
Proofs of Theoretical Results for Empirical Risk Minimization and
Stochastic Gradient Descent for Relational Data

A Overview of Proofs

The appendix is devoted to proving the theoretical results of the paper. These results are obtained subject to the
assumption that the data is collected by p-sampling. This assumption is natural in the sense that it provides
a reasonable middle ground between a realistic data collection assumption—p-sampling can result in complex
models capturing many important graph phenomena [3, 6, 1]—and mathematical tractability—we are able to
establish precise guarantees.

The appendix is organized as follows. We begin by recalling the connection between p-sampling and graphex
processes in supplement B.1; this affords a useful explicit representation of the data generating process. In
supplement B.2, we recall the method of exchangeable pairs, a technical tool required for our convergence proofs.
Next, in supplement B.3, we collect the necessary notation and definitions. Empirical risk convergence results
for p-sampling are then proved in supplement C and results for the random-walk in supplement D. Convergence
results for the global parameters are established in supplement E. Finally, in supplement F, we show that learned
embeddings are stable in sense that they are not changed much by collecting a small amount of additional data.

B Preliminaries

B.1 Graphex processes

Recall the setup for the theoretical results: we consider a very large population network Pt with t edges, and we
study the graph-valued stochastic process (Gt

n)n∈[0,
√
t) given by taking each Gt

n to be an n/
√
t-sample from Pt

and requiring these samples to cohere in the obvious way. We idealize the population size as infinite by taking
the limit t → ∞. The limiting stochastic process (Gn)n∈R+ is well defined, and is called a graphex process [2].

Graphex processes have a convenient explicit representation in terms of (generalized) graphons [6, 1, 3].

Definition B.1. A graphon is an integrable function W : R2
+ → [0, 1].

Remark B.2. This notion of graphon is somewhat more restricted than graphons (or graphexes) considered in full
generality, but it suffices for our purposes and avoids some technical details.

We now describe the generative model for a graphex process with graphon W . Informally, a graph is generated
by (i) sampling a collection of vertices {νi} each with latent features xi, and (ii) randomly connecting each pair
of vertices with probability dependent on the latent features. Let

Π = {ηi}i∈N = {(ν(ηi), x(ηi))}i∈N

be a Poisson (point) process on R+ × R+ with intensity Λ⊗ Λ, where Λ is the Lebesgue measure. Each atom of
the point process is a candidate vertex of the sampled graph; the {νi} are interpreted as (real-valued) labels of
the vertices, and the {xi} as latent features that explain the graph structure. Each pair of points (ηi, ηj) with
i ≤ j is then connected independently according to

1[(ηi, ηj) connected] ind∼ Bern(W (xi, xj)).

This procedure generates an infinite graph. To produce a finite sample of size n, we restrict to the collection of
edges Γn = {(ηi, ηj) : ηi, ηj ≤ n}. That is, we report the subgraph induced by restricting to vertices with label
less than n, and removing all vertices that do not connect to any edges in the subgraph. This last step is critical;
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in general there are an infinite number of points of the Poisson process such that ηi < n, but only a finite number
of them will connect to any edge in the induced subgraph.

Modeling Gn as collected by p-sampling is essentially equivalent to positing that Gn is the graph structure of
Γn generated by some graphon W . Strictly speaking, the p-sampling model induces a slightly more general
generative model that allows for both isolated edges that never interact with the main graph structure, and
for infinite star structures; see [2]. Throughout the appendix, we ignore this complication and assume that the
dataset graph is generated by some graphon. It is straightforward but notationally cumbersome to extend our
results to p-sampling in full generality.

B.2 Technical Background: Exchangeable Pairs

We will need to bound the deviation of the (normalized) degree of a vertex from its expectation. To that end, we
briefly recall the method of exchangeable pairs; see [4] for details.

Definition B.3. A pair of real random variables (X,X �) is said to be exchangeable if

(X,X �)
d
= (X �, X).

Let f : R → R and F : R2 → R be measurable function such that:

E(F (X,X �)|X)
a.s
= f(X), and F(X,X�) = −F(X�,X).

Let
v(X) � 1

2
E
��

f(X)− f(X �)
�
F (X,X �)

���X
�
,

and suppose that |v(X)|
a.s
≤ C for some C ∈ R. Then

∀x > 0, P (|f(X)− E(f(X))| ≥ x) ≤ 2e−
x2

2C .

Further, for all p > 1 and x > 0 it holds that:

P (|f(X)− E(f(X))| > x) ≤ (2p− 1)p�v(X)|�pp
xp

.

B.3 Notation

For convenient reference, we include a glossary of important notation.

First, notation to refer to important graph properties:

• Π = {ηi = (ν(ηi), x(ηi))} is the latent Poisson process that defines the graphex process in supplement B.1.
The labels are ν and the latent variables are x.

• Πn � Π ∩ [0, n]× R+ is the restriction of the Poisson process to atoms with labels in [0, n].

• To build the graph from the point of process Πn we need to introduce a process of independent uniform
variables. Let

UΠ � (Uηi,ηj )ηi,ηj∈Π

be such that UΠ|Π is an independent process where Uη1,η2
| Π iid∼ Uni(0, 1)

• Γn ⊂ R2
+ is the (random) edge set of the graphex process at size n.

• V (Γn) ⊂ R+ is the set of vertices of Γn.

• Γ̄n = {(ηi, ηj) : ηi, ηj ∈ V (Γn) and (ηi, ηj) /∈ Γn} is all pairs of points in Γn that are not connected by an
edge.
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• The number of edges in the graph is En = |Γn|
• The neighbors of η in Γn are

Nn(η) � {η� : (η, η�) ∈ P1(Γn)}

• For all k, the set of paths of length k in Γn is

Pk(Γn) � {(ηi)i≤k+1 ∈ V (Γn)
k+1 : (ηi, ηi+1) ∈ Γn ∀i ≤ k}.

• The degree of ν in Γn is dn(η).

• Asymptotically, the number of edges of a graphex process scales as n2 [1]. Let E ∈ R+ be the proportionality
constant

E � lim
n→∞

En

n2
.

Next, we introduce notation relating to model parameters. Treating the embedding parameters requires some
care. The collection of vertices of the graph is a random quantity, and so the embedding parameters must also be
modeled as random. For graphex processes, this means the embedding parameters depend on the latent Poisson
process used in the generative model. To phrase a theoretical result, it is necessary to assume something about
the structure of the dependence. The choice we make here is: the embedding parameters are taken to be markings
of the Poisson process Π. In words, the embedding parameter of a vertex may depend on the (possibly latent)
properties of that vertex, but the embeddings are independent of everything else.

• The collection of all possible parameters is:

ΩΠ
θ � {(λη, γ)η∈Π : λη ∈ Ωθ ∀η ∈ Π and γ ∈ Ωγ}.

Note that we attach a copy of the global parameter to each vertex for mathematical convenience.

• For all θ̄ ∈ ΩΠ
θ , let λ(θ̄) denote the projection on ΩΠ

λ and let γ(θ̄) denote the projection on Ωγ .

• The following concepts and notations are needed to build a marking of the Poisson process: Let m(·, ·) be a
distributional kernel on R+ × Ωθ. We generate the marks according to a distribution QΠ

θ on ΩΠ
θ , conditional

on Π, such that if θ̄|Π ∼ QΠ
θ then:

– (θ̄η)η∈Π is an independent process
– θ̄η|Π ∼ m(x(η), ·) for all η ∈ Π

• Let Π̄n(θ) � (Πn,U|Πn , θ|n) the augmented object that carries information about both the graph structure
(Πn,U|Πn) and the model parameters θ.

C Basic asymptotics for p-sampling

We begin by establishing the result for p-sampling, with p = k/
√
n and the non-edges chosen by taking the

induced subgraph. This is the simplest case, and is useful for the introduction of ideas and notation. We consider
more general approaches to negative sampling in the next section, where it is treated in tandem with random walk
sampling. The same arguments can be used to extend p-sampling to allow for, e.g., unigram negative sampling
used in our experiments.

For all θ̄ ∈ ΩΠ
θ , and all Γ�

k ⊂ Γ, let L(Γ�
k, θ̄) denote the loss on Γ�

k where θ̄ is restricted to the embeddings (and
global parameters) associated with Γ�

k.

Theorem C.1. Let θ̄ a random variable taking value in ΩΠ
θ such that θ̄ |Π ∼ QΠ

θ , for a certain kernel m, then
there is some constant cpsm ∈ R+ such that if �L�∞ < ∞ then

R̂k(Γn, θ̄) → cpsm

both a.s. and in L1, as n → ∞.
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Moreover there is some constant cps∗ ∈ R+ such that

min
θ

R̂k(Γn, θ) → cps∗

both a.s. and in L1, as n → ∞.

Proof. We will first prove the first statement. Let θ̄|Π ∼ QΠ
θ , let Γ(θ̄) be the edge set of Π̄(θ̄), and let Γn(θ̄) be

the partially labeled graph obtained from Γ(θ̄) by forgetting all labels in [0, n) (but keeping larger labels and the
embeddings θ). Let Fn(θ̄) be the σ-field generated by Γn(θ̄). The critical observation is

R̂k(Γn, θ̄) = E[L(Γk, θ̄) | Fn(θ̄)]. (8)

The reason is that choosing a graph by k/n-sampling is equivalent uniformly relabeling the vertices in [0, n) and
restricting to labels less than k; averaging over this random relabeling operation is precisely the expectation on
the righthand side.

By the reverse martingale convergence theorem we get that:

R̂k(Γn, θ̄)
a.s.,L1−−−−−→ E[L(Γk, θ̄) | F∞(θ̄)],

but as F∞(θ̄) is a trivial sigma-algebra we get the desired result.

We will now prove the second statement. Let Γn be the partially labeled graph obtained from Γ by forgetting all
labels in [0, n) and let Fn be the σ-field generated by Γn. Further, we denote the set of embeddings of the graph
Γm by:

ΩΓm

θ � {(λV,γ)V∈Γm : ∀V ∈ V (Γm) λV ∈ Ωλ, γ ∈ Ωγ}.

We are now ready to state the proof. Let m ≤ n, and observe that:

E[ min
θ∈ΩΓn

θ

R̂k(Γn, θ) | Fm] ≤ min
θ∈ΩΓm

θ

E[L(Γk, θ) | Fm] (9)

= min
θ∈ΩΓm

θ

R̂k(Γn, θ). (10)

Thus, (minθ∈ΩΓn

θ
R̂k(Γn, θ))n∈R+

is a supermartingale with respect to the filtration (Fn)n∈R+
. Moreover, by

assumption, the loss is bounded and thus so also is the empirical risk. Supermartingale convergence then establishes
that minθ∈ΩΓn

θ
R̂k(Γn, θ)) converges almost surely and in L1 to some random variable that is measureable with

respect to F∞. The proof is completed by the fact that F∞ is trivial.

D Basic asymptotics for random-walk sampling

In this section we establish the convergence of the relational empirical risk defined by the random walk. The
argument proceeds as follows: We first recast the subsampling algorithm as a random probability measure,
measurable with respect to the dataset graph Γn. Producing a graph according to the sampling algorithm
is the same as drawing a graph according to the random measure. Establishing that the relational empirical
risk converges then amounts to establishing that expectations with respect to this random measure converge;
this is the content of Theorem D.8. To establish this result, we show in Lemma D.6 that sampling from the
random-walk random measure is asymptotically equivalent to a simpler sampling procedure that depends only on
the properties of the graphex process and not on the details of the dataset. We allow for very general negative
sampling distributions in this result; we show that how to specialize to the important case of (a power of) the
unigram distribution in Lemma D.7.

D.1 Random-walk Notation

We begin with a formal description of the subsampling procedure that defines the relational empirical risk. We
will work with random subset of the Poisson process Π; these translate to random subgraphs of Γ in the obvious
way. Namely, if the sampler selects ηi = (νi, xi) in the Poisson process, then it selects ηi in Γ.
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Sampling follows a two stage procedure: we choose a random walk, and then augment this random walk with
additional vertices—this is the negative-sampling step. The following introduces much of the additional notation
we require for this section.

Definition D.1 (Random-walk sampler). Let µn be a (random) probability measure over V (Γn). Let H =
(ηi)i≤M = (ν(ηi),λ(ηi))i≤M be a sequence of vertices sampled according to:

1. (random-walk) η1 ∼ dn(η1)
2En

and let ηi|ηi−1 ∼ unif(Nn(ηi−1)) for i ∈ (2, . . . , r + 1).

2. (augmentation) ηr+2:M be a sequence of additional vertices sampled from µn independently from each other
and also from (η1, . . . , ηr+1).

Let GH be the vertex induced subgraph of Γn. Let Pn = P(GH ∈ · | Π̄n(θ̄)) be the random probability distribution
over subgraphs induced by this sampling scheme.

With this notation in hand, We rewrite the loss function and the risk in a mathematically convenient form

Definition D.2 (Loss and risk). The loss on a subsample is

L(GH , θ̄) ∈ [0, 1],

where we implicity restrict to the embeddings (and global parameters) associated with vertices in GH . The
empirical risk is

EPn [L(GH , θ̄)|Π̄n(θ̄)].

Remark D.3. Note that the subgraphs produced by the sampling algorithm explicitly include all edges and
non-edges of the graph. However, the loss may (and generally will) depend on only a subset of the pairs. In
this fashion, we allow for the practically necessary division between negative and positive examples. Skipgram
augmentation can be handled with the same strategy.

We impose a technical condition on the distribution that the additional vertices are drawn from. Intuitively, the
condition is that the distribution is not too sensitive to details of the dataset in the large data limit.

Definition D.4 (Augmentation distribution). We say µn is an asymptotically exchangeable augmentation
distribution if is there is a µ such that

• There is a deterministic function f such that µ(η) = f(x(η))

• �µn(·)− µ(·)I(·∈Γn)
n Zn

�TV
p−→ 0, where Zn � 1

n

�
η∈Πn

µ(η).

Lemma D.7 establishes that the unigram distribution respects these conditions.

D.2 Technical lemmas

We begin with some technical inequalities controlling sums over the latent Poisson process. To interpret the
theorem, note that the degree of a vertex with latent property y is given by fn(y,Π) in the theorem statement.

Lemma D.5. Let (Ux(η))η∈Π be such that (Ux(η))η∈Π|Π is distributed as a process of independent uniforms in
[0, 1] and let

fn(y,Π) �
�

η∈Πn

I(Ux(η) ≤ W (y, x)),

for all y ∈ R+. Then the following hold:

1. ∀y ∈ R+ such that W (y, ·) ≥ n−1+ �
4 , there are p,K > 0 such that ∀β > 0,

P(
�� fn(y,Π)

nW (y, ·) − 1
�� ≥ β) ≤ K

n3βp
.
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2. ∀p > 0, ∃Kp such that ∀β > 0

P(
��fn(y,Π))

n
−W (y, ·)

�� ≥ β) ≤ Kp

npβ2p

and

P(
�� En

n2E − 1
�� ≥ β) ≤ Kp

npβ2p
.

3. ∃K ∈ R+ such that ∀y ∈ R+ such that W (y, ·) ≤ n−1+ �
4 then P(fn(Π, y) ≥ n

�
2 ) ≤ K

n3 .

Proof. We will first write the proof of the first statement, which is harder. We then highlight the differences in
the other cases. We use the Stein exchangeable pair method, recalled in supplement B.2.

Let F : R2 → R be such that
∀x, y F (x, y) = [x− y].

Let J̄ ∼ unif({0, n− 1}) and let
Π� = T[J̄,J̄+1],[n,n+1] ·Πν ×Πx,

where T[J̄,J̄+1],[n,n+1] is the permutation of [J̄ , J̄ + 1] and [n, n+ 1] and

T[J̄,J̄+1],[n,n+1] ·Πν ×Πx � {(T[J̄,J̄+1],[n,n+1](ν), x), ∀(ν, x) ∈ Π}

Then we can check the following:

• As Π ∩ [0, n] \ [j̄, j̄ + 1]× R+ = Π� ∩ [0, n] \ [j̄, j̄ + 1]× R+ we obtain that

E(
fn(y,Π)

W (y, ·) − fn(y,Π
�)

W (y, ·)
��Πn)

(a)
=

1

nW (y, ·) [
n−1�

j=0

�

Πj+1\Πj

I(Ux(η) ≤ W (y, x))− E(I(Ux(η) ≤ W (y, x)))]

(b)
=

fn(y,Π)

nW (y, ·) − 1

where (a) is obtained by complete independence of Π and where to get (b) we use the fact that (see [6])
�

(ν,x)∈Πj+1\Πj

I(Ux(η) ≤ W (y, x)) ∼ Poi(W (y, ·))

• Moreover, we can very similarly see that:

��� 1

2n
E([

fn(y,Π)

W (y, ·) − fn(y,Π
�)

W (y, ·) ]2
��Πn)

���
p

≤ 1

n2W (y, ·)2
���

n−1�

j=0

�
[

�

(ν,x)∈Πj+1\Πj

I(Ux(η) ≤ W (y, x))]2 + 2W (y, ·)
����

p

≤ 1

n2W (y, ·)2
n−1�

j=0

��[
�

(ν,x)∈Πj+1\Πj

I(Ux(η) ≤ W (y, x))]2�p + 2W (y, ·)

≤ C

nW (y, ·) ,

where C is a constant that does not depend on n or y.
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Therefore using the exchangeable pair method presented earlier and setting p ≥ 12
� for all y such that W (y, ·) ≥

n
�
4−1 we get that there is K,p such that for all � > 0

P (|
�

(ν,x)∈Πn
I(Ux(η) ≤ W (y, x))

W (y, ·) − 1| ≥ β) ≤ K

n3βp
,

QED.

For the second statement, instead of fn(y,Π)
W (y,·) we are interested in fn(y,Π), which is easier to handle. Indeed, using

the same exchangeable pair (Π,Π�) we get that:

• As Π ∩ [0, n] \ [j̄, j̄ + 1]× R+ = Π� ∩ [0, n] \ [j̄, j̄ + 1]× R+ we obtain that

E(fn(y,Π)− fn(y,Π
�)
��Πn)

=
1

n
fn(y,Π)−W (y, ·).

• Moreover we can very similarly see that:
��� 1

2n
E([fn(y,Π)− fn(y,Π

�)]2
��Πn)

���
p

≤ 1

n2

n−1�

j=0

��[
�

(ν,x)∈Πj+1\Πj

I(Ux(η) ≤ W (y, x))]2�p + 2W (y, ·)

≤ C

n
,

where C is a constant that does not depend on n or y. Therefore we get the desired result QED.

A very similar roadmap can be followed for En.

The last statement is a simple consequence of the preceding results. Indeed, for all y ∈ R,

P (W (y) ≤ n−1+ �
4 , fn(Π, y) ≥ n

�
2 ) ≤ P (|fn(Π, y)

n
−W (y, ·)| ≥ n− �

4 ) ≤
K 3

1+ �
4

n3
.

With this in hand, we establish the asymptotic equivalence of random-walk sampling and a sampling scheme that
does not depend on the details of the dataset. This is the main component of the proof. Recall the notation
introduced in supplement D.1.

Lemma D.6. Suppose that there is � ∈ (0, 1) such that the graphon W verifies

W (x, ·) = O(x−1−�).

Suppose further that the augmented sampling distributions (µn)n satisfy the conditions of Definition D.4. Then,
writing

Pn(H) � I(η1:r+1 ∈ Pr(Πn))

�M
l=r+2 µn(ηl)

2Nn
e

�r
i=2 dn(ηi)

and

P̃n(H) � I(η1:r+1 ∈ Pr(Πn))

�M
l=r+2 µ(ηl)

2nME �r
i=2 W (x(ηi), ·)

,

it holds that

sup
θ̄∈ΩΠ

θ

���EPn

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃n

�
L(GH , θ̄)|Π̄n(θ̄)

���� = op(1).
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Proof. We can first see by the triangle inequality that if we write the following two measures:

P ∗
n(H) � I(η1:r+1 ∈ Pr(Πn))

�M
l=r+2 µ(ηl)

2Nn
e n

M−(r+1)
�r

i=2 dn(ηi)

and

P̃ ∗
n(H) � I(η1:r+1 ∈ Pr(Πn))

�r
i=2 I(W (x(ηi), ·) ≥ n−1+ �

4 )
�M

l=r+2 µ(ηl)

2nME �r
i=2 W (x(ηi), ·)

Then ∀β > 0:

P
�

sup
θ̄∈ΩΠ

θ

���EPn

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃n

�
L(GH , θ̄)|Π̄n(θ̄)

���� > β)

≤ P
�

sup
θ̄∈ΩΠ

θ

���EPn

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP∗

n

�
L(GH , θ̄)|Π̄n(θ̄)

���� > β

3
)

+ P
�

sup
θ̄∈ΩΠ

θ

���EP∗
n

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃∗

n

�
L(GH , θ̄)|Π̄n(θ̄)

���� > β

3
)

+ P
�

sup
θ̄∈ΩΠ

θ

���EP̃∗
n

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃n

�
L(GH , θ̄)|Π̄n(θ̄)

���� > β

3
),

therefore proving that the last terms converge to zero for any β > 0 is sufficient.

First we will prove that

sup
θ̄∈ΩΠ

θ

���EPn

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP∗

n

�
L(GH , θ̄)|Π̄n(θ̄)

���� = op(1).

Indeed, noting that,

P ∗
n,i(H) � I(η1:r+1 ∈ Pr(Πn))

�r+1+i
l=r+2 µ(ηl)

�M
r+2+i µn(ηl)

2Enni
�r

i=2 dn(ηi)
,

it holds ∀β > 0 that

P
�
sup
θ̄∈ΩΠ

θ

���EPn

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP∗

n

�
L(GH , θ̄)|Π̄n(θ̄)

���� > β
�

(a)

≤
M�

i=1

P
�
sup
θ̄∈ΩΠ

θ

��EP∗
n,i

�
L(GH , θ̄)

�
− EP∗

n,i−1

�
L(GH , θ̄)

��� > β

M

�

≤ MP
�
�µn − µ

nZµ
�TV >

β

�L�∞
�
.

where (a) using telescopic sum. Therefore we have proven that the first element of the sum goes to 0.

Now we will prove that

sup
θ̄∈ΩΠ

θ

���EP∗
n

�
L(GH , θ̄) | Π̄n(θ̄)

�
− EP̃∗

n

�
L(GH , θ̄)|Π̄n(θ̄)

���� = op(1).

For this we will want to approximate n
dn(Vui

) by 1
W (ui,·) . However for this we need a good bound on P (| dn(Vui

)

nW (ui,·) −
1| ≥ �). But this is possible only if W (ui, ·) is not too small.

Note that for all vertices η ∈ Πn if a path H passes through η at the i-th coordinate, for i ≥ 2, then it means that
there is only dn(ν(η)) possibilities for the i− 1th vertex of the path. Therefore if dn(ν(η)) is small the probability
that our random-walk passes through v, and is not the origin vertex, is asymptotically negligible.

Indeed for all η ∈ Πn such that dn(ν(η)) ≤ n
�
2 it holds that for k ≥ 2,

P (ηi = η | Π̄n(θ̄)) ≤
�

η�∈Πn∩Nn(η)

P (ηi−1 = η�, ηi = η | Π̄n(θ̄))
(∗)
≤ n

�
2

2Ne
n

,
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where to get (*) we used the stationary property of the random walk.

Therefore we have:

P (min
k≥2

dn(ηk) ≤ n− �
2 | Π̄n(θ̄)) ≤

rn
�
2

��{η ∈ Πn, s.t. 0 < dn(η) ≤ n
�
2 }

��
2Ne

n

p−→ 0,

But we have that ∀(ηi)i≤r+1 s.t. ∀i,W (x(ηi), ·) ≥ n−1+ �
4 ,

��� 1

2En

�r
i=2 dn(ηi)

− 1

2nr+1E �r
i=2 W (x(ηi), ·)

���

(a)

≤
r�

i=2

1

2Enni−1
�r−i

l=2 dn(ηl)
�r

l=r−i+2 W (x(ηl), ·)

��� 1

dn(ηr−i+1)
− 1

nW (x(ηr−i+1), ·)
���

+
1

nr−1
�r

l=2 W (x(ηl), ·)
��� 1

2Nn
e

− 1

2n2E
���

≤
r�

i=2

1

2Enni−1
�r−i+1

l=2 dn(ηl)
�r

l=r−i+2 W (x(ηl), ·)

���1− dn(ηr−i+1)

nW (x(ηr−i+1), ·)
���+ 1

2nr−1Nn
e

�r
l=2 W (x(ηl), ·)

���1− Nn
e

n2E
���,

where (a) comes from a simple telescopic sum re-writing.

Therefore if
max

i

���1− dn(νi)

nW (yi, ·)
���,
���1− Nn

e

n2E
��� ≤ β

then
��� 1

2En

�r
i=2 dn(ηi)

− 1

2nr+1E �r
i=1 W (x(ηi), ·)

���

≤ β
� r�

i=2

1

2Enni−1
�r−i+1

l=2 dn(ηl)
�r

l=r−i+2 W (x(ηl), ·)
+

1

2nr−1Nn
e

�r
l=2 W (x(ηl), ·)

�

Now note that for all i, and λ� ∈ Ω

�

η1:r+1∈Pr(Πn)

�r
i=2 I(W (x(ηi), ·) ≥ n−1+ �

4 )

2Enni−1
�r−i+1

l=2 dn(ηl)
�r

l=r−i+2 W (x(ηl), ·)
E
�
L(GH , θ̄)|ηr+2:Mn ,Πn

�

(a)

≤
�

η1:r∈Pr−1(Πn)

dn(ηr)

�r
i=2 I(W (x(ηi), ·) ≥ n−1+ �

4 )

2Enni−1
�r−i+1

l=2 dn(ηl)
�r

l=r−i+2 W (x(ηl), ·)
E
�
L(GH , θ̄)|ηr+2:Mn ,Πn

�

≤ �L�∞ max
y∈Nn

v (Π) s.t. W (y,·)≥n
−1+ �

4

dn(y)

nW (y, ·)
�

η1:r∈Pr−1(Πn)

�r
i=2 I(W (x(ηi), ·) ≥ n−1+ �

4 )

2Enni−1
�r−i+1

l=2 dn(ηl)
�r−1

l=r−i+2 W (x(ηl), ·)

where (a) is a simple consequence form the fact that:

card{η ∈ η(Πn, r) s.t. η|1:r = (νi, yi)1:r} = dn(νr)card{η ∈ η(Πn, r− 1) s.t. η|1:r−1 = (νi, yi)1:r−1}.

Therefore, by induction, we can get that for all i

�

η1:r+1∈Pr(Πn)

r�

i=2

I(W (x(ηi), ·) ≥ n−1+ �
4 )

E
�
L(GH , θ̄)|ηr+2:M ,Πn

�

Enni−1
�r−i+1

l=2 dn(ηl)
�r

l=r−i+2 W (x(ηl), ·)

≤ r�L�∞ max
y∈Nn

v (y) s.t. W (y,·)≥n
−1+ �

4

| dn(y)

nW (y, ·) − 1|+ �L�∞.

Therefore if we note

An(β) � { max
y∈Nn

v (y) s.t. W (y,·)≥n−1+ �
4

| dn(y)

nW (y, ·) − 1| ≤ β, |N
n
e

n2E − 1| ≤ β}

Then we can see the following:



Relational ERM

• On An(β) we will have that as η1:r+1 ⊥⊥ ηr+2:M using the result that we previously got we have that:

sup
θ̄∈ΩΠ

θ

���EP∗
n

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃∗

n

�
L(GH , θ̄)|Π̄n(θ̄)

���� ≤ (r + 1)2�L�∞β

• And in addition we know that there is K1,K2 < ∞ s.t

P (An(β)
c) ≤ P (|N

n
e

n2E − 1| ≥ β) + E
� �

η1:r+1∈Pr(Πn)

I(| dn(y)

nW (y, ·) − 1| ≥ β)
�

(a)

≤ P (|N
n
e

n2E − 1| ≥ β) + n

�

R+

I(W (x, ·) ≥ n−1+ �
4 )P

�
| fn(x,Π)

nW (x, ·) − 1| ≥ β
��
dx

(b)

≤ K1

nβ
+

K2

βpn2

�

R+

I(W (x, ·) ≥ n−1+ �
4 )dx

≤ K1

nβ
+

K2

βpn2
n1− 3�

2+2� → 0,

where (a) comes from Slivnyak–Mecke theorem and (b) from Lemma D.5.
Thus, we have successfully proven that

sup
θ̄∈ΩΠ

θ

���EP∗
n

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃∗

n

�
L(GH , θ̄)|Π̄n(θ̄)

���� = op(1)

QED

Now we are going to prove the last part, i.e.

sup
θ̄∈ΩΠ

θ

���EP̃∗
n

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃n

�
L(GH , θ̄)|Π̄n(θ̄)

���� = op(1)

For this we can note that that for all i ≥ 2

� 1

nr+1
sup

λ�∈ΩΠ
θ

�

η1:r+1∈Pr(Πn)

I(W (x(ηi), ·) < n−1+ �
4 )

2nr+1E �r
i=2 W (x(ηi), ·)

E
�
L(GH , θ̄)|Π̄n(θ̄), ηr+2,M

�
�L1

(a)

≤ �L�∞
�

Rr+1

I(W (x(ηi), ·) < n−1+ �
4 )

�r
j=1 W (xj , xj+1)�r

j=2 W (xj , ·)
dx1:r+1

(b)

≤ �L�∞
�

Ri

I(W (x(ηi), ·) < n−1+ �
4 )

�i−1
j=1 W (xj , xj+1)
�i−1

j=2 W (xj , ·)
dx1:i

(c)

≤ �L�∞
�

R
W (x(ηi), ·)I(W (x(ηi), ·) < n−1+ �

4 )dxi
n→∞−−−−→ 0,

where to get (a) we used both the fact that L was bounded and the independence of the uniforms; to get (b) we integrated
coordinates r + 1 to i+ 1 and used the following definition:

∀x
�

W (x�, x)dx� = W (x, ·).

We similarly got (c) where instead we integrated the coordinates from 1 to i− 1.

Therefore we have successfully proven that

sup
θ̄∈ΩΠ

θ

���EP̃∗
n

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃n

�
L(GH , θ̄)|Π̄n(θ̄)

���� = op(1)

Hence we have proven the desired results

We now turn to the question of which augmentation distributions will satisfy the conditions of the previous
result. We show that the conditions hold for any distribution defined by a differentiable function of the unigram
distribution; in particular, this covers the unigram distribution to the power of 3/4 that is used to define unigram
negative sampling.
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Lemma D.7. Let η1:r+1 be sampled by a random walk on Gn, and let the random-walk unigram distribution be
defined by

UgΓn
(η) = P(∃i ≤ r + 1, s.t. η̃i = η | Π̄n(λ̄)).

Suppose that µn is defined by
µn(η) ∝ UgΓn

(η)α,

for a certain α > 0. Then, defining µ by

µ(η) ∝ (r + 1)α
W (x, ·)α

Eα
,

it holds that
�µn − µ(·)I(· ∈ Πn)

nZn
�TV

p−→ 0

Proof. We will for simplicity prove the result for α = 1, the other cases can be obtained following a similarly,
although the computations are more involved.

First, self-intersections of the walk are asymptotically negligible:

�

η∈Πn

��P (∃i ≤ r + 1, s.t. η̃i = η|Π̄n(λ̄))−
r+1�

i=1

P (η̃i = η|Π̄n(λ̄))
��

(a)

≤
�

η∈Πn

r+1�

i=1

P (η̃i = η|Π̄n(λ̄))P (∃j ∈ [i+ 1, r + 1], ηj = η|ηi = η, Π̄n(λ̄))
P,(b)−−−→ 0,

where (b) comes from the dominated convergence theorem and (a) comes from the fact that for all η

���E
�
I
�
∃i ≤ r + 1, s.t. η̃i = η

�
−

r+1�

i=1

I(η̃i = η)|Π̄n(λ̄)
����

≤
r+1�

i=1

E
�
I(η̃i = η, ∃j ≥ i s.t. η̃j = η)|Γn

�

Next, the limiting probability that a walk includes η is determined by its limiting relative degree W (x(η),·)
2E . To

that end, we write:

�

η∈Πn

��
r+1�

i=1

P (η̃i = η|Π̄n(λ̄))−
(r + 1)W (x(η), ·)

2nE
��

(a)

≤
�

η∈Πn

�� (r + 1)dn(η)

2En
− (r + 1)W (x(η), ·)

2nE
��

where (a) comes from the stationarity proprieties of the simple random walk.Then, using Lemma D.5, we see
that:

�

η∈Πn

��
r+1�

i=1

P (η̃i = η|Π̄n(λ̄))−
(r + 1)W (x(η), ·)

2nE
�� = op(1).

Finally,
�

η∈Πn

�� (r + 1)W (x(η), ·)
2nE [1− 1

�
η∈Πn

(r+1)W (x(η),·)
2nE

]
��

=
�

η∈Πn

(r + 1)W (x(η), ·)
2nE − 1

=
�

η∈Πn

(r + 1)W (x(η), ·)
2nE − P (∃i ≤ r + 1, s.t. η̃i = η|Γn) = op(1).
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D.3 Convergence for random walk sampling

Let θ̄ be a random element of ΩΠ
θ such that θ̄|Π ∼ QΠ

θ for a certain kernel m. For brevity, we write

R̂k(Gn, θ̄) � EPn

�
L(GH , θ̄)|Π̄n(θ̄)

�
.

for all n ∈ R+.
Theorem D.8. There are constants crwm , crw∗ ∈ R+ such that

R̂k(Gn, θ̄)
p−→ crwm ,

and
min
θ̄∈ΩΠ

w

R̂k(Gn, θ̄)
p−→ crw∗ .

And those constants are respectively limn E(R̂k(Gn, θ̄)) and limn E(minθ̄∈ΩΠ
w
R̂k(Gn, θ̄))

Proof. Lemma D.6 states that

• EPn

�
L(GH , θ̄)|Π̄n(θ̄)

�
− EP̃n

�
L(GH , θ̄)|Π̄n(θ̄)

�
= op(1).

• minθ̄∈ΩΠ
θ
EPn

�
L(GH , GH(λ))|Π̄n(θ̄)

�
−minθ̄∈ΩΠ

θ
EP̃n

�
L(GH , GH(λ))|Π̄n(θ̄)

�
= op(1).

We will see that EP̃n
inherits much of the nice distributional structure of the point process Π. This will be

essential to the proof.

To see this we first define for all integers i ∈ N the restriction of the point process to points η ∈ Π such that
ν(η) ∈ (i, i+ 1],

Π|(i,i+1] := Πi+1 \Πi.

And for all M sequence of integers I = (I1, . . . , IM ) ∈ NM we write the following sequence of M restrictions of Π,

Π|I � (Π|(I1,I1+1], . . . ,Π|(IM ,IM+1]).

This allows us to define the following M-dimensional array X(θ̄) � (XI(θ̄))I∈NM where for all M integers
I = (I1, . . . , IM ) ∈ NM ,

XI(θ̄) �
�

η1:M∈Π|I

I(η1:r+1 ∈ Pr(Πn))
�M

l=r+2 µ(x(ηl))

2E �r
i=2 W (x(ηi), ·)

L(GH , GH(θ̄)).

This quantity is key as we can write that

EP̃n

�
L(GH , θ̄)|Π̄n(θ̄)

�
=

1

nM

�

i1:M≤n−1

X θ̄
i1:M . (11)

Then using classical results on convergence of exchangeable arrays [5] we obtain that:

EPn

�
L(GH , θ)|Π̄n(θ̄)

� p−→
�

RM
+

R(x1:M )

�M
i=r+2 µ(xi)

2E �r
i=2 W (xi, ·)

dx1:M ,

where

R(x1:M ) = E
�
L(Gx1:M

, Gx1:M
(θx1:M

))

r�

i=1

I(Ui ≤ W (xi, xi+1))
�
,

and where Gx1:M
is the subgraph with vertices having intensities respectively x1, . . . , xm, and ∀i, θxi

iid∼ m(xi, ·).
Now let write for all n, Fn the sigma-field of events invariant under joint permutations of the indexes in [1, n]M .
Then we can see that (minθ̄∈ΩΠn

θ

1�M−1
i=0 (n−i)

�
I∈[|1,n−1|]M XI(θ̄),Fn) is a reverse supermartingale. Indeed
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• minθ̄∈ΩΠn
θ

1�M−1
i=0 (n−i)

�
I∈[|1,n−1|]M XI(θ̄) is Fn measurable as it is invariant under joint permutations of the

indexes in [1, n]M .

• For all m ≥ n let θ̂m ∈ ΩΠ
θ such that:

�

I∈[|1,m−1|]M
XI(θ̂m) = min

θ̄∈ΩΠm
θ

�

I∈[|1,m−1|]M
XI(θ̄)

Then we get

E
�

min
θ̄∈ΩΠn

θ

1

nM

�

I∈[|1,n−1|]M
XI(θ̄)|Fm)

(a)

≤ E
� 1

nM

�

I∈[|1,n−1|]M
XI(θ̂m)|Fm)

(b)

≤ min
θ̄∈ΩΠm

θ

1

mM

�

I∈[|1,m−1|]M
XI(θ̄),

where (a) comes from Jensen and (b) comes from a standard argument in exchangeable arrays.

Therefore we have that:

min
θ̄∈ΩΠ

θ

1

nM

�

I∈[|1,n−1|]M
XI(θ̄)− E( min

θ̄∈ΩΠ
θ

1

nM

�

I∈[|1,n−1|]M
XI(θ̄))

p−→ 0.

E Convergence of global parameters

We now establish the second main convergence result. This result applies to the two stage procedure where the
embeddings are learned first and the global parameters are then learned with the embeddings fixed. The result is
that the learned global parameters will converge in the ordinary statistical consistency sense.

Our proof of this guarantee requires some technical conditions.
Definition E.1. Suppose that Ωγ is a compact convex set. A loss function L is �-strongly convex in γ if for all
γ, γ� ∈ Ωγ , for all η ∈ [0, 1], and for all θ̄γ , θ̄γ� , θ̄ηγ�+(1−η)γ such that

1. λ(θ̄γ) = λ(θ̄γ�) = λ(θ̄ηγ�+(1−η)γ), and

2. γ(θ̄γ) = γ, γ(θ̄γ�) = γ�, γ(θ̄(1−η)γ+ηγ�) = (1− η)γ + ηγ�

it holds that

L(GH , θ̄ηγ�+(1−η)γ)
a.s.
< ηL(GH , θ̄γ�) + (1− η)L(GH , θ̄γ)−

1

2
�η(1− η)�γ − γ��22.

Definition E.2. A loss function L is uniformly continuous if

lim
γ�→γ

��� sup
λ̄∈ΩΠ

λ

��L(GH , θ̄γ�)− L(GH , θ̄γ)
��
���
L1

= 0.

We write the risk as R̂k(γ,λ;Gn).
Lemma E.3. Suppose that there is � > 0 such that L is �-strongly convex and uniformly continuous in γ, and
that Ωγ is a compact convex set. Let (γ̂n)n ∈ ΩN

γ be a sequence of elements in Ωγ such that, for all n,

min
λ∈ΩΠ

λ

R̂k(γ̂n,λ;Gn) = min
γ∈Ωγ

min
λ∈ΩΠ

λ

R̂k(γ,λ;Gn).
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Then
γ̂n

p−→ γ∗,

where γ∗ = argminγ limn E(minλ∈ΩΠ
λ
R̂k(γ,λ; Gn))

Remark E.4. This result is valid for both random-walk and p-sampling.

Proof. Let R̂k(γ;Gn) � minλ∈ΩΠ
θ
R̂k(γ,λ;Gn).

Theorem D.8 for the random walk sampler and Theorem C.1 for p-sampling give the following for any γ:

R̂k(γ;Gn)− E(R̂k(γ;Gn)))
p−→ 0.

Let (γ̂n)n ∈ ΩN
γ be a sequence such that

R̂k(γ̂n;Gn) = min
γ∈Ωγ

R̂k(γ;Gn).

Since (γ̂n)n is a sequence in the compact set Ωγ there is a function φ : N → N and γ̃ such that γ̂φ(n)
d−→ γ̃. But as

Ωγ is compact, an easy consequence of the covering lemma gives that:

sup
γ∈Ωγ

���R̂k(γ;Gn)− f(γ)
��� p−→ 0,

where f : γ → limn E(R̂k(γ;Gn)). Therefore we have that

|R̂k(γ̂φ(n), Gφ(n))− f(γ̂φ(n))|
p−→ 0.

But using the expressions Eq. (11) and Eq. (8) derived in the proof of respectively Theorem D.8 and Theorem C.1
and the �-strongly convex assumption on L we have that f is continuous and is strictly convex, and hence has a
unique minimizer.

Therefore γ̃ must be deterministic equal to γ∗ � argminγ f(γ). Indeed suppose by contradiction that it is not the
case then there is η > 0 such that

P(R̂k(γ̂φ(s), Gφ(s))− R̂k(γ
∗, Gφ(s)) > η) > η,

which is a contradiction of the definition of (γ̂n)n. Therefore we have successfully proven that γ̃ = γ∗.

And we have proved that γ̂n
p−→ γ∗.

F Stability of embeddings

Theorem F.1. Suppose the conditions of Theorem 5.1 (i.e., the form of Sample, that Gn is generated by a
graphon process, and that parameter settings are markings of the latent Poisson process). Suppose that the loss
function is twice differentiable and the Hessian of the empirical risk is bounded. Let λ̂n+1|n denote the restriction
of the embeddings λ̂n+1 to the vertices present in Gn. Then λ̂n − λ̂n+1|n → 0 in probability, as n → ∞.

Proof. For notational simplicity, we consider the case with no global parameters and note that the same proof
works if global parameters are included.

First, by a Taylor expansion about λ̂n,

R̂k(λ̂n+1|n;Gn) = R̂k(λ̂n;Gn) + 0 + 1/2(λ̂n − λ̂n+1|n)THn(λ̂n − λ̂n+1|n),

where Hn is the Hessian evaluated at an appropriate point. Then, to prove the result it suffices to show that
R̂k(λ̂n+1|n;Gn)− R̂k(λ̂n;Gn)

p−→ 0 as n → ∞.
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To that end, we first show R̂k(λ̂n+1|n;Gn) ≈ R̂k(λ̂n+1;Gn+1). By [1, Prop. 30], En/n
2 → E a.s. as n → ∞. Then,

the expected number of edges selected by Sample(Gn+1, k) that do not belong to Gn is:

k(1− E[e(Gn)/e(Gn+1) | Gn+1] = o(1) a.s. (12)

We expand R̂k(λ̂n+1;Gn+1) as:

E[L(Sample(Gn+1, k); λ̂n+1) | Gn+1] = E[L(Sample(Gn, k); λ̂n+1|n) | Gn]P(Sample(Gn+1, k) ⊂ Gn | Gn+1)

+ E[L(Sample(Gn+1, k); λ̂n+1) | Gn+1]P(Sample(Gn+1, k) � Gn | Gn+1).

(13)

By Markov’s inequality and Eq. (12),

P(Sample(Gn+1, k) � Gn | Gn+1)
p−→ 0,

as n → ∞. By Theorem 5.1, E[L(Sample(Gn+1, k); λ̂n+1) | Gn+1] converges to a constant in probability, so the
second term of Eq. (13) converges to 0 in probability. Hence,

R̂k(λ̂n+1|n;Gn)− R̂k(λ̂n+1;Gn+1)
p−→ 0, (14)

as n → ∞.

By Theorem 5.1,

R̂k(λ̂n;Gn)− R̂k(λ̂n+1;Gn+1)
p−→ 0, (15)

as n → ∞. The proof is completed by combining Eqs. (14) and (15).
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