and use stochastic gradi-
ent descent (SGD) for k iterations in order to minimize
it. The SGD update rule in iteration k can be written
as: Wr+1 = wi— NV f(wg, zx). Here, w11 and wy, are
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the SGD iterates, zx is the gradient noise and 7 is the
step-size at iteration k. We assume that the gradients
V f(w, z) are unbiased, implying that for all w and z
that E, [V f(w,2)] = Vf(w).

While most of our results apply for general SGD
methods, a subset of our results rely on the func-
tion f(w) having a finite-sum structure meaning that
fw) = 23" fi(w). In the context of supervised
machine learning, given a training dataset of n points,
the term f;(w) corresponds to the loss function for the
point (z;,y;) when the model parameters are equal
to w. Here x; and y; refer to the feature vector
and label for point ¢ respectively. Common choices
of the loss function include the squared loss where
filw) = 3 (w'z; — y;)?, the hinge loss where f;(w) =
max(0,1 — y;w'x;) or the squared-hinge loss where
fi(w) = max (0,1 — y;w"z;)>. The finite sum setting
includes both simple models such as logistic regression
or least squares and more complex models like non-
parametric regression and deep neural networks.

In the finite-sum setting, SGD consists of choosing
a point and its corresponding loss function (typically
uniformly) at random and evaluating the gradient with
respect to that function. It then performs a gradient
descent step: wiy1 = wg — Nk V fi(wy) where fi(-) is
the random loss function selected at iteration k. The
unbiasedness property is automatically satisfied in this
case, i.e. E; [V fi(w)] = Vf(w) for all w. Note that in
this case, the random selection of points for computing
the gradient is the source of the noise zx. In order to
converge to the optimum, SGD requires the step-size
N to decrease with k; specifically at a rate of ﬁ for

convex functions and at a % rate for strongly-convex

functions. Decreasing the step-size with k results in
sub-linear rates of convergence for SGD.

In order to derive convergence rates, we need to make
additional assumptions about the function f [23]. Be-
yond differentiability, our results assume that the func-
tion f(-) satisfies some or all of the following common
assumptions. For all points w, v and for constants f*,
u, and L;

f(w) > f* (Bounded below)
fv) > f(w) +(Vf(w), w (Convexity)
)= f + o —wl®

1 Strong-convexity)

L 2
w —|—§||11—w||

(L Smoothness)

f(w),v—w)
(w) + (Vf(w),v — w)

(
fv) < flw) +(Vf(w),v —w)

Note that some of our results in Section 6 rely on the
finite-sum structure and we explicitly state when we
need this additional assumption.

In this paper, we consider the case where the model
is able to interpolate or fit the labelled training data
completely. This is true for expressive models such as
non-parametric regression and over-parametrized deep
neural networks. For common loss functions that are
lower-bounded by zero, interpolating the data results
in zero training loss. Interpolation also implies that
the gradient with respect to each point converges to
zero at the optimum. Formally, in the finite-sum set-
ting, if the function f(-) is minimized at w*, i.e., if
V f(w*) = 0, then for all functions f;(-), V fi(w*) = 0.

The strong growth condition (SGC) used connects the
rates at which the stochastic gradients shrink relative
to the full gradient. Formally, for any point w and the
noise random variable z, the function f satisfies the
strong growth condition with constant p if,

E. |V f(w,2)[I* < p |V f(w)|?. (1)
Equivalently, in the finite-sum setting,

Ei |V fi(w)|* < p ||V f(w)]|. (2)

For this inequality to hold, if Vf(w) = 0, then
Vfi(w) = 0 for all i. Thus, functions satisfying the
SGC necessarily satisfy the above interpolation prop-
erty. Schmidt and Le Roux’s work [32] derives optimal
convergence rates for constant step-size SGD under the
above condition for both convex and strongly-convex
functions. In the next section, we show that the SGC
implies the accelerated rate of convergence for constant
step-size SGD with Nesterov momentum.

3 SGD with Nesterov acceleration
under the SGC

We first describe constant step-size SGD with Nes-
terov acceleration. The algorithm consists of three
sequences (wy, Cx, vx) updated in each iteration [24].
Specifically, it consists of the following update rules:

Wet1 = G — NV [ (Ce» 21) (3)
Cr = agpvg + (1 — ag)wy (4)
V1 = Brvr + (1 = Br)CG — mwnVF(Cky2x). (5)

Here, 7 is the constant step-size for the SGD step and
gk, Bk, Vi are tunable parameters to be set according
to the properties of f.

In order to derive a convergence rate for the above al-
gorithm under the SGC, we first observe that a form
of the SGC is satisfied in the case of coordinate de-
scent [39]. In this case, we choose a coordinate (typi-
cally at random) and perform a gradient descent step
with respect to that coordinate. The notion of a coor-
dinate in this case is analogous to that of an individual
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loss function in the finite sum case. For coordinate de-
scent, a zero gradient at the optimal solution implies
that the partial derivative with respect to each coordi-
nate is also equal to zero. This is analogous to the SGC
in the finite-sum case, although we note the results in
this section do not require the finite-sum assumption.

We use this analogy formally in order to extend the
proof of Nesterov’s accelerated coordinate descent [24]
to derive convergence rates for the above algorithm
when using the SGC. This enables us to prove the
following theorems (with proofs in Appendices B.1.1
and B.1.3) in both the strongly-convex and convex set-
tings.
Theorem 1 (Strongly convex). Under L-smoothness
and p strong-convezity, if f satisfies the SGC with con-
stant p, then SGD with Nesterov acceleration with the
following choice of parameters,
A gy ]

VHEIP p
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_ ©n
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results in the following convergence rate:

Ef(wgs1) — f(w®)
k
< (1 - ,/pg‘L) [Fw0) = 7+ & vy — ]

Theorem 2 (Convex). Under L-smoothness and con-
vezity, if f satisfies the SGC with constant p, then
SGD with Nesterov acceleration with the following
choice of parameters,

sty i

Y = D)
ak+1 = Ye/NP
VKN 1
A = —— 5 =
Ve + ai K pL

results in the following convergence rate:

Ef(wpsr) — flw?) < 2

The above theorems show that constant step-size SGD
with Nesterov momentum achieves the accelerated

rate of convergence up to a p? factor for both strongly-
convex and convex functions.

In Appendix A, we consider the SGC with an extra ad-
ditive error term, resulting in the following condition:
E, |Vf(w,2)|* < p|Vf(w)]> + o2 We analyse the
rate of convergence of the above algorithm under this
modified condition and obtain a similar dependence on
o as in Cohen et al. [7].

4 SGD for non-convex functions
satisfying the SGC

In this section, we show that the SGC results in an
improvement over the O (1 / \/ﬁ) rate for SGD in the

non-convex setting [11]. In particular, we show that
under the strong growth condition, constant step-size
SGD is able to find a first-order stationary point as effi-
ciently as deterministic gradient descent. We prove the
following theorem (with the proof in Appendix B.2),

Theorem 3 (Non-Convex). Under L-smoothness, if f
satisfies SGC with constant p, then SGD with a con-
stant step-size 1 = pi attains the following conver-

L
gence rate:

min_ E [\\Vf(wi)\ﬂ < <2pkL> [f (wo) — f*].

=0,1,...

The above theorem shows that under the SGC, SGD
with a constant step-size can attain the optimal
O(1/k) rate for non-convex functions. To the best
of our knowledge, this is the first result for non-
convex functions under interpolation-like conditions.
Under these conditions, constant step-size SGD has a
better convergence rate than algorithms which have
recently been proposed to improve on SGD [2, 4].
Note that the above theorem applies to neural net-
works with a sigmoid activation function under the as-
sumption that the strong-growth condition is satisfied.
Hence, our results also provide some theoretical justi-
fication for the effectiveness of SGD for non-convex
over-parameterized models like deep neural networks.

Under the additional assumption that the function sat-
isfies the Polyak- Lojasiewicz condition [28] (a gener-
alization of strong-convexity), we show that SGD can
obtain linear convergence. Specifically, we prove the
following theorem (with the proof in Appendix B.3),

Theorem 4 (Non-Convex + PL). Under L-
smoothness, if [ satisfies SGC with constant p and the
Polyak- Lojasiewicz inequality with constant p, then

SGD with a constant step-size n = ‘%L attains the fol-
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lowing convergence rate:

k
EVWHO<N<<L-M>wa—fL

Note that the PL condition or a related notion of
restricted strong-convexity (RSI) [15] is satisfied by
numerous non-convex optimization problems of inter-
est. These include neural networks [18, 17, 35], matrix
completion [36] and phase retrieval [6]. Under the ad-
ditional SGC assumption, the above theorem implies
fast rates of convergence for SGD on these problems.
In contrast, Bassily et al. [3] do not assume the SGC

k
and achieve a rate of (1 — %z) using a much smaller

step-size 1 = £z.

5 Weak growth condition

In this section, we relax the strong growth condition
to a more practical condition which we refer to as the
weak growth condition (WGC). Formally, if the func-
tion f(-) is L-smooth and has a minima at w*, then it
satisfies the WGC with constant p, if for all points w
and noise random variable z,

E. |V f(w,2)|* < 2pL[f(w) = f(w")].  (6)

Equivalently, in the finite-sum setting,

E; |V fi(w)]|* < 20L[f(w) — f(w")]. (7

In the above condition, notice that if w = w™*, then
V fi(w*) = 0 for all points ¢. Thus, the WGC implies
the interpolation property explained in Section 2.

5.1 Relation between WGC and SGC

In this section, we relate the two growth conditions.
We first prove that SGC implies WGC with the same p
without any additional assumptions, formally showing
that the WGC is indeed weaker than the corresponding
SGC. For the converse, a function satisfying the WGC
satisfies the SGC with a worse constant if it also satis-
fies the Polyak- Lojasiewicz (PL) inequality [28]. The
above relations are captured by the following proposi-
tion, proved in Appendix B.6

Proposition 1. If f(.) is L-smooth, satisfies the
WGC with constant p and the PL inequality with con-
stant u, then it satisfies the SGC with constant %.

Conversely, if f(-) is L-smooth, conver and satisfies
the SGC with constant p, then it also satisfies the
WGC with the same constant p.

5.2 SGD under the weak growth condition

Using the WGC, we obtain the following convergence
rates for SGD with a constant step-size.

Theorem 5 (Strongly-convex). Under L-smoothness

and p strong-convexity, if f satisfies the WGC with

constant p, then SGD with a constant step-size n = -

pL
achieves the following rate:

k

H 2
E —wP< (1 £ —w*||”.
|wﬂlzun_< li)H% w|

Theorem 6 (Convex). Under L-smoothness and con-

vexity, if f satisfies the WGC with constant p, then
SGD with a constant step-size n = 4;)% and iterate

averaging achieves the following rate:

® (|2
E[f(wg)] — f(w*) < 4L(1+,0)}|71w0 —w*|| .

s
Here, wy, = 7[2*]61 v

iterations.

s the averaged iterate after k

The proofs for Theorems 5 and 6 are deferred to Ap-
pendices B.4 and B.5 respectively. In these cases, the
WGC is sufficient to show that constant step-size SGD
can attain the deterministic rates up to a factor of p.
Since this condition is weaker than the correspond-
ing strong growth condition, our results subsume the
SGC results [32]. Note that an alternative way to ob-
tain the result in Theorem 5 would be to observe that
the WGC and strong convexity imply the SGC (with
a constant p,TL) (Proposition 1) and then use the result
by Schmidt et al. [32]. This would result in an addi-
tional dependence on p% which is worse than the rate
in Theorem 5.

In the next section, we characterize the functions sat-
isfying the growth conditions in practice.

6 Growth conditions in practice

In this section, we give examples of functions that sat-
isfy the weak and strong growth conditions. In Sec-
tion 6.1, we first show that for models interpolating
the data, the WGC is satisfied by all smooth func-
tions with a finite-sum structure. In section 6.2, we
show that the SGC is satisfied by the squared-hinge
loss under additional assumptions.

6.1 Functions satisfying WGC

To characterize the functions satisfying the WGC, we
first prove the following proposition (with the proof in
Appendix B.7):
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Proposition 2. If the function f(-) is convex and has
a finite-sum structure for a model that interpolates the
data and Ly 18 the mazximum smoothness constant
amongst the functions f;(+), then for all w,

Ei |V fi(w)|* < 2Lonaa [f(w) = f(w)]. (8)

Comparing the above equation to Equation 7, we see
that any smooth finite-sum problem under interpola-
tion satisfies the WGC with p = % The WGC is
thus satisfied by common loss functions such as the
squared and squared-hinge loss. For these loss func-
tions, if L; = L for all i, then Theorem 5 implies
that SGD with n = % results in linear convergence for
strongly-convex functions. This matches the recently
proved result of Ma et al. [22], whereas Theorem 6
allows us to generalize their result beyond strongly-
convex functions.

6.2 Functions satisfying SGC

We now show that under additional assumptions on
the data, the squared-hinge loss also satisfies the SGC.
We first assume that the data is linearly separable
with a margin equal to 7, implying that for all z,
T = maX|,|—1 infzes w'x. Here, 8 is the support of
the distribution of the features . Note that the above
assumption implies the existence of a classifier w* such
that ||w*|| = 1. In addition to this, we assume that
the features have a finite support, meaning that the
set 8 is finite and has a cardinality equal to c¢. Under
these assumptions, we prove the following lemma in
Appendix B.8,

Lemma 1. For linearly separable data with margin T
and a finite support of size c, the squared-hinge loss
satisfies the SGC with the constant p = 5%

T2

In the next section, we use the above lemma to prove a
mistake bound for the perceptron algorithm using the
squared-hinge loss.

7 Implication for Faster Perceptron

In this section, we use the strong growth property of
the squared-hinge function in order to prove a bound
on the number of mistakes made by the perceptron
algorithm [29] using a squared-hinge loss. The per-
ceptron algorithm is used for training a linear clas-
sifier for binary classification and is guaranteed to
converge for linearly separable data [26]. It can be
considered as stochastic gradient descent on the loss
fi(w) = max{0, y;z] w}.

The common way to characterize the performance of
a perceptron is by bounding the number of mistakes

(in the binary classification setting) after k iterations
of the algorithm. In other words, we care about the
quantity P(yx "wy, > 0). Assuming linear separability
of the data and that ||z|| = 1 for all points (z,y), the
perceptron achieves a mistake bound of O (Z5) [26].

In this paper, we consider a modified perceptron al-
gorithm using the squared-hinge function as the loss.
Note that since we assume the data to be linearly sep-
arable, a linear classifier is able to fit all the training
data. Since the squared-hinge loss function is smooth,
the conditions of Proposition 2 are satisfied, which
implies that it satisfies the WGC with p = L*’”‘—L‘”
Also observe that since we assume that ||z|| = 1,
Lyar = L = 1. Using these facts with Theorem 6 and
assuming that we start the optimization with wg = 0,
we obtain the following convergence rate using SGD
with n = 1/4,

8
Elf(wer1)] < —7-
To see this, recall that ||w*|| = L and the loss is equal

to zero at the optima, implying that f(w*) = 0.

The above result gives us a bound on the training
loss. We use the following lemma (proved using the
Markov inequality in Appendix B.9) to relate the mis-
take bound to the training loss.

Lemma 2. If f(w,z,y) represents the loss on the
point (x,y), then

Combining the above results, we obtain a mistake
bound of O (Tle) when using the squared-hinge loss
on linearly separable data. We thus recover the stan-
dard results for the stochastic perceptron.

Note that for a finite amount of data (when the ex-
pectation is with respect to a discrete distribution),
if we use batch accelerated gradient descent (which is
not one of the stochastic gradient algorithms studied
in this paper, and for which no growth condition is
needed), we obtain a mistake bound that decreases as
1/k*. This improves on existing mistake bounds that
scale as 1/k [33, 40]. Note that both sets of algorithms
have the same dependence on the margin 7, but this
deterministic accelerated method would require evalu-
ating n gradients on each iteration.

From Lemma B.9, we know that the squared-hinge
loss satisfies the SGC with p = 5. Under the same
conditions as above, this lemma along with the result
of Theorem 2 gives us the following bound:

2¢2

Ef(wk+1) < 62
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Using the result from Lemma 2, this results in a mis-
take bound of the order O (#) while only requir-
ing one gradient per iteration. Hence, the use of ac-
celeration leads to an improved novel dependence of
O(1/k?), but requires the additional assumptions of
Lemma B.9 and has a worse dependence on the mar-
gin 7.

8 Experiments

In this section, we empirically validate our theoret-
ical results. For the first set of experiments (Fig-
ures 1(a)-1(d)), we generate a synthetic binary clas-
sification dataset with n = 8000 and the dimension
d = 100. We ensure that the data is linearly sep-
arable with a margin 7, thus satisfying the interpo-
lation property for training a linear classifier. We
seek to minimize the finite-sum squared-hinge loss,
fw) = > max (0,1 — yzTw)®. In Figure 1, we
vary the margin 7 and plot the logarithm of the loss
with the number of effective passes (one pass is equal
to n iterations of SGD) over the data. In all of our
experiments, we estimate the value of the smoothness
parameter L as the maximum eigenvalue of the Gram
matrix X7 X.

We evaluate the performance of constant step-size
SGD with and without acceleration.  Since the
squared-hinge loss satisfies the WGC with p = Lm%
(Proposition 2), we use SGD with a constant step-size
7 = 1/Lmas* (denoted as SGD in the plots). For us-
ing Nesterov acceleration, we experimented with the
dependence of the margin 7 on the constant p in the
SGC. We found that setting p = 1/7 results in con-
sistently stable but fast convergence across different
choices of 7. We thus use a step-size n = 7/L and set
the tunable parameters in the update Equations 3-5
as specified by Theorem 2. We denote this variant of
accelerated SGD as Acc-SGD in the subsequent plots.
In Appendix C, we propose a line-search heuristic to
dynamically estimate the value of p.

In each of the Figures 1(a)-1(d), we make the following
observations: (i) SGD results in reasonably slow con-
vergence. This observation is in line with other SGD
methods using 1/L as the step-size [31]. (ii) Acc-SGD
with n = 7/L is consistently stable and as suggested
by the theory, it results in faster convergence as com-
pared to using SGD. (iii) For larger values of 7 (Fig-
ures 1(a)- 1(b)), the training loss becomes equal to
zero, verifying the interpolation property.

The next set of experiments (Figure 2) considers bi-
Note that using 7 = 1/Lmas lead to consistently better

results as compared to using 7 = 1/4Lmae as suggested by
Theorem 6.

nary classification on the CovType? and Protein®
datasets. For this, we train a linear classifer us-
ing the radial basis (non-parametric) features. Non-
parametric regression models of this form are capable
of interpolating the data [22] and thus satisfy our as-
sumptions. We subsample n = 8000 random points
from the datasets and use the squared-hinge loss as
above. In this case, we perform a grid-search to obtain
a good estimate of p. We choose p = 1 for the Cov-
Type dataset and equal to 0.1 for the Protein dataset.

From Figures 2(a) and 2(b), we make the following
observations: (i) In Figure 2(a), both variants have
similar performance. (ii) In Figure 2(b), the Acc-SGD
leads to considerably faster convergence as compared
to SGD. These experiments show that in cases where
the interpolation property is satisfied, both SGD and
accelerated SGD with a constant step-size can result
in good empirical performance.

9 Conclusion

In this paper, we showed that under interpolation,
the stochastic gradients of common loss functions sat-
isfy specific growth conditions. Under these condi-
tions, we proved that it is possible for constant step-
size SGD (with and without Nesterov acceleration) to
achieve the convergence rates of the corresponding de-
terministic settings. These are the first results achiev-
ing optimal rates in the accelerated and non-convex
settings under interpolation-like conditions. We used
these results to demonstrate the fast convergence of
the stochastic perceptron algorithm employing the
squared-hinge loss. We showed that both SGD and
accelerated SGD with a constant step-size can lead
to good empirical performance when the interpolation
property is satisfied. As opposed to determining the
step-size and the schedule for annealing it for current
SGD-like methods, our results imply that under in-
terpolation, we only need to automatically determine
the constant step-size for SGD. In the future, we hope
to develop line-search techniques for automatically de-
termining this step-size for both the accelerated and
non-accelerated variants.

2http://osmot.cs.cornell.edu/kddcup

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets
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Figure 1: Comparison of SGD and variants of accelerated SGD on a synthetic linearly separable dataset with
margin 7. Accelerated SGD with n = 7/L leads to faster convergence as compared to SGD with n = 1/L.
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Figure 2: Comparison of SGD and accelerated SGD for learning a linear classifier with RBF features on the (a)
CovType and (b) Protein datasets. Accelerated SGD leads to better performance as compared to SGD with

n=1/L.
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