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The LORACSs Prior for VAEs: Letting the Trees Speak for the
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A Additional visualizations

(c¢) Vamp(500) prior

(d) MAF prior (e) LORACSs(200) prior

Figure A.10: TSNE visualizations of the latent space of the MNIST test set with various prior distributions,
color-coded according to class.
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Figure A.11: A TSNE visualization of the latent space for the TMC(200) model with inducing points and one
sample from ¢(7; s1.a7) plotted. Internal nodes are visualized by computing their expected posterior values, and
branches are plotted in 2-d space.

Figure A.12: MNIST VampPrior learned pseudo-inputs.
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Figure A.13: MNIST VampPrior reconstructed pseudo-inputs obtained by deterministically encoding and de-

coding each pseudo-input.
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Figure A.14: Omniglot learned inducing points.
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Figure A.15: CelebA learned inducing points.



B Empirical results

Labels per class 1 10 20 30 40 50 60 70 80 90 100

No prior 0.506 & 0.095 0.781 + 0.045 0.820 +0.023 0.829 +0.020 0.836 +0.026 0.839 +0.021 0.844 +£0.017 0.846 £ 0.017 0.847 £0.015 0.843 £0.015 0.848 £0.014
Normal 0.396 +0.076  0.775 + 0.051 0.838 +0.020 0.861 +0.016 0.874 +0.011 0.883 £0.011 0.886 £ 0.011 0.892 £ 0.010 0.896 £ 0.010 0.899 £ 0.011 0.901 % 0.008
Vamp(500) 0.539 £ 0.094 0.849 +0.035 0.891 +£0.019 0.905 4+ 0.013 0.911 £0.016 0.918 £0.012 0.921 £0.009 0.925 £0.008 0.929 £ 0.007 0.928 £0.005 0.932 £ 0.005
DVAE# 0.453 +£0.101 0.735+0.027 0.784 +£0.017 0.801 +£0.012 0.813 +£0.013 0.824 +0.014 0.830 £0.012 0.835£0.011 0.841 £0.007 0.842 £ 0.007 0.846 £ 0.008
MAF 0.530 £ 0.113 0.869 +0.029 0.910 +0.012 0.923 +0.012 0.930 4+ 0.007 0.933 £ 0.010 0.938 +0.008 0.940 £ 0.008 0.942 £ 0.006 0.944 £ 0.006 0.946 £ 0.005
LORACs(200) 0.670 + 0.120 0.903 + 0.019 0.923 + 0.011 0.929 4+ 0.009 0.934 + 0.006 0.938 + 0.004 0.939 + 0.005 0.941 + 0.004 0.943 + 0.004 0.944 + 0.003 0.945 + 0.003

Table B.3: MNIST few-shot classification results.

Labels per class 1 2 5 10 15

No prior 0.140 £ 0.012 0.179 £ 0.008 0.225 £ 0.006 0.252 £+ 0.009 0.290 £ 0.001
Normal 0.107 £ 0.007 0.134 +0.010 0.187 + 0.008 0.246 + 0.006 0.285 %+ 0.000
Vamp(1000) 0.116 £ 0.011 0.148 £ 0.009 0.210 £ 0.003 0.270 £ 0.005 0.300 £ 0.000
DVAE# 0.042 + 0.004 0.060 £ 0.006 0.091 £ 0.003 0.121 £+ 0.001 0.141 4 0.000
MAF 0.096 + 0.008 0.129 £+ 0.006 0.177 £0.010 0.222 £ 0.007 0.237 4 0.002

LORACSs(1000) 0.173 + 0.005 0.236 + 0.005 0.330 4 0.008 0.403 + 0.006 0.441 + 0.000

Table B.4: Omniglot few-shot classification results.

# of inducing points‘ 200

500

|0.9428 0.9474

Table B.5: MNIST few-shot classification with labeled inducing points.
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Figure B.16: Averaged precision-recall curves over test datasets.

C Algorithm details

C.1 Stick breaking process

Consider inserting a node N + 1 into the tree in between vertices u and v such that ¢, > t,, creating branch
en+1- The inserted node has time ¢y41 with probability according to the stick breaking process, i.e.

r(tnt1]ent1, V, E) = Beta (t”ftN“ Ja, b) Beta (wﬂg;a, b) . (C.16)

1—tNn+1 ty

C.2 Belief propagation in TMCs

The TMC is at the core of the LORACs prior. Recall that the TMC is a prior over phylogenies 7, and after
attaching a Gaussian random walk (GRW), we obtain a distribution over N vectors in R?, corresponding to
the leaves, 7(z1.n | 7). However, the GRW samples latent vectors at internal nodes zy,,. Rather than explicitly
representing these values, in this work we marginalize them out, i.e.

ren | 7) = / r(n | 2y T)P(2v0 | 7)dovi (C.17)

This marginalization process can be done efficiently, because our graphical model is tree-shaped and all nodes
have Gaussian likelihoods. Belief propagation is a message-passing framework for marginalization and we utilize
message-passing for several TMC inference queries. The main queries we are interested in are:

1. r(z1.n,7) - for the purposes of MCMC, we are interested in computing the joint likelihood of a set of observed
leaf values and a phylogeny.

2. 7(2n | 2\n,T) - this query computes the posterior density over one leaf given all the others; we use this
distribution when computing the posterior predictive density of a TMC.

3. Vz\nr(zn | 2\n, ) - this query is the gradient of the predictive density of a single leaf with respect to the
values at all other leaves. This query is used when computing gradients of the ELBO w.r.t s1.5 in the
LORAC:S prior.

Message passing Message passing treats the tree as an undirected graph. We first pick start node vgiary and
request messages from each of vgta.t’s neighbors.

Message passing is thereafter defined recursively. When a node v has requested messages from a source node s,
it thereafter requests messages from all its neighbors but s. The base case for this recursion is a leaf node v,
which returns a message with the following contents:

Un=0; =2y logZ,=0; V,(v)=1 V, (u)=0 V, (1)=1 (C.18)

where bold numbers 0 £ (0,...,0)" and 12 (1,...,1)" denote vectors obtained by repeating a scalar d times.
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In the recursive case, consider being at a node i and receiving a set of messages from its neighbors M.

1 Hm
Vis =1 M= Z — C.19
ZWEM Vm+te€im meM Vm + Cim ( )

where e;,, is the length of the edge between nodes i and m. These messages are identical to those used in Boyles
and Welling (2012).

Additionally, our messages include gradients w.r.t. every leaf node downstream of the message. We update each
of these gradients when computing the new message and pass them along to the source node. Gradients with
respect to one of these nodes j are calculated as

V,,]. (V) = Vl,j V;

VV_;’ (N’) = vujlufi (020)
ij (:u) = vujﬂi

The most complicated message is the log Z; message, which depends on the number of incoming messages. Vsiart
gets three incoming messages, all other nodes get only two. Consider two messages from nodes v and v;:

i 2 (v +ei + v +en)l
(C.21)

1 1
log Zi = =5 Ik — %, — 5 (log [ Zialog 2m)
For three messages from nodes vg, v;, and vy,:

i & ((vk + ) i+ ea) + (1 + €) Vm + €im) + (Vim + €im) (i + €x)) T

1
) - §log\2i| —log 2w
(C.22)

1
log Zi = —= ((vm + €im) e — mll3, + (Wi + €ir)ll — pm I3, + 0+ €a) [ tm — s

2

With these messages, we can answer all the aforementioned inference queries.

1. We can begin message passing at any internal node and compute: logr(z1.n,7) = D,y log Z,,

2. We start message passing at v,. 7(zy, | 2\ 7) is a Gaussian with mean p,, and variance v,.

3. Vz\nr(zn | 2\, T) is Vz\n./\/(zn | tor, Vn 1), which in turn utilizes gradients sent via message passing.
Implementation We chose to implement the TMC and message passing in Cython because we found raw
Python to be too slow due to function call and type-checking overhead. Furthermore, we used diagonal rather

than scalar variances in the message passing implementation to later support diagonal variances handed from
the variational posterior over z,.

C.3 Variational inference for the LORACSs prior

The LORACs prior involves first sampling a tree from the posterior distribution over TMCs with s1.ps as leaves.
We _then sample a branch and time for each data z, according to the posterior predictive distribution described
in . We then sample a z, from the distribution induced by the GRW likelihood model. Finally,
we pass the sampled z,, through the decoder.

7~ p(T;81:0m1)
En,tn ~ plen, tn|T
nstn ~ Plen, tn|T) ) (C.23)
Zn|€natna7— Np(zn|enatna7—; SI:M) = T(SM-i-l = Zn‘e’rutnz'r)

Consider sampling the optimal ¢*(7;s1.a1).
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q* (T; Sle) X exp{Eq [logp(Ta Z1:N, xl:N)}}
X eXP{Ing(T; 51:M) + ZEQ [P(2n|€n, tna T)]}

n

M (C.24)
x exp{log TMCy(7;a,b) + Z log 7(Sm[S1:m—1,T)

m=1

+ Z Eq [log p(2nlen, tn, 7)]}

n

We set q(7;s1.0) = r(7 | s1.:m). We use additional variational factors g(er), ge(tn|en, 2n; s1.0), and g (2n|2n).
qe(tnlen, zn; S1:M) is a recognition network that outputs the attach time for a particular branch. Since the
q(7;s1.0) and p(7; s1.07) terms cancel out, we obtain the following ELBO.

Hn p(ena tn|7)p<zn‘ena tna T Sl:M)pO(xn|Zn)
[L, a(en)ge(tnlen, zn; s1:0m )06 (2n|2n)

L[g] £ E, |log (C.25)

Inference procedure In general, ¢(7;s1.p7) can be sampled using vanilla SPR Metropolis-Hastings, so samples
from this distribution are readily available.

For each data in the minibatch z,,, we pass it through the encoder to obtain ¢(z,|x,). We then compute

q*(en) = exp {Eq [logp(en|tn7 Zny TS Sl:]\/l)]} (026)

This quantity is computed by looping over every branch b of a sample from ¢(7), storing incoming messages at
each node, passing the p and v and a sample from ¢(z,|2,) into g¢(tn|en, s1:0, 2n), outputting a logistic-normal
distribution over times for that branch. We sample that logistic normal to obtain a time ¢ to go with branch b.
We can then compute the log-likelihood of z, if it were to attach to b and ¢, using TMC inference query #2. This
log-likelihood is added to the TMC prior log-probability of the branch being selected to obtain a joint probability
E, [log p(en)p(tn)p(2nlen, tn, T; s1:01)] over the branch. After doing this for every branch, we normalize the joint
likelihoods to obtain the optimal categorical distribution over every branch for z,, ¢*(e,). We then sample this
distribution to obtain an attach location and time e,,t, for each data in the minibatch.

The next stage is to compute gradients w.r.t. to the learnable parameters of the model (6, s1.a7, ¢, and &).
In the process of calculating ¢*(e,), we have obtained samples from its corresponding ge (ty|€n, 2n, T; S1:0) and
q(zn|zn). We plug these into the ELBO and can compute gradients via automatic differentiation w.r.t. ¢, 6, and
&. Computing gradients w.r.t. s1.ps is more tricky. We first examine the ELBO.

plen|T)p(tn)p(2nlen, tn, T S1:01 )P0 (X0 | 2n)

_ 1L,
E[q] N ]Eq log Hn Q(en)Q£(tn|en7 Zns 51:M>q¢(zn|$n)

(C.27)

Consider the gradient of the ELBO with respect to s1.p;-
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VSLM»C[Q] = VSLIWEQ |: H p(enh—) ( ) (Z"|en7tn77—.51 M)pe(xn|zn):|

H Q(€7L)Q£(t ‘enaznysl M)q¢(zn|mn)
Vi ZQ(T;SLM)E l: H p(€n|7') ( ) (Zn|6n,tn,7"81 N[)pe(xn|zn):|

H q(en)qﬁ(t |6n,2n,81 M)q;b(zn'xn)

_ T8 H p(e’ﬂ|7-) ( ) (Zn|€n,tn,7"81 M)p0 xn|zn)
= 20l Ve | R e AT
H p(en|7') ( ) (Z7L|€"atnv7-;SliM)pQ(xn|Zn):|
H Q(en)Q£(tn|emZn§51:M)Q¢(Zn|xn)
:ZQ(T'SLM Vi Eq { L ptenlpttnlp (zn|emtmr$1M)pa(x"p”)}

H Q(en)‘E(t |€n,Zn,$1 M)q¢(zn‘xn)

+Z S1: Mq 7551 M))Eq [log

(C.28)

an(en|7-)p< n)p(zn|en;tn;7-a slM)pO(xn|Zn):|
an(en)qf(tn|enyzn;51:]&1)q¢(zn|xn)

H plen|T)p(tn)p(znlen, tn, 75 51. M)pQ(xn|Zn):|
H Q(en)qf(t |€nazna31 M)q¢(zn|xn)

+Z 75 51:M) Vya 10g g(73 81.00)) By {10%

= ]Eq(T) |:V51:MEQ |:10

an(enh—) (tn)p(2nlen, tn, 75 51:0 )P0 (Tn|2n)
Hn q(en)Q£(tn|6nazn§51:M)Q¢(Zn|xn) :|:|
=E; Vs (—logg(en) —logq(tn | 2n, en, T s1:01) + log p(2n, | €, tn, 75 S1:01))]
p(en|T) (20 | 2ny €0, b, T S1:01)
qlen)  q(tn|zn,en,T;51.01) }

+ Vi logq(7;51.00)Eyg {log

E, [VSLM (log ¢(7) + log g(en)) log

In the last step, we expand out expectation over e,, and then pass the derivative through like we did for 7. The
gradients w.r.t. ¢(e,) are zero, since ¢*(e,,) is a partial optimum of the ELBO and we are left with:.

VSLME[Q] = IEq [v31:M Ing(ZN‘em tn, T Sl:M)] - Eq [log Q(tn | Zny€n, T, S1:M)]
p(6n|7') p(zn |Zn76n;tn;7_;31:JVI):| (029)
q(en) q(tn ‘ Zny€n, T, sle)

+ Eq |:v51:M IOg q(T7 SltM) IOg

The first term of the gradient is the expected gradient of the posterior predictive density w.r.t si.p;. This can
be calculated by using TMC inference query #3 using samples from q(e,) and q(t, | zn, €n, 7; $1:a1). The second
term also uses the same gradients, by means of the chain rule to differentiate through the time-amortization
network. The third term of this gradient is a score function gradient, which we decide to not use due to the
high-variance nature of score function gradients. We found that we were able to obtain strong results even with
biased gradients.

D Details of experiments

We_implemented the LORACS prior in Tensorflow and Cython. For MNIST and Omniglot, our architectures are
in and CelebA is in [Table D.7.

Layer type Shape Layer type Shape
Conv + ReLU  [3, 3, 64], stride 2 FC + ReLU 3136
Conv + ReLU [3, 3, 32], stride 1 Deconv + ReLU [3, 3, 32], stride 2
Conv + ReLU [3, 3, 16], stride 2 Deconv + ReLU [3, 3, 32], stride 1
FC + ReLU 512 Deconv + ReLU [3, 3, 1], stride 2
Gaussian 40 Bernoulli

(a) Encoder (b) Decoder

Table D.6: Network architectures for MNIST and Omniglot
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Layer type Shape Layer type Shape

Conv + ReLU [3, 3, 64], stride 2 FC + ReLU 4096

Conv + ReLU [3, 3, 32], stride 1 Deconv + ReLU [3, 3, 32], stride 2
Conv + ReLU [3, 3, 16], stride 2 Deconv + ReLU [3, 3, 32], stride 1
FC + ReLU 512 Deconv + ReLU [3, 3, 3], stride 2
Gaussian 40 Bernoulli

(a) Encoder (b) Decoder

Table D.7: Network architectures for CelebA

In general, we trained the model interleaving one gradient step with 100 sampling steps for ¢(7; s1.ar). We also
found that experimenting with values of a and b in the TMC prior did not impact results significantly. We
initialized the networks with weights from a VAE trained for 100 epochs and inducing points were initialized
using k-means. All parameters were trained using Adam (Kingma and Bal, 2015) with a 10~3 learning rate for
an 100 epochs with learning rate decay to 107° for the last 20 epochs. Finally, we initialized trees with all node
times close to 0, to emulate a VAE prior.

D.1 Baseline details

All baselines were trained with the default architecture. They were trained for 400 epochs, with KL warmup
(B started at 1072, and ramped up to 3 = 1 linearly over 50 epochs). They were trained using Adam with a
learning rate of 1073, with a learning rate of 107> for the last 80 epochs.

For VampPrior, we sued 500 pseudo-inputs for MNIST and 1000 for Omniglot. For MAF, we used a two
layer, 512 wide MADE. DVAE# was trained using the default implementation from https://github.com/
QuadrantAI/dvae, which is hierarchical VAE consisting of two Bernoulli latent variables, 200-dimensional each.
Each is learned via a feed-forward neural network 4-layers deep. The default DVAE# implementation also uses
statically binarized MNIST where we use dynamically binarized.


https://github.com/QuadrantAI/dvae
https://github.com/QuadrantAI/dvae

