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Abstract

In variational autoencoders, the prior on the
latent codes z is often treated as an af-
terthought, but the prior shapes the kind of
latent representation that the model learns.
If the goal is to learn a representation that
is interpretable and useful, then the prior
should reflect the ways in which the high-
level factors that describe the data vary.
The “default” prior is an isotropic normal,
but if the natural factors of variation in the
dataset exhibit discrete structure or are not
independent, then the isotropic-normal prior
will actually encourage learning representa-
tions that mask this structure. To allevi-
ate this problem, we propose using a flexible
Bayesian nonparametric hierarchical cluster-
ing prior based on the time-marginalized co-
alescent (TMC). To scale learning to large
datasets, we develop a new inducing-point
approximation and inference algorithm. We
then apply the method without supervision
to several datasets and examine the inter-
pretability and practical performance of the
inferred hierarchies and learned latent space.

1 Introduction

Variational autoencoders (VAEs; Kingma and
Welling, 2014; Rezende et al), 2014) are a popular class
of deep latent-variable models. The VAE assumes that
observations = are generated by first sampling a latent
vector z from some tractable prior p(z), and then sam-
pling = from some tractable distribution p(x | go(2)).
For example, gg(z) could be a neural network with
weights 6 and p(z | go(z)) might be a Gaussian with
mean go(z).
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VAEs, like other unsupervised latent-variable models
(e.g.; [Tipping and Bishop|, 1999; Blei et all, 2003), can
uncover latent structure in datasets. In particular, one
might hope that high-level characteristics of the data
are encoded more directly in the geometry of the latent
space z than they are in the data space x. For example,
when modeling faces one might hope that one latent
dimension corresponds to pose, another to hair length,
another to gender, etc.

What kind of latent structure will the VAE actually
discover? Hoffman and Johnson (2016) observe that
the ELBO encourages the model to make the statistics
of the population of encoded z vectors resemble those
of the prior, so that p(z) = Eyopulation[P(# | )]. The
prior p(z) therefore plays an important role in shap-
ing the geometry of the latent space. For example,
if we use the “default” prior p(z) = N(z;0,I), then
we are asking the model to explain the data in terms
of smoothly varying, completely independent factors
(Burgess et all, 018). These constraints may some-
times be reasonable—for example, geometric factors
such as pose or lighting angle may be nearly indepen-
dent and rotationally symmetric. But some natural
factors exhibit dependence structure (for example, fa-
cial hair length and gender are strongly correlated),
and others may have nonsmooth structure (for exam-
ple, handwritten characters naturally cluster into dis-
crete groups).

In this paper, we propose using a more opinion-
ated prior on the VAE’s latent vectors: the time-
marginalized coalescent (TMC; Boyles and Welling,
2012). The TMC is a powerful, interpretable Bayesian
nonparametric hierarchical clustering model that can
encode rich discrete and continuous structure. Com-
bining the TMC with the VAE combines the strengths
of Bayesian nonparametrics (interpretable, discrete
structure learning) and deep generative modeling
(freedom from restrictive distributional assumptions).

Qur contributions are:

e We propose a deep Bayesian nonparametric model
that can discover hierarchical cluster structure in
complex, high-dimensional datasets.
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e We develop a minibatch-friendly inference proce-
dure for fitting TMCs based on an inducing-point
approximation, which scales to arbitrarily large
datasets.

e We show that our model’s learned latent repre-
sentations consistently outperform those learned
by other variational (and classical) autoencoders
when evaluated on downstream classification and
retrieval tasks.

2 Background

2.1 Bayesian priors for hierarchical clustering

Hierarchical clustering is a flexible tool in exploratory
data analysis as trees offer visual, interpretable sum-
maries of data. Typically, algorithms for hierarchical
clustering are either agglomerative (where data are
recursively, greedily merged to form a tree from the
bottom-up) or divisive (where data are recursively par-
titioned, forming a tree from the top-down). Bayesian
nonparametric hierarchical clustering (BNHC) addi-
tionally incorporates uncertainty over tree structure
by introducing a prior distribution over trees r(7) and
a likelihood model for data r(z1.n |7), with the_goal
of sampling the posterior distribution r(7|z1.x5).

In this paper, we focus on rooted binary trees with
N labeled leaves adorned with branch lengths, called
phylogenies. Prior distributions over phylogenies of-
ten take the form of a stochastic generative process
in which a tree is built with random merges, as in
the Kingman coalescent (Kingmar|, 1982), or_ ran-
dom splits, as in the Dirichlet diffusion tree (Neal,
2003). These nonparametric distributions have help-
ful properties, such as exchangeability, which enable
efficient Bayesian inference. In this paper, we focus on
the time-marginalized coalescent (TMC; Boyles and
Welling, 2012), which decouples the distribution over
tree structure and branch length, a property that helps
simplify inference down the line.

2.1.1 Time-marginalized coalescent (TMC)

The time-marginalized coalescent defines a prior dis-
tribution over phylogenies. A phylogeny 7 = (V, E,T)
is a directed rooted full binary tree, with vertex set V'
and edges E, together with time labels T : V — [0, 1]
where we denote t, = T'(v). The vertex set V is par-
titioned into IV leaf vertices Vieor and N — 1 internal
vertices Vipt, so that V = Vgt U Viear, and we take
Vieat = {1,2,..., N} to simplify notation for identify-
ing leaves with N data points. The directed edges of

2We use r to denote probability distributions relating to

the TMC and distinguish from p and ¢ distributions used
later in the paper.

the tree are encoded in the edge set £ C Vipy x V,
where we denote the root vertex as wvpoo; and for
v € V' \ {vr00t } we denote the parent of v as 7(v) = w
where (w,v) € E.

The TMC samples a random tree structure (V, E) by a
stochastic process in which the IV leaves are recursively
merged uniformly at random until only one vertex is
left. This process yields the probability mass function
on valid (V, E) pairs given by

ov=1 i
B = o) H( ,) W

1=
where ¢(v) denotes the number of internal vertices in
the subtree rooted at v. Given the tree structure, time
labels are generated via the stick-breaking process

0 U = Uroot;
ly =41 v € Vieaf, (2)
tﬂ'(v) - ﬁv(l - tﬂ(v)) v € Ving \ {Uroot}v

where 8, Beta(a,b) for v € V. These time la-
bels encode a branch length ¢, — t,(,) for each edge
e = (w(v),v) € E. We denote the overall density on
phylogenies with NV leaves as TMCy (7;a,b).

Finally, to connect the TMC prior to data in R¢, we
define a likelihood model r(z1.5 | 7) on N data points,
with z, corresponding to the leaf vertex n € Vig,s. We
use a Gaussian random walk (GRW), where for each
vertex v € V a location z, | zr(,) is sampled accord-
ing to a Gaussian distribution centered at its parent’s
location with variance equal to the branch length,

) | Zr(v) ™~ N(ZTI'(’U)7 (tv - tTI'(’U))I)7 vevV \ {erOt}a

and we take z,__, ~ N(0,I). Asa result of this choice,
we can exploit the Gaussian graphical model structure
to efficiently marginalize out the internal locations z,
associated with internal vertices v € Viu and evalu-
ate the resulting marginal density r(z1.n5 | 7). For de-
tails about this marginalization, please refer to

. The final overall density is written as

r(z1.n,7) = TMCp(7;a,b)r(21.5 | T)- (3)

For further details and derivations related to the TMC,
please refer to Boyles and Welling (2012).

2.1.2 TMUC posterior predictive density

The TMC with N leaves and a GRW likelihood model
can be a prior on a set of N hierarchically-structured
data, i.e. data that correspond to nodes with small
tree distance should have similar location values. In
addition, it also acts as a density from which we can
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Figure 1: Independent samples from a time-marginalized coalescent (TMC) prior and two-dimensional Gaussian
random walk likelihood model (10 and 300 leaves respectively). Contours in the plots correspond to posterior
predictive density r(zn+1 | 21.5,7). As the number of leaves grow, the predictive density grows more complex.

sample new data. The posterior predictive density
r(zy41]21:n,7T) is easy to sample thanks to the ex-
changeability of the TMC.

To sample a new data point zxy11, we select a branch
(edge) and a time to attach a new leaf node. The
probability r(ey41 |V, E) of selecting branch ey is
proportional to the probability under the TMC prior
of the tree with a new leaf attached to branch ey 1.
The density 7(tn+1 |en+1, V, E) for a time label ¢

is determined by the stick-breaking process (see @
for details). Both of these probabilities are
easy to calculate and sample due to the exchangeabil-
ity of the TMC.

The new location zny4; can be sampled from
r(zy+1|en+1,tN+1,7), which is the Gaussian distri-
bution that comes out of the GRW likelihood model.
Pictured in [Figure 1 are samples from a TMC prior
and GRW likelihood, where contours correspond to
r(zn+1|21:5,7). In addition to modeling hierarchical
structure, the TMC is a flexible nonparametric density
estimator.

2.1.3 TMC inference

The posterior distribution r(7 | z1.x) is analytically in-
tractable due to the normalization constant r(z1.n)
involving a sum over all tree structures, but it can
be approximately sampled via Markov chain Monte-
Carlo (MCMC) methods. We utilize the Metropolis-
Hastings algorithm with a subtree-prune-and-regraft
(SPR) proposal distribution (, ) An SPR
proposal picks a subtree uniformly at random from 7
and detaches it. It is then attached back on the tree to
a branch and time picked uniformly at random. The
Metropolis-Hastings acceptance probability is efficient
to compute because the joint density r(7, z1.y) can be
evaluated using belief propagation to marginalize the
latent values at internal nodes of 7. and many of the

messages can be cached. See for details.

2.2 Variational autoencoder

The variational autoencoder (VAE) is a generative
model for a dataset x1.ny wherein latent vectors zi.n
are sampled from a prior distribution and then individ-
ually passed into a neural network observation model
with parameters 6,

Z1:N ~ P(Zl:N)7 Tn | Zn ~ p@(xn | Zn)7 (4)

We are interested in the posterior distribution
p(zn | zyn), which is not analytically tractable but
can be approximated with a variational distribution
¢4 (2n | n), typically a neural network that outputs
parameters of a Gaussian distribution. The weights
of the approximate posterior can be learned by opti-
mizing the evidence-lower bound (ELBO),

p@(xl:Na ZI:N)
Llg] £ Eq |log ] (5)
The parameters of the model, # and ¢, are learned
via stochastic gradient ascent on the ELBO, using the

reparametrization trick for lower variance gradients
(IKingma and VVelliné7 l2014|; lRezende et all, 5014).

3 The TMC-VAE

The choice of prior distribution in the VAE signif-
icantly affects the autoencoder and resulting latent
space. The default standard normal prior, which takes

Zn £ (0,1), acts as a regularizer on an otherwise
unconstrained autoencoder, but can be restrictive and
result in overpruning (lBurda et all, l2015|). Extremely
flexible, learnable distributions like masked autore-
gressive flow (MAF) priors (lPapamakarios et al], }2017|)
enable very rich latent spaces, but don’t encode any in-
terpretable bias for organizing the latent space (except

perhaps smoothness).

In this paper, we explore the TMC prior for the VAE,
which could potentially strike a sweet spot between
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restrictive and flexible priors. We generate the latent
values z1.y of a VAE according to the TMC prior,
then generate observations 1.y using a neural network
observation model,

7 ~ TMCy(7;0a,b), (6)

2.8 | T~ r(zen | T), Ty | 2 ~ Po(Tn | 2n).  (7)

The TMC-VAE is a coherent generative process that
captures discrete, interpretable structure in the latent
space. A phylogeny not only has an intuitive inductive
bias, but can be useful for exploratory data analysis
and introspecting the latent space itself.

Consider doing inference in this model: first assume
variational distributions ¢g(z,|z,) (as in the VAE)
and ¢(7), which results in the ELBO,

p(Tv Z1:N xl:N)

(M) I, a(zn | 20)

For fixed g¢(2n | 2,), we can sample the optimal ¢*(7),

Llgl = Eq |log . (8)

q" (1) o< exp{E, [log p(7, 21.n, 71:N)]} 9)

Because p(z1.n | 7) is jointly Gaussian (factorizing ac-
cording to tree structure) and gs(z,|z,) is Gaus-
sian, expectations with respect to z1.n can move into
log p(T, z1.n,x1.n5). This enables sampling the ex-
pected joint likelihood E, [logp(r, 2z1.n)] using SPR
Metropolis-Hastings. However, optimizing this ELBO
is problematic. p(z1.x|7) does not factorize indepen-
dently, so computing unbiased gradient estimates from
minibatches is impossible and requires evaluating all
the data. Furthermore, the TMC is limiting from a
computational perspective. Since a phylogeny has as
many leaves as points in the dataset, belief propaga-
tion over internal nodes of the tree slows down linearly
as the size of the dataset grows. In addition, SPR pro-
posals mix very slowly for large trees. We found these
limitations make the model impractical for datasets of
more than 1000 examples.

In the next section, we address these computational
issues, while retaining the interesting properties of the
TMC-VAE.

4 LORACG:S prior for VAEs

In this section, we introduce a novel approximation to
the TMC prior, which preserves many desirable prop-
erties like structure and interpretability, while being
computationally viable. Our key idea is to use a set
of learned inducing points as the leaves of the tree in
the latent space, analogous to inducing-input approxi-
mations for Gaussian processes (Snelson and Ghahra-
mani, 2006). In this model, latent vectors z1.y are not

directly hierarchically clustered, but are rather inde-
pendent samples from the induced posterior predictive
density of a TMC. We call this the Latent ORganiza-
tion of Arboreal Clusters (LORACS, pronounced “lo-
rax”) prior.

To define the LORACS prior p(7, z1.5), we first define
an auxiliary TMC distribution (7, s1.p7) with M leaf
locations sy.ps. We treat sj.ps as a set of learnable
free parameters, and define the conditional r(7 | s1.a7)
as the LORAC:S prior on phylogenies 7:

p(75s1:m) £ (7| 51:0). (10)

That is, we choose the prior on phylogenies 7 to be
the posterior distribution of a TMC with pseudo-
observations s1.ps. Next, we define the LORACS prior
on locations z, | 7 as a conditionally independent draw
from the predictive distribution r(spr41]|7,S1:m),
writing the sampled attachment branch and time as
en and t,, respectively:

plen,tn | T) 2 r(errs1 = enstargr = tn | 7),

p(zn ‘ enatnaT) = T(Sl\/f-i-l = Zn | @n,tn, T, 81:1\4)' (11)

To complete the model, we use an observation likeli-
hood parameterized by a neural network, writing

By using the learned inducing points s1.ps, we avoid
the main difficulty of inference in the TMC-VAE of
Section [, namely the need to do inference over all N
points in the dataset. Instead, dependence between
datapoints is mediated by the set of inducing points
$1:.m, which has a size independent of N. As a re-
sult, with the LORACS prior, minibatch-based learn-
ing becomes tractable even for very large datasets.
The quality of the approximation to the TMC-VAE
can be tuned by adjusting the size of M.

However, this technique presents its own inference
challenges. Sampling the optimal variational factor

g*(7) is no longer an option as it was in the TMC-
VAE:

q* (75 s1:0) o exp{Eq [log p(7, z1.n, 21:v) ]}
x exp{log TMCy(7;a,b)

+ Zf\r/{:l log7(sm | $1:m—1,T)

+ Zn Eq [logp(zn |en7tn77—)}}'
(13)

This term has a sum over N expectations; therefore
computing this likelihood for the purpose of MCMC
would involve passing the entire dataset through a
neural network. Furthermore, the normalizer for this
likelihood is intractable, but necessary for computing
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Figure 2: Graphical models and variational approximations for TMC models described in the paper

gradients w.r.t si;.ps. We therefore avoid using the
optimal ¢*(7;s1.a7) and set ¢(7;s1.a) to the prior.
This has the additional computational advantage of
cancelling out the E,logp(7)] term in the ELBO,
which also has an intractable normalizing constant.
If the inducing points are chosen so that they con-
tain most of the information about the hierarchical
organization of the dataset, then the approximation
p(7|2) = r(7|s1.m) = p(7) will be reasonable.

We also fit the variational factors q(ey),
qe(tn | €n, zn; s1:0), and ge(zn |zn). The factor
for attachment times, ge (¢, | €n, 2n; S1:01), 1S & recogni-
tion network that outputs a posterior over attachment
times for a particular branch. Since the ¢(7; s1.s) and
p(7; $1.0) terms cancel out, we obtain the following
ELBO (some notation suppressed for simplicity):

Hn p(@n, tn | T)p(zn | €nytn, T)p(étn | Zn)

Hn q(en)q(tn | en, 2n)q(zn | Tn)
(14)

Lq] = E, |log

This ELBO can be optimized by first computing

q*(en) = exp{E, [logp(en | tn, 2n, 75 51:M)]}  (15)

and computing gradients with respect to 6, s1.p7, ¢,
and & using a Monte-Carlo estimate of the ELBO us-
ing samples from ¢(7;s1.:m), ¢*(en), go(2n|2n), and
qe(tn | €n, 2n; S1:01). The factor ¢(7; s1:a7) can be sam-

pled using vanilla SPR Metropolis-Hastings. The de-
tailed inference procedure can be found in .
5 Related work

As mentioned above, LORACS connects various ideas
in the literature, including Bayesian nonparametrics

(Boyles and Welling, 2012). inducing-point approxima-
tions (e.g.; Snelson and Ghahramani, EOOG; iomczak

Also relevant is a recent thread of efforts to endow

VAEs with the interpretability of graphical models
(e.g; ; in et all, 501§). In
this vein, Goyal et al| (2017) propose using a different

Bayesian nonparametric tree prior, the nested Chinese
restaurant process (CRP) (brifﬁths et all, l2004|), in a
VAE. We chose to base LORACs on the TMC instead,
as the posterior predictive distribution of an nCRP is
a finite mixture, whereas the TMC’s posterior predic-
tive distribution has more complex continuous struc-
ture. Another distinction is that |Goya1 et al (}2017|)
only consider learning from pretrained image features,
whereas our approach is completely unsupervised.

6 Results

We analyze properties of the LORACsS prior, focusing
on qualitative aspects, like exploratory data analysis
and interpretability, and quantitative aspects, like few-
shot classification and information retrieval.

Experimental setup We evaluated the LO-
RACs prior on three separate datasets: dynamically
binarized MNIST (ILeCun and Cortes{7 lZOl ). Om-
niglot (i:ake et al], 2015), and CelebA (Liu et alJ,
). For all three experiments, we utilized convo-
lutional/deconvolutional encoders/decoders and a 40-
dimensional latent space (detailed architectures can
be found in ) We used 200, 1000,
and 500 inducing points for MNIST, Omniglot, and
CelebA respectively with TMC parameters a = b = 2.
ge(tn | €n, zn; S1:m) Was a two-layer 500-wide neural
network with ReLU activations that output parame-
ters of a logistic-normal distribution over stick size and
all parameters were optimized with Adam (Kingm

and Ba|7 2015). Other implementation details can be

and Welling, 2018), and amortized inference (Kingma
and Welling, EOM; lRezende et alJ, l2014).

found in Appendix D
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Figure 3: Learned inducing points for a LORACs(200)
prior on MNIST.

6.1 Qualitative results

A hierarchical clustering in the latent space offers
a unique opportunity for interpretability and ex-
ploratory data analysis, especially when the data are
images. Here are some methods for users to obtain
useful data summaries and explore a dataset.

Visualizing inducing points We first inspect the
learned inducing points s1.as by passing them through
the decoder. Visualized in [Figure 3 are the 200 learned
inducing points for MNIST. The inducing points are
all unique and are cleaner than pseudo-input recon-
structions from VampPrior (shown in E iéure A13).
Inducing points can help summarize a dataset, as visu-
alizations of the latent space indicate they spread out

and cover the data (see Figure A.11]). Inducing points
are also visually unique and sensible in Omniglot and

CelebA (see [Figure A.1 d E.la).

Hierarchical clustering We can sample ¢(7; s1.0/)
to obtain phylogenies over the inducing points, and can
visualize these clusterings using the decoded inducing
points; subtrees from a sample in each dataset are visu-
alized in . In MNIST, we find large subtrees
correspond to the discrete classes in the dataset. In
Omniglot, subtrees sometimes correspond to language
groups and letter shapes. In CelebA, we find subtrees
sometimes correspond to pose or hair color and style.

We can further use the time at each internal node
to summarize the data at many levels of granular-
ity. Consider “slicing” the hierarchy at a particular
time ¢ by taking every branch (w(v),v) € E with
lr(v)y <t < 1, and computing the corresponding ex-
pected Gaussian random walk value at time t. At
times closer to zero, we slice fewer branches and are
closer to the root of the hierarchy, so the value at the
slice looks more like the mean of the data. In [Figure §,
we visualize this process over a subset of the inducing
points of CelebA. Visualizing the dataset in this way

ik
X

Tx of T Ao F
T

(b) Omniglot

. ‘
( lebA

Figure 4: An example learned subtree from a sample
of q(7; s1.0) for each dataset. Leaves are visualized by
passing inducing points throught the decoder.
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Figure 5: The evolution of a CelebA over a subset of
inducing points. We create this visualization by taking
slices of the tree at particular times and looking at the
latent distribution at each of the sliced branches.
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reveals cluster structure at different granularities and
offers an evolutionary interpretation to the data, as
leaves that coalesce more “recently” are likely to be
closer in the latent space.

Although the hierarchical clustering is only over in-
ducing points, we can still visualize where real data
belong on the hierarchy by computing ¢*(e,) and at-
taching the data to the tree. By doing this for many
points of data, and removing the inducing points from
the tree, we obtain an induced hierarchical clustering.

Generating samples Having fit a generative model
to our data, we can visualize samples from the model.
Although we do not expect the samples to have fi-
delity and sharpness comparable to those from GANs
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or state-of-the-art decodin% networks (Radford et all,

lZOl5|; ISalimans et all, 017), sampling with the LO-
RACSs prior can help us understand the latent space.
To draw a sample from a TMC’s posterior predictive
density, we first sample a branch and time, assigning
the sample a place in the tree. This provides each
generated sample a context, i.e., the branch and sub-
tree it was generated from. However, learning a LO-
RAC:s prior allows us to conditionally sample in a novel
way. By restricting samples to a subtree, we can gen-
erate samples from the support of the posterior pre-
dictive density limited to that subtree. This enables
conditional sampling at many levels of the hierarchy.
We visualize examples of this in Figure § and [Figure

4 1

4 4 9
Q44
4 4 Y

o~ Y "‘r VARV
vV Y v
v o VOV U Y
(b) Omniglot

Figure 6: Conditional samples from subtrees.
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Figure 7: Samples from subtrees of CelebA.

6.2 Quantitative results

We ran experiments designed to evaluate the useful-
ness of the LORACSs’s learned latent space for down-
stream tasks. We compare the LORACS prior against
a set of baseline priors on three different tasks: few-
shot classification, information retrieval, and genera-
tive modeling. Our datasets are dynamically binarized
MNIST and Omniglot (split by instance) and our base-
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Figure 8: Few-shot classification results

lines are representations learned with the same net-
work architectures and latent dimensionalityH but sub-
stituting the following prior distributions over z:

 No prior (classical autoencoder) - does not explic-
itly encourage any latent structure, and only en-
courages good representations for reconstruction

e Standard normal prior - not the correct inductive
bias for classification tasks, which exhibit latent
cluster structure

e VampPrior (rfomczak and Wellinﬁ, IZOIQ) - a mix-
ture of Gaussians prior (a good inductive bias for
classification) parameterized using a pseudo-input
strategy related to ours

« DVAEH4 (|Vahdat et all, bOla) - uses binary latent
variables trained with continuous relaxations, in-
cluded because it is a recently proposed model
that also captures discrete structure in data

o Masked autoregressive flow (MAF;
@‘, ) - a state-of-the-art density estimator,
expected to have the best held-out log-likelihood
scores, but is biased towards smooth densities

Details of architectures can be found in the appendix.

Few-shot classification In this task, we train a

classifier with varying numbers of labels and measure

3Following the defaults in the author’s reference imple-
mentation, we evaluated DVAE# on statically binarized
MNIST with smaller neural networks, but with a higher-
dimensional latent space.
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test accuracy. We pick equal numbers of labels per
class to avoid imbalance and we use a logistic regres-
sion classifier trained to convergence to avoid adding
unnecessary degrees of freedom to the experiment. We
replicated the experiment across 20 randomly chosen
label sets for MNIST and 5 for Omniglot. The test ac-
curacy on these datasets is visualized in [Fig §. For
MNIST, we also manually labeled inducing points and
found that training a classifier on 200 and 500 induc-
ing points achieved significantly better test accuracy
than randomly chosen labeled points, hinting that the
LORAC:S prior has utility in an active learning setting.

The representations learned with the LORACs con-
sistently achieve better accuracy, though in MNIST,
LORAC:S prior and MAF reach very similar test accu-
racy at 100 labels per class. The advantage of the LO-
RACs prior is especially clear in Omniglot (
and contain the exact numbers). We be-
lieve our advantage in this task comes from ability of
the LORAC:S prior to model discrete structure. TSNE
visualizations in |[Figure 9 and indicate
clusters are more concentrated and separated with the
LORAC:S prior than with other priors, though TSNE
visualizations should be taken with a grain of salt.
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(a) Normal prior (b) LORACs(200) prior

Figure 9: TSNE visualizations of the latent space of
the MNIST test set with different priors, color-coded
according to class. LORACS prior appears to learn a
space with more separated, concentrated clusters.

Information retrieval We evaluated the meaning-
fulness of Euclidean distances in the learned latent
space by measuring precision-recall when querying the
test set. We take each element of the test set and
sort all other members according to their Lo distance
in the latent space. From this ranking, we produce
precision-recall curves for each of the query and plot
the average precision-recall over the entire test set in
. We also report the area-under-the-curve
(AUC) measure for each of these curves in .

AUC numbers for Omniglot are low across the board
because of the large number of classes and low number
of instances per class. However, in both datasets the
LORAC:S prior consistently achieves the highest AUC,

especially with MNIST. The LORACS prior encour-
ages tree-distance to correspond to squared Euclidean
distance, as branch lengths in the tree are variances in
a Gaussian likelihoods. We thus suspect distances in
a LORAC:S prior latent space to be more informative
and better for information retrieval.

Held-out log-likelihood We estimate held-out log-
likelihoods for the four VAEs we trained with compa-
rable architectures and different priors. (We exclude
DVAES# since its architecture is substantially differ-
ent, and the classical autoencoder since it lacks gen-
erative semantics. e use 1000 importance-weighted
samples (éurda et al], M) to estimate held-out log-
likelihood, and report the results in . We find
that, although LORACSs outperforms the other priors
on downstream tasks, it only achieves middling likeli-
hood numbers. This result is consistent with the find-
ings of |Chang et al (bOOd) that held-out log-likelihood
is not necessarily correlated with interpretability or
usefulness for downstream tasks.

Prior ‘ MNIST  Omniglot

No prior | 0.429 0.078
Normal 0.317 0.057
VAMP | 0.502 0.063
DVAE# | 0.490 0.024
MAF | 0.398 0.070
LORACs | 0.626 0.087

Table 1: Averaged precision-recall AUC on

MNIST/Omniglot test datasets

Prior ‘ MNIST  Omniglot

Normal | -83.789 -89.722
MAF | -80.121 -86.298
Vamp | -83.0135  -87.604
LORACs | -83.401 -87.105

Table 2: MNIST/Omniglot test log-likelihoods

7 Discussion

Learning discrete, hierarchical structure in a latent
space opens a new opportunity: interactive deep un-
supervised learning. User-provided constraints have
been used in both flat and hierarchical clustering
(lWagstan and Cardie, 2000; Awasthi et alL l2014|), SO
an interesting follow up to this work would be incor-
porating constraints into the LORACs prior, as in
ﬁ]ikram and Dasguptal ( 201d), which could potentially
enable user-guided representation learning.
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