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Supplementary Materials

A Proof of Convergence

A.1 Lemmas

In this subsection, we introduce two useful lemmas, which will be used in the proof of convergence.

Lemma 8 (Nesterov and Polyak (2006), Lemma 1). Let the Hessian V2 f(-) of the function f(-) be L-Lipschitz
continuous with L > 0. Then, for any x,y € R?, we have

[97(y) = V1)~ V2 (x)y )] < & ly —xI°, (20)
Fy) = 160 = V607 (y =) = 5y =07V ()(y — )| < & lly ] (30)

Lemma 9 (Wang et al. (2019), Lemma 3). Let M € R, g € R* H € S¥*?_ and

1 M
s = argming' u+ -u' Hu+ — |lu®. (31)
uERd 2 6
Then, the following statements hold:
M
g—i—Hs—l—?HsHs:O, (32)
M
H 5 [T 0, (3)
1 M M
T T 3 3
Z = <-—-= .
gls+ s Hs+ o [sl <~ s (34)

A.2 Proof of Theorem 1
Proof. Since V2 f(x) is La-Lipschitz, thus we have

(i) 1 L :
Fxra1) — F(xi) < VFxx) skt + 2850 VF(Xk)Se41 + % [k

2
T 1 T M 3 T
< 8k Skt + oSk Hisi + Iskt1ll” + (VF(xk) — 8k) Sk+1
Lo— M : 1
+ 2 6 HSk+1H5 + is;—Jrl(va(Xk) — Hk)sk+1
(i) 3M — 2L,

1
< Isksn]l® + (VF(x) — &) Tspp1 + §S;+1(Vf(xk) — Hy)sk 41 (35)

12

where (i) follows from Lemma 8 with y = Xx11,X = Xj and Sgy1 = Xp41 — Xg, (ii) follows from eq. (34) in
Lemma 9 with g = g, H=Hj and s = si11.

Next, we bound the terms (V f(xx) — gk) "skt1 and s, (Vf(xx) — Hg)spq1. For the first term, we have that
@)
(Vf(xk) = gr) "ser1 <IVF(xk) = gl Isksall < B (Iskll® + €@) lIsisrll = B (Isul*lIswr1ll + €ills-+11])
(ii)
< B (Iskll® + lswsll® + € + Isesal®) = B (Isell® + 2llsk+1 ] + €F) , (36)

where (i) follows from Assumption 2, which gives that ||gr — VF(xx)|| < S max { skl ef}, and (ii) follows from

the inequality that for a,b € R*, a?b < a® + b3, which can be verified by checking the cases with a < b and a > b,
respectively. Similarly, we obtain that

T 2 2 () 2 2 2
St (VF(x0) = Hosien < [[V27 (1) = Ei | lsial < @ (sl + ) st I = o (lsilllsit | + e llsice 1)
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(i)

o (llskl® + llsk+1® + € + lIseral’) = a (llsell® + 2llspsa[® + ) (37)

where (i) follows from Assumption 2, Wthh gives that |[Hy — V2F(xz)|| < amax {||sg||, 1}, and (ii) follows from
the inequality that for a,b € RT, 2b <a®+ b

Plugging eqs. (36) and (37) into eq. (35) yields

Fxinn) — ) < — 222

3M — 2L
—— (B2 a5 el + (54 5) IsulP + (54 5) (38)

«
Isnal+ 8 (Isnll* + 2lsneal + ) + 5 (lswll® + 2lswea | +¢3)

Summing Equation (38) for 0 to k, we obtain

3M kil ay & ay o

Foxern) — o) < - (22 2ﬁa> Isil® + (8+5) > lsll*+ (8+5) D¢
=0 =0
k+1 k+1 k

<- (Wuma) I+ (84 2) S hill* + (54 3) Do
i=0 =0

k+1 k
< (PR e Ge) Ll (s g) i+ (3 5) S 6

We next note that

k+1 k+1 k+1 1 k+1 1 k

3
S sl = (Zmn +znszu) 2(znsz|+zusﬁln) LS (sl 4 Isal®). (a0
=1

Plugging eq. (40) into eq. (39) yields that

(522 - 3630 ) (1" +Iscal®) + (54 5) ool + (54 5) >

=0

f(Xk11) — f(x0)

N

M- i

®

<3M—2L2
< - o A

s = 58 0 ) (I s ) + (54 5) Il + (54 5)

where (i) follows from the fact that before the algorithm terminates we always have that ||s;|| > €1 or ||s;y1|| > €1,
which gives that ||s; || + ||si41]|* = €. Therefore, we have

k
S (M52 B 2a) (Il + losnnl®) < S = 77+ (54 ) ol + (54 5) @

i=1

D flxo) = f*+ (284 ) (41)

where (i) follows from the fact that ||sg|| = €1. Thus, if the algorithm never terminates, then we always have that
llsill = €1 or ||siy1]| = €1, which gives ||s;|® + ||si41]|> = €3. Following from Equation (41), we obtain that

kel < f(xo) = [+ (28 + @) ], (42)
where 7 £ (% — %6 — %a). Therefore, we obtain
_ fxk 3
k< f(XO) f +3(2ﬁ + a) 617 (43)
Ve

which shows that the algorithm must terminates if the total number of iterations exceeds O(e;®). With the choice
of €; in Theorem 1 , we obtain that the algorithm terminates at most with total iteration k = O(e~3/2).
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Suppose that the algorithm terminates at iteration k, then according to the analysis in eq. (41), we have that

k—1

> (Isil® + llsiall®) < floxo) = £ + (28 + ) . (44)

=1

On the other hand, according to eq. (44) and the terminal condition that ||s;|| < €1 and ||s;11]| < €1, we obtain

k
>y (il +llsisal) < fxo) = £ + 28+ a+29) €,
i=1

which gives that

k+1 *
jg:: “Si ” 3 5; .f ()(()) - ,f _+_ (Ej[g _F o '+' 2’V) (E% . (4L5:
i=1

We next consider the convergence of ||V f(x)| and ||[V2f(xx)||. Next, we prove the convergence rate of V f(-)
and V2f(-). We first derive

i M
1900k 2 9 k) (s + Hasis + 5 sl seen )|
M
SV (xksr) = (g + Hisp)ll + o (B
M
<[V f (xrr1) = VF(xk) = V2 F(xp)skq || + 1V (xk) = gill + [|(V2f (xx) — Hr)spra || + > sl

(i) Lo 5 9 M 2
< 7\\Sk+1\| + B([Isk |l +€?)+a(||sk||+61)||Sk+1||+7|\sk+1\\
(iii)

s (L+M

(iv)

+25+2o¢)e% < €

~

where (i) follows from eq. (32) with g = g, H = H, and s = si41, (ii) follows from eq. (29) in Lemma 8 and
Assumption 2, (iii) follows from the terminal condition of the algorithm, and (iv) follows from eq. (10).

Similarly, we have

(7)
V2 f(xpt1) = Hi — ||Hi — V2 f (54041) || T
(i) M

7 = lIser]| T~ [ Hy — V2 f(xp41) || T
M
7 = skl I [Hy = V2 £ ()| T= |V f (k) = V2 (xmp1)[| T

Y skl T — a(l[skll +€1)I — Lo [[spy1]| T

(iv) M + 2L (v)

- <+22 +2a> el = e,

where (i) follows from Weyl’s inequality, (ii) follows from eq. (33) with H = H,,, and s = s,,1, (iii) follows from
Assumption 2 and the fact that V2f(-) is Lo-Lipschitz, (iv) follows from the terminal condition of the algorithm,
and (v) follows from eq. (10). O

B Proofs for SVRC under Sampling with Replacement

B.1 Proof of Theorem 2

The idea of the proof is to apply the following matrix Bernstein inequality Tropp (2012) for sampling with
replacement to characterize the sample complexity in order to satisfy the inexactness condition HH;€ — V2F(xyp) H <
amax{||sg||, €1} with the probability at least 1 — (.
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Lemma 10 (Matrix Bernstein Inequality). Consider a finite sequence {Xy} of independent, random matrices
with dimensions di X do. Assume that each random matriz satisfies

EX; =0 and ||Xg|| <R almost surely.

Define

o? 2 max (sz E(X,X})

I, IE(X,’;Xk)H) . (46)

Then, for all e = 0

(H§3x4 ) @+dgwp( &52;6)

Let £g (k) be the collection of index that uniformly picked from 1,--- , N with replacement, and X; be
1 ~ ~
Xi= (V2 fi(xi) = V2fi(%) + V2F(R) — V2F(xi))
€a (K|
then we have
H, - V’F(xp) = » X (47)
i€€u (k)

Moreover, we have EX; = 0, and
1 N -
RE Xl = = [|[ VP e, (x1) — V2 fe, (X) + VPF(X) — V2F (x|
€a (K)]
1) 2L, I
22 Ixg
€ (F)]

where (i) follows because V2f;(-) is Lo Lipschitz, for 1 <i < N.

N

— x| (48)

The variance also can be bounded by

7S (szeéﬂw XX || 2y BOKHXE) )
(i) (11)
< 2 2| < 2
(i) 4L2
< | ||Xk - X” (49)

€ (k)]

where (i) follows from the fact that Xj, is real and symmetric, (ii) follows from Jensen’s inequality, and (iii)
follows from eq. (48).

Therefore, in order to satisfy HH;C — V2F (x4, H < amax{||sg|| , €1} with probability at least 1 — ¢, by eq. (47), it is

equivalent to require szeﬁH (k) X H amax{||sg|| , €1} with probability at least 1 — . We now apply Lemma 10
for X;, and it is sufficient to have:

2
2(d1 + da) exp (cﬂj}éi/i%) <<¢

which is equivalent to have

1 2 2(d1 + d2)
e o (M) i
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Plugging eqs. (48) and (49) into eq. (50) yields

1 2 (4d)
e R 03 Wl
x| + \sH(k e —x[le/3 € ¢

412
e ooy 1%k —

which gives

8L2 . 4L 4d
(k) > (=52 I = %[” + =2 [ — %] ) log (51)
€2 3e <
Substituting € = e max{||sk]| , €1}, we obtain the required sample size to be bounded by
8L3 2 4L, - (4d)
k)| > 2 X — X||7 + x; — x| | lo . 52
|£H( )‘ (anaX{||sk||2,e%} || k H 30(1'I1&X{||S]€||,61} H k || g C ( )

We next bound the sample size |¢, (k)| for the gradient in the similar procedure. We first define X; € R%*! as

1 - -
Xi= 0] (Vfe,(xk) = Ve, (%) + VF(X) = VF(xz)) (53)
g
then we have
g - Vi) = > X (54)
i€€y(k)
Furthermore,
. . A 2L, .
R=|X| = 0] (k” IV fe.(xx) = Ve, (%) + VF(X) = VF(x)|| < S % — X[, (55)
g,k|
where (i) follows because V f;(+) is Ly Lipschitz, for i = 1,..., N, and
2 é * * < 2
0° = max ( ’Zkesg(k) E(XxX}) bt (k) E(X;Xk) ) < ZkegH(k) E || Xkl
QAL s
< T Xk —
€9 (R)]

In order to satisty ||gx — VF(xz)| < 6max{|\sk|\2 , ef} with the probability at least 1 — (, by eq. (54), it is

equivalent to require HZ (k) Xi

i€y

< Brnax{”sk”2 62} with the probability at least 1 — (. We then apply

Lemma 10 for X; in the way similar to that for bounding the sample size for Hessian, with R = ‘2L1| IIxx — X[,
€= ﬁmax{”sk” ,el} and o2 \E (k)l % — %||*, and obtain the required sample size to satisfy
8L3 _ 2 4L, 2(d+1)
g (F)| = < oy e = %7+ 2 o ke = x| | log { =—— ] - (56)
52 max{]|si]|", axc{|su|” ¢
B.2 Proof of Theorem 3
First, by eq. (13), we have
k41
> lxi—xial’ < C. (57)
i=1

We then derive

k/m—1m—1

2
S Iximas — Xiaml

i=0 j=1
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k/m 1m—1

2
Z Z <||Xz m+j — Xi-m4j— 1l 4 I Xema Xi-Tn|>
=0

Jj=
k/m—1m—

—

2
( 1% mtm—1 — Ximtm—2|| + -+ + || Xiom+1 — Xiom || )

N
W‘M

k/m—1m—1 2 () k/m—1m—1 m—1

= < Z ||Xz m+l — Xim41l— 1” ) < m Z ||Xi'm+l — Xi-m+171”2
=0 gj=1 =1 =0 gj=1 =1
(i) k/m—1m—1 ) k )
< m? Z 1Ximtt = Ximyr—a|” < m? Z % — xi—1]]
i=0 [=1 i=1
(iii) k (iv)
< m2k1/3(2||xi _Xi—1||3)2/3 < m2k1/302/3, (58)
i=1

where (i) follows from the Cauthy-Schwaz inequality (ii) follows because j is not a variable in the inner summation,
(iii) follows from Holder’s inequality, and (iv) follows from eq. (57).

Similarly, we have that

k/m—1m—1 k/m—1m—1
Ximtj — Ximl| < 1Ximtj — Ximtj 1H+ [ Ximg1 — szH
J J J—
=0 j=1 =0 gj=1
k/m—1m—1
<Y ( Ittt — Ximpmall -+ [ it — Xiom] )
i=0 j=1
k/m—1m—1 ; k/m—1m—1
= Z (Z ||Xz m41 — Xim+l— 1”) Z Z ||Xz m+l — Xim+1l— 1||
i=0 j=1 i=0 I=1
k - 1/3
(ii) (iii)
<m Yy i — x| < mk2/3<2||xi—xi_1||3> < mk¥3CY3, (59)
=1 =

where (i) follows because j is not a variable in the inner summation, (ii) follows from Holder’s inequality, and (iii)
follows from eq. (57).

Thus, the total sample size for Hessian is given by

LN k/m—1m—1
m4 24 Z Z|§H(k‘)|
i=0 j=1
. k/m—1m—1
0 CkN 8L3 2 = (4d)
<—+ X;. Xim||” + Ximej = Xim|| | o
m ; ; (anax{HSkII €2 1%t — Kol 3amax{||sk| €1} iy =il los ¢
k/m—1m—1 2
CEN 8L; ALz .
<SG L X (e e xenl o ey el s ()
ii 2
<O (SRmscs ¢ 2 ieicts ) og (4)
m o 61 30461 ¢

(iii)1 4d N C C 1 4d C N
< log ? m+e3/2 +3—/2m og C 3/2 +m

where (i) follows form Theorem 2, and (ii) follows form egs. (58) and (59 ), (111) follows from the fact that ¢ <
and d > 1 which gives log( ) > 1, and €; = O(¢'/2) such that k = O(¢~3/2) according to Theorem 1



Zhe Wang, Yi Zhou, Yingbin Liang, Guanghui Lan

We minimize the above bound over m, substitute the minimizer m* = N'/3, and obtain
E
CN%/3 4d
>~ el < o (7).
1=

Next, according to Theorem 2, Assumption 2 is satisfies with probability at least 1 — ¢ for gradient and 1 — ¢ for
Hessian . Thus, according to the union bound, the probability of a failure satisfaction per iteration is at most 2¢.
Then, for k iteration, the probability of failure satisfaction of Assumption 2 is at most 2k( according to the union
bound. To obtain Assumption 2 holds for the total k iteration with probability least 1 — §, we require

1—-2kC>1-9,
which yields
0
< —.
¢ 2k

Thus, with probability 1 — J, the algorithms successfully outputs an € approximated second-order stationary point,
with the total Hessian sample complexity is bounded by

k

CN?/3 8d CN?2/3 8d
>l < o (g ) < S e (55). (60)
=0

which gives

k ~ 2/3
>~ et =0 () (61)

C Proof of Concentration Inequality for Sampling without replacement

The proof generalizes the Hoeffding-Serfling inequality for scalar random variables in Bardenet and Maillard
(2015) to that for random matrices. We also apply various properties for handling random matrices in Tropp
(2012).

C.1 Definitions and Useful Lemmas

We first introduce the definition of the matrix function following Tropp (2012), and then introduce a number of
Lemmas that are useful in the proof.

Given a symmetric matrix A, suppose its eigenvalue decomposition is given by A = UAUT € R¥*? where
A =diag(A1,--+ ,Ag). Then a function f: R — R of A is defined as:

f(A) 2 Uf(A)UT, (62)
where f(A) = diag(f(A1),- -+, f(Aa)), i.e., f(A) applies the function f(-) to each diagonal entry of the matrix A.

The trace exponential function tr exp : A — tre, i.e., tr exp(A), is defined to first apply the exponential matrix
function exp(A), and then take the trace of exp(A). Such a function is monotone with respect to the semidefinite
order:

A<H = trexp(A)=<trexp(H), (63)

which follows because for two symmetric matrices A and H, if A < H, then \;(A) < \;(H) for every i, where
Ai(A) is the i-th largest eigenvalue of A. Furthermore, the matrix function log(-) is monotone with respect to
the semidefinite order (see the exercise 4.2.5 in Bhatia (2007)):

0<A<H = log(A) < log(H). (64)

The next three lemmas follow directly from Bardenet and Maillard (2015) because the proofs are applicable for
matrices.
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Lemma 11. [Bardenet and Maillard (2015)] Let Zy, = %Zle X;. The following reverse martingale structure
holds fOT‘ {Zk}ng.‘

E(Zy|Zpsr, - Zn—1] = Zpy1. (65)

Lemma 12. [Bardenet and Maillard (2015)] Let Yy, = Zn_1, for 1 <k < N — 1. For any A > 0, the following
equality holds for 2 < k < n,

XN-kt1—p— Yi1

AYr =AYr1— A
k k-1 N _k

(66)

Lemma 13. [Bardenet and Maillard (2015)] Let Yy = Zn_y for 1 <k < N — 1. For 2 < k < N, the following
equality holds

EXN_t41 — = Yr_1|Y1,---, Y 1] =0, (67)
where 1 = + Ziv:l X;.

The following lemma is an extension of Hoeffding’s inequality for scalars to matrices. We include a brief proof for
completeness.

Lemma 14 (Hoeffding’s Inequality for Matrix). For a random symmetric matriz X € R4 suppose
EX]=0 and al<xX <L

where a and b are real constants. Then for any A > 0, the following inequality holds
1
E[e*®] < exp (8)\2(17 - a)21>. (68)

Proof. The proof follows from the standard reasoning for scalar version. We emphasize only the difference in
handling matrices. Suppose the eigenvalue decomposition of the symmetric random matrix X can be written as
X = UAU?T| where U = [uy, -+ ,ug] and A = diag(\1,- -+, Aq). Therefore, we obtain e** = 25:1 eMiyul

i -

Since scalar function e*® is convex for any A > 0, for 1 < i < d, we have
bh— )\ A —
M < (b —let S ;e”’>, (69)
which implies that
b— X\ Ai —
eMig;ul < (be’\“ + bae’\b> wul. (70)
—a —a
Then,
AX ‘ i o] 9 ‘ b=Xi o Ai—a T
E[@ ]:]E ;8 1111'1]1- ﬁ]E ; b_ae +m€ u;u;
o N SN I
_ Aa i Aay, T i oAb T Ao T
IEL_l b g W f;b_ae u;u; +;b_ae u;u; ;b—ae uluz}
d A Ab d
(i) b a e e
_E{;b—ae)\ uluf - +b—aX7;b_ BAbuZuzT]
(iif) o oa
= ]ELX_; - ae)‘“uzuzT - ; - aeAbuiuiT]
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< exp (;)\Q(b — a)2>I © exp <;)\2(b — a)21>, (71)

where (i) follows from eq. (70) and the fact that the expectation of random matrix preserves the semi-definite order,
(ii) follows from X = Z?zl Aiw;ul’| (iii) follows because E[X] = 0, (iv) follows because I = UUT = Z?:l uul

70 i)

and (v) follows from the standard steps in the proof of the scalar version of Hoeffding’s inequality. O

Lemma 15. Tropp (2012)[Corollary 3.3] Let H be a fized self-adjoint matriz, and let X be a random self-adjoint
matriz. The following inequality holds

E trexp(H + X) < trexp(H + log(Ee™)). (72)

Lemma 16. Bardenet and Maillard (2015) For integer n < N, the following inequality holds

n

Z(Nl_t)2< (an)z(l_n;;l)

t=1

C.2 Proof of Theorem 4

First, it suffices to show the theorem only for symmetric matrices, due to the technique of dilations in Tropp
(2012) that transforms the asymmetric matrix to a symmetric matrix while keeping the spectral norm to be the
same.

Second, it also suffices to show that for 1 < i < N, X; are symmetric and bounded, i.e., al < X; < blI, and
1 < n < N —1, the following inequality holds

P(Am‘“(}z ZX - “> g ) s dexp ( 20— a2(1 ﬁjn)(l - n/N>)'

This is because the above result, with X; being replaced with —X;, implies

2

P (5 ZX ~) <) <dew (- gt AT ) (72)

Then the combination of the two results completes the desired theorem.

We start the proof by applying the matrix version of Chernoff inequality as follows. Let Zj; £ % Zle X;, for any
A > 0, we obtain

P(/\max(zn) Z 6) = P(exp(x\)\max(zn)) 2 eXPO@)
2 exp(—)\e)E €xXp (AAmax(Zn))

(i)
< exp(—A6)E Amax (exp(AZy,))

(iii)
< exp(—Ae)E tr exp(N\Z,,)

Y exp(—\e) tr exp(A;(b - a)2(”n%1) (1 - ”)1)
Y dexp <)\22(b - a)Q(”n%l) (1 - ;)) exp(—Ae)
— dexp <)\22(b _aplntd) (1 _ ;) _ Ae) (74)

n

where (i) follows from the matrix version of Chernoff inequality, (ii) follows from the fact that exp(-) is an increasing
function, thus exp ()\)\max(Zn)) = )\max(exp()\Zn), and (iii) follows from the fact that Apax(A) < tr(A), with
A = exp(A\Z,,), we get the desire result.
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We next bound E tr exp(\Z,). Let Yy 2 Zy_j for 1 <k <N —1,and Ei[ - | 2 E[ - |Yy, -+, Y}]. Thus,

i XNepae1 — p— Y,
E tr exp(A\Yn) 2E tr exp (wn1 _\DNonal T 1)

N —n
ii XNepae1 —p— Y,
DEg, 1trexp(/\Yn_1)\ Nontl =/ 1)
N —n
(i) XNt — = Y
< E tr exp ()\Yn_l + logE,,_1 exp (— pui +]1V ftn 1)), (75)

where (i) follows from Lemma 12, (ii) follows from the tower property of expectation, (iii) follows by applying
Lemma 15, where \Y,,_1 is determmistic given Y1,---, Y, and f)\(XN_nH — - Yn_l)/(N —n) is a random
variable matrix.

In order to apply Lemma 14 to bound E,,_1 exp(—)\(XN,nH — - Yn,l)/(N —n)), we first bound Xy _,11 —
i — Y1 as follows:

(i)
XNent1 == Yp1 = Xyopt1 — 4 — LN_pt1

( ) 1 N—n+1
XNont1 — PN a1 Z (Xiﬂ>
i=1
N—n+1
= XanJrl “nt 1 Z Xw (76)

where (i) follows from the definition of Y,,_1 and (ii) follows from the definition of Zy_,,+1. Since oI < X; < bI,
the above equality implies

(b—a) XN-nt1 —p—Yp_1 (b—a)
- I< < I 77
N -—n N—n N—n (77)

By applying Lemma 14, and the fact E,,_1[Xny_nt+1 — t — Yn—1] = 0 due to Lemma 13, we obtain

E,_1 exp (X;Nn+1 - Yn1> < (8)\2 (;Vb_@)zl) = exp (;)\2 (;\’[__‘;)21) (78)

Substituting eq. (78) into eq. (75), we obtain

(i) 1.,/ b—a 2
E tr exp(AY,) < E tr exp [ AY,,_1 + logexp §>\ I

N —n

A2/ b—a)®
=E tr exp()\Yn 1+2<N—n) I)

(i

A
< tr exp(logE ’\Yl 22(

t=2

)2I>. (79)

where (i) follows from egs. (63) and (64), and (ii) follows by applying the steps similar to obtain eq. (78) for n — 2
times.

To bound E[e*¥1], we first note that

N-1
_ _ 1 R NONEE _ (N _ _ 1 _
Y1—ZN1—N_1;(X1 M)—N_1<NM Xy — (N 1)#)—N_1<M XN):

where (i) follows because Ny = Zi\; X,;. Thus with aI < X; < bI and al < p < b, we obtain

(b—a) (b—a)
<Y<
Ry va

I (80)
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Applying the matrix Hoeffding lemma with eq. (80) and E[Y;] = E[Zx_1] = 0, we obtain

E[e*Y'] < exp (;)\2(;\)]__11>2I>. (81)

Substituting eq. (81) into eq. (79), we obtain

noy2
E tr exp(AY,) < tr eXp( <
t=
/\2 0)? =
=t
roxp( 50 oy

gtr exp<>\;(ba)2(N_n)2< Nl)I), (82)

,_.

where (i) follows from lemma 16.

Now let m = N —n, where 1 < m < N — 1, and hence Y,, = Zx_,,. Thus, eq. (82) implies

E tr exp(AZn) < tr exp(/\;(b —a)? (mr: D (1 - Z)I)

Substituting the above bound into eq. (74), we obtain

P(/\max(zn) > e> < exp(—Ae) tr exp()\;(b _apntl) <1 - ")I>

n N
A2 1
— dexp <2(b - a)Q% (1 - ;) - )\e>, (83)
where the last step follows form the equation tr(al) = da for I € R4*?, The proof is completed by minimizing the
above bound with respect to A > 0, and then substituting the minimizer \* = ne

=P+ HI-F)"
D Proofs for SVRC under Sampling without Replacement

D.1 Proof of Theorem 5

Proof. The idea of the proof is to apply the matrix concentration inequality for sampling without replacement
that we developed in Theorem 4 to characterize the sample complexity in order to satisfy the inexactness condition
|[He — V2F(xi)|| < amax{|[si||, €1} with the probability at least 1 — (.

We first note that

i)

Hy, - V2F(xi) & T ] [ icen i) (V2 Fi(k) = V2 £3(%))] + V2 F(xy,) — V2F (%)

1
= (V2 filxk) — V2 fi(X) + V2F (%) — V2F(xy))
€a (k)| ieng:(k)

where (i) follows from the definition of Hy in Algorithm 1. In order to apply the concentration inequality
(Theorem 4) to bound Hy, — V2F(xy), we define, for 1 <i < N,

X; = V2 fi(xx) — V2fi(X) + V2F(%) — V2F(xp),

which gives

H), — V2F(x;) = Z X;. (84)
|§H zef ()
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A N
Moreover, we have p £ + 3.7 X; = 0, and

g . i) g
2 £ ||A2H = HVZfZ'(Xk) - Vin(X) + V2F<X) — V2F<Xk)H < 2L2 ||Xk — XH y
where (i) follows because V2f;(-) is Lo Lipschitz, for 1 <i < N.
Thus, in order to satisfy |Hj — V2F(x)|| < amax{||si|,e1} with probability at least 1 — ¢, by eq. (84), it

is equivalent to satisfy Hm Dicen i) Xi— uH << amax{||sg||, €1} with probability at least 1 — (. We now
apply Theorem 4 for X;, and it is sufficient to have:

n€2
2 - g bl
(dy + da) exp ( 8o2(1+ 1/n)(1 — n/N)) ¢
which implies
ne> 2(dy + d2)
>1 .
20T A —n/N) = 8
Using (1 + 1/n) < 2, it is sufficient to have:
ne? 2(dy + ds)

e 2 log(————),
Too2(1—nyN) = 08——¢ )
which implies
1

"> - - ) (85)
N T 1602 1og(2(d1+dz)/C)

We then substitute o = 2L ||x;, — X||, ¢ = amax{||sg|| , €1}, and n = | (k)|, and obtain the required sample size
to satisfy

1
> .
EH (k)| = a2 max{||sg||?,€2} (86)

¥+
N T GaLZ]xi— x| log(4d/<)

We next bound the sample size |{,(k)| for the gradient, the proof follows the same procedure. We first define
X; € R¥*1 a5

Xi = Vfi(xk) - Vfl(f() + VF(i) — VF(X/C), (87)
and hence
gk — VF(xp) = > X (88)
I£g( Wit

Moreover, we have pu = % Zz‘egq(k) A; =0, and

. g @) .
o £ [|Aill = IVfi(xk) = Vfi(%) + VF(X) = VF(xp)|| < 2L1 [[xx — %],
where (i) follows because V f;(-) is L; Lipschitz, for 1 < i < N.

In order to satisfy ||gr — VF(xz)|| < S max{||sk||*, €2} with probability at least 1 — ¢, by eq. (88), it is equivalent
to satisfy H eho Siee o Xi - “H < Bmax{|sg]|?, €2} with probability at least 1 — . We then apply Theorem 4
for X; in the way similar to that for bounding the sample size for Hessian, with o = 2L ||xx — X||, © = 0,

e = Bmax{[|sg|?, €2}, and n = |€4(K)|, and obtain the required sample size to satisfy

1
>
|§g(l€)| = i + 62 max{||sk|\4,6‘f}
N T 64LF[|xp—%[|? log(2(d+1)/¢)

(89)

O
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D.2 Proof of Proposition 6
Proof. The proof of Proposition 6 is similar to the proof of Theorem 5. We first define A; € R?¥*? as
Ai = V2 fi(xi) = V2P (x), (90)

and hence py = % ZieEH(k) A; = 0. Furthermore,

()
o2 ||Al|| = HV2fi(xk) — VZF(Xk)“ < 204,
where (i) follows from Assumption 1.

Let {X;}1<™! = (A, :i € &4(k)}, and we have

\le(k)l S X, -p S A Y H -V F), (91)

ic&n (k) ‘5H( ) i€€n (k)

where (i) follows from the fact that = 0 and (ii) follows from the definition of Hj, in Algorithm 1.

We then apply Theorem 4 for X; with o = 2Ly, p =0, € = Co || Xg4+1 — Xx||, and n = |£x(k)|, and obtain the
require sampled size to satisfy

1

> .
(4| > g (92)
N T 64LZ log(4d/C)
To bound the sample size of gradient, i.e., |{,(k)|, we follow the similar proof by constructing
A; = Vfi(xk) — VF(xy), (93)

and applying Theorem 4 with o = 2Lg, p =0, e = C [|Xp4+1 — x;.c||27 and n = [{,(k)|, and obtain the required
sample size to satisfy

1

14 C?||xkq1—xkl*
N T 64L3 log(2(d+1)/0)

€o(R) = (94)

D.3 Proof of Theorem 7

Proof. Assume the algorithm terminates at iteration k, then the total Hessian complexity is given by

k/m 1m—1

[m—lm— 1
mt S S ) < Z; > T

° 1 +
=0 j=1 =1 N T 6aLZ|[ximt;—%i-m| log(4d/)
k/m—1m—1
L CkN s Z64L§ [Ximt i — Xiom|| log(4d/<)
a2e?
=0 j=1 1
(ii) 2
< N, —642L§ (m2k1/302/3) log <4d)
m ofeq ¢

(iii) 4d N m? C 4d N 9
< Clog<c> (m63/2+63/2) = 3/2log(c> <m+m)

where (i) follows form Theorem 5, and (ii) follows form eq. (58), (iii) follows from the fact that ( <1 and d > 1
which gives log ( ) > 1, and the fact that ¢; = O(e!/?) such that k = O(¢~3/2) according to Theorem 1.
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We minimize the above bound over m, substitute the minimizer m* = N'/3, and follows the similar procedure in
the proof of eq. (13) to ensure a successful event overall iteration with at least 1 — §, which gives that

k
CN?2/3 8d
> len(h)] < <5 oe (55 (95)
=0

Thus, we have

k ~ 3/2
>~ et =0 () (96)



