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A Proof of Theorem 1

Given parameters m and n, considering any coded compu-
tation scheme that can resist s stragglers. We first define
the following bipartite graph model between m workers in-
dexed by [m] and n data partitions indexed by [n], where we
connect node i ∈ [m] and node j ∈ [n] if mij 6= 0 (worker
i has access to data block Aj). The degree of worker node
i ∈ [m] is ‖Mi‖0. We next show by contradiction that the
degree of node j ∈ [n] must be at least s + 1. Suppose
that it is less than s+ 1 and all its neighbors are stragglers.
In this case, there exists no worker that is a non-straggler
and also access to Aj(or the corresponding submatrix of
coding matrix is rank deficient). Hence, it contradicts the
assumption that it can resist s stragglers.

Based on the above argument and the fact that, the sum of
the degrees of one partition is equal to the sum of degrees
in another partition in the bipartite graph, we have that the
computation load

l(M) =

n∑

i=1

‖Mi‖0 ≥ n(s+ 1). (17)

Therefore, the theorem follows.

B Proof of Theorem 3

Based on our construction, the cardinality of the set

|[n]\{i1, . . . , ik}| = n− k. (18)

Since n < ik+1 < · · · < in ≤ n + s, we have n − k ≤
s. We next show, after we recover the blocks indexed by
[n]\{i1, . . . , ik}, the rest blocks can be recovered by peeling
decoding without rooting steps. Combining these results
together, the total number of rooting steps is at most s.

Since we utilize the rooting step to recover blocks indexed
by [n]\{i1, . . . , ik}, we obtain that matrix M ith column
Mi = 0 for i ∈ {1, . . . , i1 − 1}. Based on our construction
of the s-diagonal code, we have mi1i1 6= 0, which implies
i1th block is a ripple. Then we can use the result ỹi1 to
recover block yi1 and peel the i1th column, which implies

that Mi1 = 0. Using the similar process, we can find a
ripple ỹi2 and peel the i2th column. Continue this process,
we can peel the ikth column.

Here we analyze the complexity of above procedure. Dur-
ing each iteration, the complexity of operation ỹj = ỹj −
mjiAix is O(r/n). There exists the total n(s + 1) the
above operations. The complexity from peeling decoding is
r(s+ 1). The complexity in s rooting steps (16) is O(rs).
Therefore, the total complexity is O(rs) and theorem fol-
lows.

C Proof of Lemma 3

A direct application of Hall’s theorem is: given a bipar-
tite graph GD(V1, V2), for each U ⊆ [m] with |U | =
n, each subgraph GD(U, V2) contains a prefect match-
ing if and only if every subset set S ⊆ V1 such that
|N(S)| < |S|, where the neighboring set N(S) is defined
as N(S) = {y|x, y are connected for some x ∈ S}. This
result is equivalent to the following condition: for each
subset I ⊆ [m],

∣∣∣∣∣
⋃

i∈I
supp(Mi)

∣∣∣∣∣ ≥ |I|, (19)

where supp(Mi) is defined as the support set: supp(Mi) =
{j|mij 6= 0, j ∈ [n]}, Mi is ith row of the coding matrix M.
Suppose that the set I = {i1, i2, . . . , ik} with i1 < i2 <
. . . < ik and supp(Mik1

) ∩ supp(Mik2
) 6= ∅. Otherwise,

we can divide the set into two parts Il = {i1, i2, . . . , ik1}
and Ir = {ik2 , i2, . . . , ik} and prove a similar result in these
two sets. Based on our construction of diagonal code, we
have

∣∣∣∣∣
⋃

i∈I
supp(Mi)

∣∣∣∣∣ = min{ik, n} −max{1, i1 − s}
(a)

≥ k,

(20)
The above, step (a), is based on the fact that ik − i1 ≥ k.
Therefore, the lemma follows.
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Figure 5: Statistical convergence speed of full rank probability and average computation load of random code under number
of stragglers s = 2.
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Figure 6: Statistical convergence speed of full rank probability and average computation load of (d1, d2)-cross code under
number of stragglers s = 3, 4.

D Proof of Corollary 1

To prove that the 1-diagonal code achieves the recovery
threshold n, we need to show that, for each subset U ⊆
[n + 1] with |U | = n, submatrix MU is full rank. Let
U = [n+ 1]\{k}, the submatrix MU satisfies

MU =

[
E 0
0 F,

]
(21)

where E is a (k − 1) dimensional square submatrix consist-
ing of first (k−1) rows and columns, and F is a (n−k+1)
dimensional square submatrix consists of the last (n−k+1)
rows and columns. The matrix E is a lower diagonal matrix
due to the fact that, for i < j,

Eij = mij = 0. (22)

The matrix E is a upper diagonal matrix due to the fact that,
for i > j,

Fij = mi+k,j+k−1
(a)
= 0. (23)

The above, (a) utilizes the fact that (i+k)− (j+k−1) ≥ 2
when i > j. Based on the above analysis, we have

det(MU ) = det(E) · det(F) = 1, (24)

which implies that matrix MU is full rank. Therefore, the
corollary follows.

E Numerical Results of Random Code

We examine the performance of the proposed p-Bernoulli
code and (d1, d2)-cross code in terms of the convergence

speed of full rank probability and computation load. In
Fig. 5 and Fig. 5 , we plot the percentage of the full rank
n× n square submatrix and the average computation load
l(M)/m of each scheme, based on 1000 experimental runs.
Each column of the (2, 2.5)-code independently and ran-
domly chooses 2 or 3 nonzero elements with equal proba-
bility. It can be observed that the full rank probability of
both p-Bernoulli code and (d1, d2)-cross code converges to
1 for relatively small values of n. The (d1, d2)-cross code
exhibits even faster convergence and much less computa-
tion load compared to the p-Bernoulli code. For example,
when n = 20, s = 4, the (2, 2)-cross code achieves the full
rank probability of 0.86 and average computation load 3.4.
This provides evidence that (d1, d2)-cross code is useful in
practice. Moreover, in practice, one can use random codes
by running multiple rounds of trails to find a “best” cod-
ing matrix with even higher full rank probability and lower
computation load.

F Proof of Theorem 5

Based on our analysis in Section 4, the full rank probability
of an n × n submatrix MU can be lower bounded by a
constant times the probability of the existence of a perfect
matching in a bipartite graph.

P(|MU | 6= 0) =

P(|MU | 6= 0
∣∣|MU (x)| 6≡ 0)︸ ︷︷ ︸

S-Z Lemma: ≥1−1/2Cn
m

· P(|MU (x)| 6≡ 0)︸ ︷︷ ︸
contains perfect matching

+
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P(|MU | 6= 0
∣∣|MU (x)| ≡ 0)︸ ︷︷ ︸
0

·P(|MU (x)| ≡ 0) (25)

Therefore, to prove that the p-Bernoulli code achieves the
probabilistic recovery threshold of n, we need to show that
each subgraph contains a perfect matching with high proba-
bility. Without loss of generality, we can define the follow-
ing random bipartite graph model.

Definition 10. (p-Bernoulli random graph) Graph
Gb(U, V2, p) initially contains isolated nodes with
|U | = |V2| = n. Then each node v1 ∈ U and node v2 ∈ V2
is connected with probability p independently.

Clearly, the above model describes the support structure of
each submatrix MU of p-Bernoulli code. The rest is to show
that, with specific choice of p, the subgraph Gb(U, V2, p)
contains a perfect matching with high probability.

The technical idea is to use Hall’s theorem. Assume that
the bipartite graph Gb(U, V2, p) does not have a perfect
matching. Then by Hall’s condition, there exists a violating
set S ⊆ U or S ⊆ V2 such that |N(S)| < |S|. Formally,
by choosing such an S having smallest cardinality, one
immediate consequence is the following technical statement.

Lemma 5. If the bipartite graph Gb(U, V2, p) does not con-
tain a perfect matching, then there exists a set S ⊆ U or
S ⊆ V2 with the following properties.

1. |S| = |N(S)|+ 1.

2. For each node t ∈ N(S), there exists at least two
adjacent nodes in S.

3. |S| ≤ n/2.

Case 1: We consider S ⊆ U and |S| = 1. In this case, we
have |N(S)| = 0 and need to estimate the probability that
there exists one isolated node in partition U . Let random
variable Xi be the indicator function of the event that node
vi is isolated. Then we have the probability that

P(Xi = 1) = (1− p)n ,

Let X be the total number of isolated nodes in partition U .
Then we have

E[X] = E

[
n∑

i=1

Xi

]
= n (1− p)n

(a)

≤ 1

n
. (26)

The above, step (a) utilizes the assumption that p =
2 log(n)/n and the inequality that (1 + x/n)n ≤ ex.

Case 2: We consider S ⊆ U and 2 ≤ |S| ≤ n/2. Let E be
the event that such an S exists, we have

P(E) ≤
n/2∑

k=2

(
n

k

)(
n

k − 1

)(
k

2

)k−1
(1− p)k(n−k+1)p2(k−1)

(a)
<

n/2∑

k=2

1

6
· n

(n− k)(n− k + 1)
· n2n

k2k(n− k)2(n−k)

[
k(k − 1)

2

]k−1

(1− p)k(n−k+1)p2(k−1)

(b)
<

n/2∑

k=2

e2n

6k2(n− k)(n− k + 1)
·
(

2 log2(n)

n

)k−1

(c)
<

n/2∑

k=2

2

3(n− 1)
·
(

2 log2(n)

n

)k−1

<
log2(n)

3n
. (27)

The above, step (a) is based on the inequality

√
2πn

(n
e

)n
≤ n! ≤ 60

59

√
2πn

(n
e

)n
,∀n ≥ 5. (28)

The step (b) utilizes the fact that p = 2 log(n)/n, k ≤ n/2
and the inequality (1 +x/n)n ≤ ex; step (c) is based on the
fact that k(n−k+1) ≥ 2(n−1) and k(n−k) ≥ 2(n−2),
n/(n− 2) < 5/3 for k ≥ 2 and n ≥ 5. Utilizing the union
bound to sum the results in case 1 and case 2, we can obtain
that the probability that graphG(U, V2, p) contains a perfect
matching is at least

1− log2(n)

3n
. (29)

Therefore, incorporating this result into estimating (25), the
theorem follows.

G Proof of Theorem 6

To prove the (d1, d2)-cross code achieves the probabilistic
recovery threshold of n, we need to show that each subgraph
of the following random bipartite graph contains a perfect
matching with high probability.

Definition 11. ((d1, d2)-regular random graph) Graph
Gc(V1, V2, d1, d2) initially contains the isolated nodes with
|V1| = m and |V2| = n. Each node v1 ∈ V1 (v2 ∈ V2)
randomly and uniformly connects to d1 (d2) nodes in V1
(V2).

The corresponding subgraph is defined as follows.

Definition 12. For each U ⊆ V1 with |U | = n, the sub-
graph Gc(U, V2, d1, d̄) is obtained by deleting the nodes in
V1\U and corresponding arcs.

Clearly, the above definitions of (d1, d2)-regular graph and
corresponding subgraph describe the support structure of the
coding matrix M and submatrix MU of the (d1, d2)-cross
code. Moreover, we have the following result regarding the
structure of each subgraph Gc(U, V2, d1, d̄)
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Claim. For each U ⊆ V1 with |U | = n, the subgraph
Gc(U, V2, d1, d̄) can be constructed from the following pro-
cedure" (i) Initially, graph Gc(U, V2, d1, d̄) contain the iso-
lated nodes with |U | = |V2| = n; (ii) Each node v1 ∈ U
randomly and uniformly connects to d1 nodes in V2; (iii)
Each node v2 ∈ V2 randomly and uniformly connects to l
nodes in V1, where l is chosen according to the distribution:

P(l) =

(
n

l

)(
m− n
d2 − l

)/(
m

d2

)
, 0 ≤ l ≤ d2. (30)

Then, the rest is to show that the subgraph Gc(U, V2, d1, d̄)
contains a perfect matching with high probability.
Definition 13. (Forbidden k-pair) For a bipartite graph
G(U, V2, d1, d̄), a pair (A,B) is called a k-blocking pair if
A ⊆ U with |A| = k, B ⊆ V2 with |B| = n − k + 1, and
there exists no arc between the nodes of sets A and B. A
blocking k-pair (A,B) is called a forbidden pair if at least
one of the following holds:

1. 2 ≤ k < (n + 1)/2, and for any v1 ∈ A and v2 ∈
V2\B, (A\{v1}, B ∪ {v2}) is not a (k − 1)-blocking
pair.

2. (n + 1)/2 ≤ k ≤ n − 1, and for any v1 ∈ U\A and
v2 ∈ B, (A∪{v1}, B\{v2}) is not a (k+ 1)-blocking
pair.

The following technical lemma modified from [Walkup,
1980] is useful in our proof.
Lemma 6. If the graph Gc(U, V2, d1, d̄) does not contain
a perfect matching, then there exists a forbidden k-pair for
some k.

Proof. One direct application of the Konig’s theorem to bi-
partite graph shows that Gc(U, V2, d1, d̄) contains a perfect
matching if and only if it does not contain any blocking
k-pair. It is rest to show that the existence of a k-blocking
pair implies that there exists a forbidden l−pair for some
l. Suppose that there exists a k-blocking pair (A,B) with
k < (n+ 1)/2, and it is not a forbidden k-pair. Otherwise,
we already find a forbidden pair. Then, it implies that there
exists v1 ∈ A and v2 ∈ V2\B such that (A\{v1}, B∪{v2})
is a (k− 1)-blocking pair. Similarly, we can continue above
argument on blocking pair (A\{v1}, B ∪ {v2}) until we
find a forbidden pair. Otherwise, we will find a 1−blocking
pair (A′, B′), which is a contradiction to our assumption
that each node v1 ∈ U connects d1 nodes in V2. The proof
for k ≥ (n+ 1)/2 is same.

Let E be the event that graph G(U, V2, d1, d̄) contains per-
fect matching. Based on the the results of Lemma 6, we
have

1− P(E) = P

(
n−1⋃

k=2

k-forbidden pair exists

)

≤
n−1∑

k=2

P (k-forbidden pair exists)

≤
n−1∑

k=2

(
n

k

)(
n

n− k + 1

)
· P ((A,B) is k-forbidden pair)

=

n−1∑

k=2

(
n

k

)(
n

n− k + 1

)
α(k)β(k).

The above, A and B are defined as node sets such that
A ⊆ U with |A| = k and B ⊆ V2 with |B| = n − k + 1.
The α(k) and β(k) are defined as follows.

α(k) = P
(
(A,B) is k-forbidden pair

∣∣(A,B) is k-blocking pair
)
,

(31)

β(k) = P ((A,B) is k-blocking pair) . (32)

From the Definition 13, it can be obtained the following
estimation of probability β(k).

β(k) =

[(
k − 1

d1

)/(
n

d1

)]k
·

[
d2∑

l=0

(
n− k
l

)(
m− n
d2 − l

)/(
m

d2

)]n−k+1

. (33)

The first factor gives the probability that there exists no arc
from nodes of A to nodes of B. The second factor gives the
probability that there exists no arc from nodes of B to nodes
of A. The summation operation in the second factor comes
from conditioning such probability on the distribution (30).
Based on the Chu-Vandermonde identity, one can simplify
β(k) as

β(k) =

[(
k − 1

d1

)/(
n

d1

)]k
·
[(
m− k
d2

)/(
m

d2

)]n−k+1

.

(34)
Utilizing the inequality

√
2πn

(n
e

)n
≤ n! ≤ e 1

12n

√
2πn

(n
e

)n
, (35)

we have
(
n

k

)(
n

n− k + 1

)
≤ n2n

k2k(n− k)2(n−k)
·

ne1/6n

2π(n− k)(n− k + 1)
, (36)

(
k − 1

d1

)/(
n

d1

)
≤ c1

√
(k − 1)(n− d1)

(k − d1 − 1)n
·

(
k − 1

k − d1 − 1

)k−d1−1(n− d1
n

)n−d1 (k − 1

n

)d1

(a)

≤ c1

√
k − 1

k − d1 − 1

(
n− d1
n

) 1
2−d1 (k − 1

n

)d1
. (37)
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(
m− k
d2

)/(
m

d2

)
(a)

≤ c2

√
m− k

m− d2 − k

(
m− d2
m

) 1
2−d2

(
m− k
m

)d2
. (38)

In the above, step (a) is based on fact that (1 + x/n)n ≤ ex
and parameters c1 and c2 are defined as

c1 = e1/12(k−1)e1/12(n−d1), c2 = e1/12(m−k)e1/12(m−d2).
(39)

Combining the equations (36)-(39), we can obtain that

γ(k) =

(
n

k

)(
n

n− k + 1

)
β(k)

<c3

(
1− 1

k

)2k

· n(m− k)d2

md2(n− k)(n− k + 1)
·

[
n2(m− k)d2

(n− k)2md2

]n−k
·
(
k − 1

n

)(d1−2)k
. (40)

The constant c3 is given by c3 = ed
2
1+13d1/12+d2+1/3/2π.

The third term satisfies, ∀2 ≤ k ≤ n− 1,

n2(m− k)d2

(n− k)2md2
≤ max

{
1,
n2(m− n+ 1)d2

md2

}
, (41)

which is based on the fact that, if d2 > 2, the function

f(k) =
n2(m− k)d2

(n− k)2md2

is monotonically decreasing when k ≤ (d2n−2m)/(d2−2)
and increasing when k ≥ (d2n− 2m)/(d2 − 2). If d2 = 2,
it is monotonically increasing for k ≥ 0.

We then estimate the conditional probability α(k). Given
a blocking pair A ⊆ U with |A| = k and B ⊆ V2 with
|B| = n − k + 1, and a node vi ∈ A, let Ei be the set of
nodes in V2\B on which d1 arcs from node vi terminate.
LetE′ be the set of nodes v in V2\B such that at least 2 arcs
leaving from v to nodes in A. Then we have the following
technical lemma.

Lemma 7. Given a blocking pair A ⊆ U with |A| = k and
B ⊆ V2 with |B| = n−k+ 1, if (A,B) is k-forbidden pair,
then

E∗ =

(
k⋃

i=1

Ei

)
∪ E′ = V2\B.

Proof. Suppose that there exists node v ∈ V2\(E∗ ∪ B),
then there exists no arc from A to v and there exists at
most 1 arc from v to A. If such an arc exists, let v′ be
the corresponding terminating node in A. Then we have
(A\{v′}, B∪{v}) is a blocking pair, which is contradictory
to the definition of forbidden pair. If such an arc does
not exist, let v′ be the an arbitrary node in A. Then we
have (A\{v′}, B ∪ {v}) is a blocking pair, which is also
contradictory to the definition of forbidden pair.

The lemma 7 implies that we can upper bound the condi-
tional probability by

α(k) ≤ P

[(
k⋃

i=1

Ei

)
∪ E′ = V2\B

]
= (1− P k1 P2)k−1,

where P1 and P2 is defined as: for any node v ∈ V2\B,

P1 = P(v /∈ Ei) =

(
k − 2

d1

)/(
k − 1

d1

)
=
k − d1 − 1

k − 1
,

P2 = P(v /∈ E′)

= 1−
d2∑

l1=2

d2∑

l2=l1

P(l2) ·
(
k

l1

)(
n− k
l2 − l1

)/(
n

l2

)

(a)
=

[(
m− k
d2

)
+ k

(
m− k
d2 − 1

)]/(
m

d2

)

(b)
> e1/6

(
m− k
m

)m−k (
m− d2

m− d2 − k

)m−k−d2 (m− d2
m

)k

(c)
> c4e

1/6−d2 . (42)

The above, step (a) utilizes Chu-Vandermonde identity
twice; step (b) is adopts the inequality (35); step (c) is based
on the fact that if n is sufficiently large, (1−x/n)n ≥ c5e−x,
where c5 is a constant. Combining the above estimation of
P1 and P2, we have the following upper bound of α(k).

α(k) <

[
1− c6

(
k − d1 − 1

k − 1

)k]k−1
. (43)

We finally estimate the probability that the graph
Gc(U, V2, d1, d̄) contains a perfect matching under the fol-
lowing two cases.

Case 1: The number of stragglers s = poly(log(n)). Let
d1 = 2, d2 = 3. Based on the estimation (41), we have that,
for n sufficiently large,

n2(m− k)3

(n− k)2m3
≤ max

{
1,
n2(s+ 1)3

(n+ s)3

}
≤ 1. (44)

Combining the above results with the estimation of β(k),
we have

γ(k) ≤ c3e
−2

n
, 2 ≤ k ≤ n− 1. (45)

Then we can obtain that

P(G(U, V2, d1, d̄) contains perfect matching)

≥1−
n∑

k=1

(
n

k

)(
n

n− k + 1

)
α(k)β(k)

≥1−
n−1∑

k=2

c3e
−2

n
α(k)

(a)
>1− c3e

−2

n

n−1∑

k=2

[
1− c6

(
k − 3

k − 1

)k]k−1
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(b)
>1− c7

n
. (46)

The above, step (a) utilizes the estimation of α(k) in (43);
step (b) is based on estimating the tail of the summation as
geometric series (1− c6/e2)k−1.

Case 2: The number of stragglers s = Θ(nα), α < 1. Let
d1 = 2, d2 = 2/(1− α). For 2 ≤ k ≤ n− 2, we have

n2(m− k)3

(n− k)2m3
≤ max

{
1,
n2(nα + 2)2/(1−α)

4(n+ nα)2/(1−α)

}
≤ 1,

(47)
for n sufficiently large. Combining the above results with
the estimation of β(k), we have

γ(k) ≤ c3e
−2

n
, 2 ≤ k ≤ n− 2. (48)

For k = n− 1, we have

n2(m− k)3

(n− k)2m3
≤ max

{
1,

(
n+ n1−α

n+ nα

)2/(1−α)}
. (49)

If α ≥ 1/2, we can directly obtain that γ(k) ≤ c3e
−2

n . If
α < 1/2, we have that, for n sufficiently large,

γ(k) ≤ c3e
−2

n

(
n+ n1−α

n+ nα

)4/(1−α)
≤ c8e

−2

n
. (50)

Similarly, we can obtain that

P(G(U, V2, d1, d̄) contains perfect matching)

≥1−
n∑

k=1

(
n

k

)(
n

n− k + 1

)
α(k)β(k)

≥1−
n−1∑

k=2

e−2 max{c3, c8}
n

α(k)

(b)
>1− c9

n
. (51)

Therefore, in both cases, incorporating the above results
into estimating (25), the theorem follows.

H Experimental Results

In this section, we present the complete experimental results
on Ohio Supercomputer Center Center [1987]. We compare
our proposed coding schemes including the s−diagonal
code and (d1, d2)-cross codes against the following exist-
ing schemes in both single matrix vector multiplication and
gradient descent: (i) uncoded scheme: the input matrix is
divided uniformly across all workers without replication
and the master waits for all workers to send their results; (ii)
sparse MDS code [Lee et al., 2017b]: the generator matrix
is a sparse random Bernoulli matrix with average computa-
tion overhead Θ(log(n)). (iii) polynomial code [Yu et al.,

2017]: coded matrix multiplication scheme with optimum
recovery threshold and nearly linear decoding time; (iv)
short dot code [Dutta et al., 2016]: append the dummy vec-
tors to data matrix A before applying the MDS code, which
provides some sparsity of encoded data matrix with cost of
increased recovery threshold. (v) LT code [Luby, 2002]:
rateless code widely used in broadcast communication. It
achieves an average computation load of Θ(log(n)) and a
nearly linear decoding time using peeling decoder. To sim-
ulate straggler effects in large-scale system, we randomly
pick s workers that are running a background thread.

H.1 Coded Linear Transform

We implement all methods in python using MPI4py. Each
worker stores the coded submatrix Ãi according to the cod-
ing matrix M. In the computation stage, each worker com-
putes the linear transform Ãix and returns the results us-
ing Isend(). Then the master node actively listens to
the responses from each worker via Irecv(), and uses
Waitany() to keep polling for the earliest finished tasks.
Upon receiving enough results, the master stops listening
and starts decoding the results.

We first use a matrix with r = t = 1048576 and nnz(A) =
89239674 from data sets [Davis and Hu, 2011] , and evenly
divide this matrix into n = 12 and 20 partitions. In Fig. 7
(a)(b), we report the job completion time under s = 2 and
s = 4, based on 20 experimental runs. It can be observed
that both (2, 2)-cross code outperforms uncoded scheme (in
50% the time), LT code (in 70% the time), sparse MDS
code (in 60% the time), polynomial code (in 20% the time)
and our s-diagonal code. Moreover, we observe that the
uncoded scheme is faster than the polynomial code, because
the input data matrix A is sparse and density of encoded
data matrix is greatly increased, which leads to increased
computation time per worker and additional I/O contention
at the master node.

We further compare our proposed s-diagonal code with
(2, 2)-cross code versus the number of stragglers s. As
shown in Fig. 7(c)(d), when the number of stragglers s
increases, the job completion time of the s-diagonal code
increases while the (2, 2)-cross code does not change. If
the number of stragglers is smaller than 2, the s-diagonal
code performs better than the (2, 2)-cross code. Another
interesting observation is that the irregularity of the work
load can decrease the I/O contention. For example, when
s = 2, the computation load of the 2-diagonal code is
similar as (2, 2)-cross code, which is equal to 36 in the case
of n = 12. However, the (2, 2)-cross code costs less time
due to the unbalanced worker load.
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Figure 7: Comparison of job completion time including data transmission time, computation time and decoding time for
n = 12, 20 and s = 2, 4.
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Figure 8: Magnitude of scaled gradient versus time for number of data partitions n = 12, 20 and number of stragglers
s = 2,4.

H.2 Coded Gradient Descent

We first describe the gradient-based distributed algorithm to
solve the following linear regression problem.

min
x

1

2
‖Ax− b‖2, (52)

where A ∈ Rr×t is the data matrix, b ∈ Rr is the label
vector and x ∈ Rt is the unknown weight vector to be found.
The standard gradient descent algorithm to solve the above
problem is: in each iteration t,

xt+1 = xt−ηAᵀ(Axt−b) = xt−η
n∑

i=1

Aᵀ
iAixt+ηA

ᵀb.

(53)
In the uncoded gradient descent, each worker i first stores
a submatrix Ai; then during iteration t, each worker i first
computes a vector Aᵀ

iAixt and returns it to the master
node; the master node then updates the weight vector xt
according to the above gradient descent step and assigns
the new weight vector xt+1 to each worker. The algorithm
terminates when the gradient vanishes, i.e., ‖Aᵀ(Axt −
b)‖ ≤ ε. In the coded gradient descent, each worker i first
stores several submatrices according to the coding matrix
M; during iteration t, each worker i computes a linear
combination,

n∑

j=1

mijA
ᵀ
jAjxt,∀i ∈ [m]. (54)

where mij is the element of the coding matrix M. The
master node collects a subset of results, decodes the full
gradient Aᵀ(Axt − b) and updates the weight vector xt.
Then continue to the next round.

We use data from LIBSVM dataset repository with r =
19264097 samples and t = 1163024 features. We evenly
divide the data matrix A into n = 12, 20 submatrices.
In Fig. 8 , we plot the magnitude of scaled gradient
‖ηAᵀ(Ax − b)‖ versus the running times of the above
seven different schemes under n = 12, 20 and s = 2, 4.
Among all experiments, we can see that the (2, 2)-cross
code converges at least 30% faster than sparse MDS code,
2 times faster than both uncoded scheme and LT code and
at least 4 times faster than short dot and polynomial code.
The (2, 2)-cross code performs similar with s-diagonal code
when s = 2 and converges 30% faster than s-diagonal code
when s = 4.


