
Anirudh Vemula, Wen Sun, J. Andrew Bagnell

A Proof of Theorem 3.1

Proof of Theorem 3.1. To prove Eq. 3 for Alg. 1, we use the proof techniques from Flaxman et al. (2005). The
proof is more simpler than the one in Flaxman et al. (2005) as we do not have to deal with shrinking and
reshaping the predictor set Θ.

Denote u ∼ Bb as uniformly sampling u from a b-dim unit ball, u ∼ Sb as uniformly sampling u from the b-dim
unit sphere, and δ ∈ (0, 1). Consider the loss function ĉi(wi) = Ev∼Bb

[ci(θi + δv)], which is a smoothed version
of ci(wi). It is shown in Flaxman et al. (2005) that the gradient of ĉi with respect to θ is:

∇θ ĉi(θ)|θ=θi

=
b

δ
Eu∼Sb [ci(θi + δu)u]

=
b

δ
Eu∼Sb [((θi + δu)T si − ai)

2u].

Hence, the descent direction we take in Alg. 1 is actually an unbiased estimate of ∇θ ĉi(θ)|θ=θi . So Alg. 1 can
be considered as running OGD with an unbiased estimate of gradient on the sequence of loss ĉi(θi). It is not
hard to show that for an unbiased estimate of ∇θ ĉi(θ)|θ=θi = b

δ ((θi + δu)T si − ai)
2u, the norm is bounded as

b(C2 + C2
s)/δ. Now we can directly applying Lemma 3.1 from Flaxman et al. (2005), to get:

E

�
T�

i=1

ĉi(θi)

�
− min

θ�∈Θ

T�

i=1

ĉi(θ
�) ≤ Cθb(C

2 + C2
s)

δ

√
T . (8)

We can bound the difference between ĉi(θ) and ci(θ) using the Lipschitiz continuous property of ci:

|ĉi(θ)− ci(θ)| = |Ev∼Bb
[ci(θ + δv)− ci(θ)]|

≤ Ev∼Bb
[|ci(θ + δv)− ci(θ)|] ≤ Lδ. (9)

Substitute the above inequality back to Eq. 8, rearrange terms, we get:

E

�
T�

i=1

ci(θi)

�
− min

θ�∈Θ

T�

i=1

ci(w
�)

≤ Cθb(C
2 + C2

s)

δ

√
T + 2LT δ. (10)

By setting δ = T−0.25

�
Cθb(C2+C2

s)
2L , we get:

E

�
T�

i=1

ci(θi)

�
− min

w�∈Θ

T�

i=1

ci(w
�)

≤
�

Cθb(C2 + C2
s)LT

3/4.

To prove Eq. 4 for Alg. 4, we follow the similar strategy in the proof of Alg. 1.

Denote � ∼ [−1, 1] as uniformly sampling � from the interval [−1, 1], e ∼ {−1, 1} as uniformly sampling e from
the set containing −1 and 1. Consider the loss function c̃i(θ) = E�∼[−1,1][(θ

T si + δ�− ai)
2]. One can show that

the gradient of c̃i(θ) with respect to θ is:

∇θ c̃i(θ) =
1

δ
Ee∼{−1,1}[e(θ

�si + δe− ai)
2si]. (11)

As we can see that the descent direction we take in Alg. 4 is actually an unbiased estimate of ∇θ c̃i(θ)|θ=θi . Hence
Alg. 4 can be considered as running OGD with unbiased estimates of gradients on the sequence of loss functions
c̃i(θ). For an unbiased estimate of the gradient, 1

δ e(θ
�
i si+δe−ai)

2si, its norm is bounded as (C2+1)Cs/δ. Note

Contrasting Exploration in Parameter and Action Space

that different from Alg. 1, here the maximum norm of the unbiased gradient is independent of feature dimension
b. Now we apply Lemma 3.1 from Flaxman et al. (2005) on c̃i, to get:

E

�
T�

i=1

c̃i(θi)

�
− min

θ�∈Θ

T�

i=1

c̃i(θ
∗) ≤ Cθ(C

2 + 1)Cs

δ

√
T . (12)

Again we can bound the difference between c̃i(θ) and ci(θ) for any θ using the fact that (âi − ai)
2 is Lipschitz

continuous with respect to prediction âi with Lipschitz constant C:

|c̃i(θ)− ci(θ)| = |E�∼[−1,1][(θ
�si + δ�− ai)

2 − (θ�si − ai)
2]|

≤ E�∼[−1,−1][Cδ|�|] ≤ Cδ. (13)

Substitute the above inequality back to Eq. 12, rearrange terms:

E

�
T�

i=1

c̃i(θi)

�
− min

θ�∈Θ

T�

i=1

c̃i(θ
∗)

≤ Cθ(C
2 + 1)Cs

δ

√
T + 2CδT.

Set δ = T−0.25
�

Cθ(C2+1)Cs

2C , we get:

E

�
T�

i=1

c̃i(θi)

�
− min

θ∗∈Θ

T�

i=1

c̃i(θ
∗)

≤
�

Cθ(C2 + 1)CsCT 3/4.

B Proof of Theorem 4.1

We first present some useful lemmas below.

Consider the smoothed objective given by Ĵ(θ) = Ev∼Bd
[J(θ+ δv)] where Bd is the unit ball in d dimensions and

δ is a positive constant. Using the assumptions stated in Section 4.1, we obtain the following useful lemma:

Lemma B.1. If the objective J(θ) satisfies the assumptions in Section 4.1 and the smoothed objective Ĵ(θ) is
as given above, then we have that

1. Ĵ(θ) is also G-Lipschitz and L-smooth

2. For all θ ∈ Rd, �∇θJ(θ)−∇θĴ(θ)� ≤ Lδ

Proof of Lemma B.1. Consider for any θ1, θ2 ∈ Rd,

|Ĵ(θ1)− Ĵ(θ2)| = |Ev∼Bd
[J(θ1 + δv)− J(θ2 + δv)]|

≤ Ev∼Bd
[|J(θ1 + δv)− J(θ2 + δv)|]

≤ Ev∼Bd
[G�θ1 − θ2�]

= G�θ1 − θ2�

The above inequalities are due to the fact that expectation of absolute value is greater than absolute value of
expectation, and the G-lipschitz assumption on J(θ). Thus, the smoothened loss function Ĵ(θ) is also G-lipschitz.
Similarly consider,

�∇θĴ(θ1)−∇θĴ(θ2)�
= �∇θEv∼Bd

[J(θ1 + δv)]−∇θEv∼Bd
[J(θ2 + δv)]�

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

= �Ev∼Bd
[∇θJ(θ1 + δv)−∇θJ(θ2 + δv)]�

≤ Ev∼Bd
[�∇θJ(θ1 + δv)−∇θJ(θ2 + δv)�]

≤ Ev∼Bd
[L�θ1 − θ2�]

= L�θ1 − θ2�

The above inequalities are due to the fact that expectation of norm is greater than norm of expectation, and
the L-smoothness assumption on J(θ1). We interchange the expectation and derivative using the assumptions
on J(θ1) and the dominated convergence theorem. Thus, the smoothened loss function Ĵ(θ1) is also L-smooth.

We know,

∇θĴ(θ) = ∇θEv∼Bd
[J(θ + δv)]

= Ev∼Bd
[∇θJ(θ + δv)]

Note that the expectation and derivative can be interchanged using the dominated convergence theorem. Hence,
we have

�∇θĴ(θ)−∇θJ(θ)� = �Eu∼Bd
[∇θJ(θ + δv)]−∇θJ(θ)�

≤ Eu∼Bd
�∇θJ(θ + δv)−∇θJ(θ)�

≤ Eu∼Bd
[L||δv||]

≤ Lδ

The above lemma will be very useful later when we try to relate the convergence rate for the smoothed objective
and the true objective. It is shown in (Flaxman et al., 2005; Agarwal et al., 2010) that the gradient estimate
gi is an unbiased estimator of the gradient ∇θĴ(θi). Hence, Algorithm 3 is performing SGD on the smoothed
objective Ĵ(θ). Using this insight, we can use the convergence rate of SGD for nonconvex functions to stationary
points from (Ghadimi and Lan, 2013) which is given as follows

Lemma B.2 ((Ghadimi and Lan, 2013)). Consider running SGD on the objective Ĵ(θ) that is L-smooth and
G-Lipschitz for T steps. Fix initial solution θ0 and denote Δ0 = Ĵ(θ0) − Ĵ(θ∗) where θ∗ is the point at which
Ĵ(θ) attains global minimum. Also, assume that the gradient estimate gi is unbiased and has a bounded variance,
i.e. for all i, Ei[�gi − ∇θĴ(θi)�22] ≤ V ∈ R+ where Ei denotes expectation with randomness only at iteration i
conditioned on history upto iteration i− 1. Then we have,

1

T

T�

i=1

E�∇θĴ(θi)�22 ≤ 2
�

2Δ0L(V +G2)√
T

(14)

For completeness, we include a proof of the above lemma below.

Proof of Lemma B.2. Denote ξi = gi−∇θĴ(θi). Note that Ei[ξi] = 0 since the stochastic gradient gi is unbiased.
From θi+1 = θi − αgi, we have:

Ĵ(θi+1) = Ĵ(θi − αgi)

≤ Ĵ(θi)−∇θĴ(θi)
�(αgi) +

Lα2

2
�gi�22

= Ĵ(θi)− α∇θĴ(θi)
�gi +

Lα2

2
�ξi +∇θĴ(θi)�22

= Ĵ(θi)− α∇θĴ(θi)
�gi +

Lα2

2
(�ξi�22

+ 2ξ�i ∇θĴ(θi) + �∇θĴ(θi)�22)

The first inequality above is obtained since the loss function Ĵ(θ) is L-smooth. Adding Ei on both sides and
using the fact that Ei[ξi] = 0, we have:

Ei[Ĵ(θi+1)] = Ĵ(θi)− α�∇θĴ(θi)�22

Contrasting Exploration in Parameter and Action Space

+
Lα2

2

�
Ei[�ξi�22] + �∇θĴ(θi)�22

�

≤ Ĵ(θi)− α�∇θĴ(θi)�22

+
Lα2

2

�
Ei[�ξi�22] +G2

�

where the inequality is due to the lipschitz assumption. Rearranging terms, we get:

α�∇θĴ(θi)�22 = Ĵ(θi)− Ei[Ĵ(θi+1)]

+
Lα2

2
(Ei[�ξi�22] +G2)

≤ Ĵ(θi)− Ei[Ĵ(θi+1)] +
Lα2

2
(V +G2)

Sum over from time step 1 to T , we get:

α

T�

t=1

E�∇θĴ(θi)�22 ≤ E[Ĵ(θ0)− Ĵ(θT)]

+
LTα2

2
(V +G2)

Divide α on both sides, we get:

T�

t=1

E�∇θĴ(θi)�22 ≤ 1

α
E[Ĵ(θ0)− Ĵ(θT)] + LTα(V +G2)

≤ 1

α
E[Ĵ(θ0)− Ĵ(θ∗)] + LTα(V +G2)

=
1

α
Δ0 + LTα(V +G2)

≤
�

Δ0LT (V +G2)

2
+

�
2Δ0LT (V +G2)

≤ 2
�
2Δ0LT (V +G2)

with α =
�

2Δ0

LT (V+G2) . Hence, we have:

1

T

T�

t=1

E�∇θĴ(θi)�22 ≤ 2
�

2Δ0L(V +G2)√
T

The above lemma is useful as it gives us the following result:

min
1≤i≤T

E�∇θĴ(θi)�22 ≤ 1

T

T�

i=1

E�∇θĴ(θi)�22

≤ 2
�
2Δ0L(V +G2)√

T
(15)

since the minimum is always less than the average. We have then that using SGD to minimize a nonconvex
objective finds a θi that is ‘almost’ a stationary point in bounded number of steps provided the stochastic gradient
estimate has bounded variance.

We now show that the gradient estimate gi used in Algorithm 3 indeed has a bounded variance. Observe that
the estimate gi in the algorithm is a two-point estimate, which should have substantially less variance than
one-point estimates (Agarwal et al., 2010). However, the two evaluations, resulting in J+

i and J−
i , have different

independent noise. This is due to the fact that in policy search, stochasticity arises from the environment
and cannot be controlled and we cannot obtain the significant variance reduction that is typical of two-point
estimators. The following lemma quantifies the bound on the variance of gradient estimate gi:

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Lemma B.3. Consider a smoothed objective Ĵ(θ) = Ev∼Bd
[J(θ+ δv)] where Bd is the unit ball in d dimensions,

δ > 0 is a scalar and the true objective J(θ) is G-lipschitz. Given gradient estimate gi =
d(J+

i −J−
i)

2δ u where u is

sampled uniformly from a unit sphere Sd in d dimensions, J+
i = J(θi + δu) + η+i and J−

i = J(θ − δu) + η−i for
zero mean random i.i.d noises η+i , η

−
i , we have

Ei[�gi −∇θĴ(θi)�22] ≤ 2d2G2 + 2
d2σ2

δ2
(16)

where σ2 is the variance of the random noise η.

Proof of Lemma B.3. From Shamir (2017), we know that gi is an unbiased estimate of the gradient of Ĵ(θi), i.e.
Eui∼Sd [gi] = ∇Ĵ(θi). Thus, we have

Eui∼Sd�gi −∇Ĵ(θi)�2

= Eui∼Sd [�gi�2 + �∇Ĵ(θ)i�2 − 2gTi ∇Ĵ(θi)]

= Eui∼Sd�gi�2 + �∇Ĵ(θi)�2 − 2�∇Ĵ(θi)�2

= Eui∼Sd�gi�2 − �∇Ĵ(θi)�2

≤ Eui∼Sd�gi�2

=
d2

4δ2
Eui∼Sd�(J(θi + δui)− J(θi − δui)

+ (η+i − η−i))ui�2

≤ d2

2δ2
[Eui∼Sd�(J(θi + δui)− J(θi − δui)ui�22

+ Eui∼Sd�(η+i − η−i))ui�2]

≤ d2

2δ2
[Eui∼Sd4G

2δ2�ui�2 + 4Eui∼Sd�η+i �22�ui�22]

= 2d2G2 + 2
d2σ2

δ2

where the second inequality is true as �a+ b�22 ≤ 2(�a�22 + �b�22) and the last inequality is due to the Lipschitz
assumption on J(θ).

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Fix initial solution θ0 and denoteΔ0 = Ĵ(θ0)−Ĵ(θ∗) where Ĵ(θ) is the smoothed objective
and θ∗ is the point at which Ĵ(θ) attains global minimum. Since the gradient estimate gi used in Algorithm
3 is an unbiased estimate of the gradient ∇θĴ(θi), we know that Algorithm 3 performs SGD on the smoothed
objective. Moreover, from Lemma B.3, we know that the variance of the gradient estimate gi is bounded. Hence,
we can use Lemma B.2 on the smoothed objective Ĵ(θ) to get

1

T

T�

i=1

E�∇θĴ(θi)�22 ≤ 2
�

2Δ0L(V +G2)√
T

(17)

where V ≤ 2d2G2+2d2σ2

δ2 (from Lemma B.3). We can relate∇θĴ(θ) and∇θJ(θ) - the quantity that we ultimately
care about, as follows:

1

T

T�

i=1

E�∇θJ(θi)�22

=
1

T

T�

i=1

E�∇θJ(θi)−∇θĴ(θi) +∇θĴ(θi)�22

Contrasting Exploration in Parameter and Action Space

≤ 2

T

T�

i=1

E�∇θJ(θi)−∇θĴ(θi)�22 + E�∇θĴ(θi)�22

We can use Lemma B.1 to bound the first term and Equation 17 to bound the second term. Thus, we have

1

T

T�

i=1

E�∇θJ(θi)�22 ≤ 2

T
[TL2δ2 + 2

�
2Δ0L(V +G2)T]

Substituting the bound for V from Lemma B.3, using the inequality
√
a+ b ≤ √

a+
√
b for a, b ∈ R+, optimizing

over δ, and using Δ0 ≤ Q we get

1

T

T�

i=1

E�∇θJ(θi)�22 ≤ O(Q 1
2 dT

−1
2 +Q 1

3 d
2
3T

−1
3 σ)

C Proof of Theorem

The bound on the bias of the gradient estimate is given by the following lemma:

Lemma C.1. If the assumptions in Section 4.2 are satisfied, then for the gradient estimate gi used in Algorithm
4 and the gradient of the objective J(θ) given in equation 6, we have

�E[gi]−∇θJ(θi)� ≤ KUHδ (18)

Proof of Lemma C.1. To prove that the bias is bounded, let’s consider for any i

�E[gi]−∇θJ(θi)�2

= �
H−1�

t=0

Est∼dt
πθi

[∇θπ(θi, st)

∇a(Ev∼BpQ
t
πθi

(st,π(θi, st) + δv)−Qt
πθi

(st,π(θi, st)))]�2

≤
H−1�

t=0

Est∼dt
πθi

,v∼Bp
�∇θπ(θi, st)�2

�[∇aQ
t
πθi

(st,π(θi, st) + δv)−∇aQ
t
πθi

(st,π(θi, st))]�2

≤
H−1�

t=0

KUδEv∼Bp
�v�2

≤ KUHδ

The first inequality above is obtained by using the fact that �E[X]�2 ≤ E�X�2, and the second inequality
using the K-lipschitz assumption on π(θ, s) and U -smooth assumption on Qt

πθ
(s, a) in a. Also, observe that we

interchanged the derivative and expectation above by using the assumptions on Qt
πθ

as stated in Section 4.2.

We will now show that the gradient estimate gi used in Algorithm 4 has a bounded variance. Note that the
gradient estimate constructed in Algorithm 4 is a one-point estimate, unlike policy search in parameter space
where we had a two-point estimate. Thus, the variance would be higher and the bound on the variance of such
a one-point estimate is given below

Lemma C.2. Given a gradient estimate gi as shown in Algorithm 4, the variance of the estimate can be bounded
as

E�gi − E[gi]�22 ≤ 2H2p2K2

δ2
((Q+W δ)2 + σ2) (19)

where σ2 is the variance of the random noise η̃.

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Proof of Lemma C.2. To bound the variance of the gradient estimate gi in Algorithm 4, lets consider

Ei�gi − E[gi]�22 = Ei�gi�22 − �Ei[gi]�22 ≤ Ei�gi�22

=
H2p2

δ2
Ei�∇θπ(θi, st)(Q

t
πθi

(st,π(θi, st) + δu) + η̃i)u�22

≤ K2p2H2

δ2
Ei�Qt

πθi
(st,π(θi, st) + δu)u+ η̃iu�22

where Ei denotes expectation with respect to the randomness at iteration i and the inequality is obtained usingK-
lipschitz assumption on π(θ, s). Note that we can express Qt

πθi
(st,π(θi, st)+δu) ≤ Qt

πθi
(st,π(θi, st))+W δ�u�2 ≤

Q+W δ where we used theW -lipschitz assumption onQt
πθ
(s, a) in a and that it is bounded everywhere by constant

Q. Thus, we have

Ei�gi − E[gi]�22

≤ K2p2H2

δ2
Ei�(Q+W δ)u+ η̃iu�22

≤ 2K2p2H2

δ2
(Ei�(Q+W δ)u�22 + Ei�η̃iu�22

≤ 2K2p2H2

δ2
((Q+W δ)2 + σ2)

We are now ready to prove theorem 4.2

Proof of Theorem 4.2. Fix initial solution θ0 and denote Δ0 = J(θ0) − J(θ∗) where θ∗ is the point at which
J(θ) attains global minimum. Denote ξi = gi − Ei[gi] and βi = Ei[gi] − ∇θJ(θi). From Lemma C.1, we know

�βi� ≤ KUHδ and from lemma C.2, we know E�ξi�22 = V ≤ 2K2p2H2

δ2 ((Q + W δ)2 + σ2) and Ei[ξi] = 0 from
definition. From θi+1 = θi − αgi we have:

J(θi+1) = J(θi − αgi)

≤ J(θi)− α∇θJ(θi)
T gi +

Lα2

2
�gi�22

= J(θi)− α∇θJ(θi)
T gi +

Lα2

2
�ξi + Ei[gi]�22

= J(θi)− α∇θJ(θi)
T gi

+
Lα2

2
(�Ei[gi]�22 + �ξi�22 + 2Ei[gi]

T ξi)

Taking expectation on both sides with respect to randomness at iteration i, we have

Ei[J(θi+1)] = J(θi)− α∇θJ(θi)
TEi[gi]

+
Lα2

2
(�Ei[gi]�22 + Ei�ξi�22 + 2Ei[gi]

TEi[ξi])

≤ J(θi)− α∇θJ(θi)
T (βi +∇θJ(θi))

+
Lα2

2
(�βi +∇θJ(θi)�22 + V)

= J(θi)− α�∇θJ(θi)�22 +
Lα2

2
(�∇θJ(θi)�22 + V + �βi�22)

+ (Lα2 − α)∇θJ(θi)
Tβi

≤ J(θi)− α�∇θJ(θi)�22 +
Lα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 − α)∇θJ(θi)
Tβi

Contrasting Exploration in Parameter and Action Space

≤ J(θi)− α�∇θJ(θi)�22 +
Lα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 + α)�∇θJ(θi)��βi�

≤ J(θi)− α�∇θJ(θi)�22 +
Lα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 + α)GKUHδ

Rearranging terms and summing over timestep 1 to T , we get

α

T�

i=1

�∇θJ(θi)�22 ≤ J(θ0)− ET [J(θT)]

+
LTα2

2
(G2 + V +K2H2U2δ2) + (Lα2 + α)GKUHT δ

≤ Δ0 +
LTα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 + α)GKUHT δ

T�

i=1

�∇θJ(θi)�22 ≤ Δ0

α
+

LTα

2
(G2 + V +K2H2U2δ2)

+ (Lα+ 1)GKUHT δ

≤ Δ0

α
+

LTα

2
(G2 +K2H2U2δ2 + 2GKUHδ)

+GKUHT δ +
LTα

2
V

≤ Δ0

α
+

LTα

2
(G+KHUδ)2

+GKUHT δ +
LTαK2p2H2

δ2
((Q+W δ)2 + σ2)

≤ Δ0

α
+ LTα(G2 +K2H2U2δ2)

+GKUHT δ + 2
LTαK2p2H2

δ2
(Q2 +W 2δ2 + σ2)

Using Δ0 ≤ Q and optimizing over α and δ, we get α = O(Q 3
4T− 3

4H−1p−
1
2 (Q2+σ2)−

1
4) and δ = O(T− 1

4 p
1
2 (Q2+

σ2)
1
4). This gives us

1

T

T�

i=1

�∇θJ(θi)�22 ≤ O(T− 1
4Hp

1
2 (Q3 + σ2Q)

1
4) (20)

D Implementation Details

D.1 One-step Control Experiments

D.1.1 Tuning Hyperparameters for ARS

We tune the hyperparameters for ARS (Mania et al., 2018) in both MNIST and linear regression experiments,
by choosing a candidate set of values for each hyperparameter: stepsize, number of directions sampled, number
of top directions chosen and the perturbation length along each direction. The candidate hyperparameter values
are shown in Table 1.

We use the hyperparameters shown in Table 2 chosen through this tuning for each of the experiments in this
work. The hyperparameters are chosen by averaging the test squared loss across three random seeds (different
from the 10 random seeds used in actual experiments) and chosing the setting that has the least mean test
squared loss after 100000 samples.

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Hyperparameter Candidate Values
Stepsize 0.001, 0.005, 0.01, 0.02, 0.03

Directions 10, 50, 100, 200, 500
Top Directions 5, 10, 50, 100, 200

Perturbation 0.001, 0.005, 0.01, 0.02, 0.03

Table 1: Candidate hyperparameters used for tuning in ARS experiments

Experiment Stepsize # Dir. # Top Dir. Perturbation
MNIST 0.02 50 20 0.03

LR d = 10 0.03 10 10 0.03
LR d = 100 0.03 10 10 0.02
LR d = 1000 0.03 200 200 0.03

Table 2: Hyperparameters chosen for ARS in each experiment. LR is short-hand for Linear Regression.

D.1.2 MNIST Experiments

The CNN architecture used is as shown in Figure 41. The total number of parameters in this model is d = 21840.
For supervised learning, we use a cross-entropy loss on the softmax output with respect to the true label. To
train this model, we use a batch size of 64 and a stochastic gradient descent (SGD) optimizer with learning rate
of 0.01 and a momentum factor of 0.5. We evaluate the test accuracy of the model over all the 10000 images in
the MNIST test dataset.

Figure 4: CNN architecture used for the MNIST experiments

For REINFORCE, we use the same architecture as before. We train the model by sampling from the categorical
distribution parameterized by the softmax output of the model and then computing a ±1 reward based on
whether the model predicted the correct label. The loss function is the REINFORCE loss function given by,

J(θ) =
1

N

N�

i=1

ri log(P(ŷi|xi, θ)) (21)

where θ is the parameters of the model, ri is the reward obtained for example i, ŷi is the predicted label for
example i and xi is the input feature vector for example i. The reward ri is given by ri = 2 ∗ I[ŷi = yi] − 1,
where I is the 0− 1 indicator function and yi is the true label for example i.

For ARS, we use the same architecture and reward function as before. The hyperparameters used are shown in
Table 2 and we closely follow the algorithm outlined in (Mania et al., 2018).

1This figure is generated by adapting the code from https://github.com/gwding/draw_convnet

Contrasting Exploration in Parameter and Action Space

Experiment Learning Rate Batch size
MNIST 0.001 512

LR d = 10 0.08 512
LR d = 100 0.03 512
LR d = 1000 0.01 512

Table 3: Learning rate and batch size used for REINFORCE experiments. We use an ADAM (Kingma and Ba,
2014) optimizer for these experiments.

Experiment Learning Rate Batch size
LR d = 10 2.0 512
LR d = 100 2.0 512

Table 4: Learning rate and batch size used for Natural REINFORCE experiments. Note that we decay the
learning rate after each batch by

√
T where T is the number of batches seen.

D.1.3 Linear Regression Experiments

We generate training and test data for the linear regression experiments as follows: we sampled a random d+ 1
dimensional vector w where d is the input dimensionality. We also sampled a random d×d covariance matrix C.
The training and test dataset consists of d+ 1 vectors x whose first element is always 1 (for the bias term) and
the rest of the d terms are sampled from a multivariate normal distribution with mean 0 and covariance matrix
C. The target vectors y are computed as y = wTx+ � where � is sampled from a univariate normal distribution
with mean 0 and standard deviation 0.001.

We implemented both SGD and Newton Descent on the mean squared loss, for the supervised learning experi-
ments. For SGD, we used a learning rate of 0.1 for d = 10, 100 and a learning rate of 0.01 for d = 1000, and a
batch size of 64. For Newton Descent, we also used a batch size of 64. To frame it as a one-step MDP, we define
a reward function r which is equal to the negative of mean squared loss. Both REINFORCE and ARS use this
reward function. To compute the REINFORCE loss, we take the prediction of the model ŵTx, add a mean 0
standard deviation β = 0.5 Gaussian noise to it, and compute the reward (negative mean squared loss) for the
noise added prediction. The REINFORCE loss function is then given by

J(w) =
1

N

N�

i=1

ri
−(yi − ŵTxi)

2

2β2
(22)

where ri = −(yi−ŷi)
2, ŷi is the noise added prediction and ŵTxi is the prediction by the model. We use an Adam

optimizer with learning rate and batch size as shown in Table 3. For the natural REINFORCE experiments,
we estimate the fisher information matrix and compute the descent direction by solving the linear system of
equations Fx = g where F is the fisher information matrix and g is the REINFORCE gradient. We use SGD
with a O(1/

√
T) learning rate, where T is the number of batches seen, and batch size as shown in Table 4.

For ARS, we closely follow the algorithm outlined in (Mania et al., 2018).

D.2 Multi-step Control Experiments

D.2.1 Tuning Hyperparameters for ARS

We tune the hyperparameters for ARS (Mania et al., 2018) in both mujoco and LQR experiments, similar to
the one-step control experiments. The candidate hyperparameter values are shown in Tables 5 and 6. We have
observed that using all the directions in ARS is always preferable under the low horizon settings that we explore.
Hence, we do not conduct a hyperparameter search over the number of top directions and instead keep it the
same as the number of directions.

We use the hyperparameters shown in Tables 7 and 8 chosen through tuning for each of the multi-step exper-
iments. The hyperparameters are chosen by averaging the total reward obtained across three random seeds
(different from the 10 random seeds used in experiments presented in Figures 3a, 3b, 3c) and chosing the setting
that has the highest total reward after 10000 episodes of training..

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Hyperparameter Swimmer-v2 HalfCheetah-v2
Stepsize 0.03, 0.05, 0.08, 0.1, 0.15 0.001, 0.003, 0.005, 0.008, 0.01

Directions 5, 10, 20 5, 10, 20
Perturbation 0.05, 0.1, 0.15, 0.2 0.01, 0.03, 0.05, 0.08

Table 5: Candidate hyperparameters used for tuning in ARS experiments

Hyperparameter LQR
Stepsize 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01

Directions 10
Perturbation 0.01, 0.05, 0.1

Table 6: Candidate hyperparameters used for tuning in ARS experiments

D.2.2 Tuning Hyperparameters for ExAct

We tune the hyperparameters for ExAct (Algorithm 4) in both mujoco and LQR experiments, similar to ARS.
The candidate hyperparameter values are shown in Tables 9 and 10. Similar to ARS, we do not conduct
a hyperparameter search over the number of top directions and instead keep it the same as the number of
directions.

Hyperparameter Swimmer-v2 HalfCheetah-v2
Stepsize 0.005, 0.008, 0.01, 0.015, 0.02, 0.025, 0.03 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.002, 0.003

Directions 5, 10, 20 5, 10, 20
Perturbation 0.15, 0.2, 0.3, 0.5 0.15, 0.2, 0.3, 0.5

Table 9: Candidate hyperparameters used for tuning in ExAct experiments

We use the hyperparameters shown in Tables 11 and 12 chosen through tuning for each of the multi-step
experiments, similar to ARS.

D.2.3 Mujoco Experiments

For all the mujoco experiments, both ARS and ExAct use a linear policy with the same number of parameters
as the dimensionality of the state space. The hyperparameters for both algorithms are chosen as described
above. Each algorithm is run on both environments (Swimmer-v2 and HalfCheetah-v2) for 10000 episodes of
training across 10 random seeds (different from the ones used for tuning). This is repeated for each horizon
value H ∈ {1, 2, · · · , 15}. In each experiment, we record the mean evaluation return obtained after training and
plot the results in Figures 3a, 3b. For more details on the environments used, we refer the reader to (Brockman
et al., 2016b).

D.2.4 LQR Experiments

In the LQR experiments, we constructed a linear dynamical system xt+1 = Axt + But + ξt where xt ∈ R100,
A ∈ R100×100, B ∈ R100, ut ∈ R and the noise ξt ∼ N (0100, cI100×100) with a small constant c ∈ R+. We
explicitly make sure that the maximum eigenvalue of A is less than 1 to avoid instability. We fix a quadratic
cost function c(x, u) = xTQx+ uRu, where Q = 10−3I100×100 and R = 1. The hyperparameters chosen for both
algorithms are chosen as described above.

For each algorithm, we run it for noise covariance values c ∈ {10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 ×
10−2, 10−1, 5 × 10−1} until we reach a stationary point where �∇θJ(θ)�22 ≤ 0.05. The number of interac-
tions with the environment allowed is capped at 106 steps for each run. This is repeated across 10 random seeds
(different from the ones used for tuning). The number of interactions needed to reach the stationary point as
the noise covariance is increased is recorded and shown in Figure 3c.

Contrasting Exploration in Parameter and Action Space

Horizon Stepsize # Directions Perturbation
H = 1 0.15 5 0.2
H = 2 0.08 5 0.2
H = 3 0.15 5 0.2
H = 4 0.08 5 0.2
H = 5 0.05 5 0.2
H = 6 0.08 5 0.2
H = 7 0.08 5 0.2
H = 8 0.08 5 0.2
H = 9 0.1 5 0.2
H = 10 0.08 5 0.2
H = 11 0.08 5 0.2
H = 12 0.1 5 0.2
H = 13 0.08 5 0.2
H = 14 0.08 5 0.2
H = 15 0.08 10 0.2

Table 7: Hyperparameters chosen for multi-step experiments for ARS in Swimmer-v2

Horizon Stepsize # Directions Perturbation
H = 1 0.001 20 0.08
H = 2 0.008 5 0.08
H = 3 0.008 10 0.08
H = 4 0.003 5 0.05
H = 5 0.003 5 0.05
H = 6 0.003 10 0.05
H = 7 0.008 20 0.05
H = 8 0.008 5 0.05
H = 9 0.01 20 0.03
H = 10 0.005 10 0.03
H = 11 0.008 20 0.03
H = 12 0.005 5 0.05
H = 13 0.008 20 0.03
H = 14 0.01 10 0.03
H = 15 0.008 20 0.03

Table 8: Hyperparameters chosen for multi-step experiments for ARS in HalfCheetah-v2

Hyperparameter LQR
Stepsize 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01

Directions 10
Perturbation 0.01, 0.05, 0.1

Table 10: Candidate hyperparameters used for tuning in ExAct experiments

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Horizon Stepsize # Directions Perturbation
H = 1 0.02 5 0.2
H = 2 0.02 5 0.2
H = 3 0.015 10 0.2
H = 4 0.015 10 0.2
H = 5 0.01 10 0.2
H = 6 0.015 10 0.2
H = 7 0.01 20 0.2
H = 8 0.015 20 0.2
H = 9 0.02 20 0.2
H = 10 0.008 5 0.2
H = 11 0.02 5 0.15
H = 12 0.02 20 0.2
H = 13 0.015 5 0.15
H = 14 0.02 10 0.15
H = 15 0.01 5 0.1

Table 11: Hyperparameters chosen for multi-step experiments for ExAct in Swimmer-v2

Horizon Stepsize # Directions Perturbation
H = 1 0.0001 20 0.2
H = 2 0.001 5 0.2
H = 3 0.001 5 0.2
H = 4 0.001 5 0.2
H = 5 0.001 10 0.2
H = 6 0.001 5 0.2
H = 7 0.001 10 0.2
H = 8 0.001 5 0.2
H = 9 0.001 5 0.2
H = 10 0.001 5 0.2
H = 11 0.0008 5 0.15
H = 12 0.001 5 0.2
H = 13 0.001 10 0.2
H = 14 0.001 5 0.2
H = 15 0.0008 10 0.2

Table 12: Hyperparameters chosen for multi-step experiments for ExAct in HalfCheetah-v2

