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A Proof of Convergence

A.1 Lemmas

In this subsection, we introduce two useful lemmas, which will be used in the proof of convergence.

Lemma 8 (Nesterov and Polyak (2006), Lemma 1). Let the Hessian ∇2f(·) of the function f(·) be L-Lipschitz
continuous with L > 0. Then, for any x,y ∈ Rd, we have

∥∥∇f(y)−∇f(x)−∇2f(x)(y − x)
∥∥ 6 L

2
‖y − x‖2 , (29)

∣∣∣∣f(y)− f(x)−∇f(x)T (y − x)− 1

2
(y − x)T∇2f(x)(y − x)

∣∣∣∣ 6
L

6
‖y − x‖3 . (30)

Lemma 9 (Wang et al. (2019), Lemma 3). Let M ∈ R,g ∈ Rd,H ∈ Sd×d, and

s = argmin
u∈Rd

g>u +
1

2
u>Hu +

M

6
‖u‖3 . (31)

Then, the following statements hold:

g + Hs +
M

2
‖s‖ s = 0, (32)

H +
M

2
‖s‖ I < 0, (33)

g>s +
1

2
s>Hs +

M

6
‖s‖3 6 −M

12
‖s‖3 . (34)

A.2 Proof of Theorem 1

Proof. Since ∇2f(x) is L2-Lipschitz, thus we have

f(xk+1)− f(xk)
(i)

6 ∇f(xk)>sk+1 +
1

2
s>k+1∇f(xk)sk+1 +

L2

6
‖sk+1‖3

6 g>k sk+1 +
1

2
s>k+1Hksk+1 +

M

6
‖sk+1‖3 + (∇f(xk)− gk)>sk+1

+
L2 −M

6
‖sk+1‖3 +

1

2
s>k+1(∇2f(xk)−Hk)sk+1

(ii)

6 −3M − 2L2

12
‖sk+1‖3 + (∇f(xk)− gk)>sk+1 +

1

2
s>k+1(∇f(xk)−Hk)sk+1 (35)

where (i) follows from Lemma 8 with y = xk+1,x = xk and sk+1 = xk+1 − xk, (ii) follows from eq. (34) in
Lemma 9 with g = gk,H = Hk and s = sk+1.

Next, we bound the terms (∇f(xk)− gk)>sk+1 and s>k+1(∇f(xk)−Hk)sk+1. For the first term, we have that

(∇f(xk)− gk)>sk+1 6 ‖∇f(xk)− gk‖ ‖sk+1‖
(i)

6 β
(
‖sk‖2 + ε21

)
‖sk+1‖ = β

(
‖sk‖2‖sk+1‖+ ε21‖sk+1‖

)

(ii)

6 β
(
‖sk‖3 + ‖sk+1‖3 + ε31 + ‖sk+1‖3

)
= β

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)
, (36)

where (i) follows from Assumption 2, which gives that ‖gk −∇F (xk)‖ 6 βmax
{
‖sk‖2 , ε21

}
, and (ii) follows from

the inequality that for a, b ∈ R+, a2b 6 a3 + b3, which can be verified by checking the cases with a < b and a > b,
respectively. Similarly, we obtain that

s>k+1(∇f(xk)−Hk)sk+1 6
∥∥∇2f(xk)−Hk

∥∥ ‖sk+1‖2
(i)

6 α (‖sk‖+ ε1) ‖sk+1‖2 = α
(
‖sk‖‖sk+1‖2 + ε1‖sk+1‖2

)
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(ii)

6 α
(
‖sk‖3 + ‖sk+1‖3 + ε31 + ‖sk+1‖3

)
= α

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)
, (37)

where (i) follows from Assumption 2, which gives that
∥∥Hk −∇2F (xk)

∥∥ 6 αmax {‖sk‖ , ε1}, and (ii) follows from
the inequality that for a, b ∈ R+, a2b 6 a3 + b3.

Plugging eqs. (36) and (37) into eq. (35) yields

f(xk+1)− f(xk) 6 −3M − 2L2

12
‖sk+1‖3 + β

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)
+
α

2

(
‖sk‖3 + 2‖sk+1‖3 + ε31

)

= −
(

3M − 2L2

12
− 2β − α

)
‖sk+1‖3 +

(
β +

α

2

)
‖sk‖3 +

(
β +

α

2

)
ε31 (38)

Summing Equation (38) for 0 to k, we obtain

f(xk+1)− f(x0) 6 −
(

3M − 2L2

12
− 2β − α

) k+1∑

i=1

‖si‖3 +
(
β +

α

2

) k∑

i=0

‖si‖3 +
(
β +

α

2

) k∑

i=0

ε31

6 −
(

3M − 2L2

12
− 2β − α

) k+1∑

i=1

‖si‖3 +
(
β +

α

2

) k+1∑

i=0

‖si‖3 +
(
β +

α

2

) k∑

i=0

ε31

6 −
(

3M − 2L2

12
− 3β − 3

2
α

) k+1∑

i=1

‖si‖3 +
(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

) k∑

i=0

ε31, (39)

We next note that

k+1∑

i=1

‖si‖3 =
1

2

(
k+1∑

i=1

‖si‖3 +

k+1∑

i=1

‖si‖3
)

=
1

2

(
k+1∑

i=1

‖si‖3 +

k∑

i=0

‖si+1‖3
)

> 1

2

k∑

i=1

(
‖si‖3 + ‖si+1‖3

)
. (40)

Plugging eq. (40) into eq. (39) yields that

f(xk+1)− f(x0) 6 −
k∑

i=1

(
3M − 2L2

24
− 3

2
β − 3

4
α

)(
‖si‖3 + ‖si+1‖3

)
+
(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

) k∑

i=0

ε31

(i)

6 −
k∑

i=1

(
3M − 2L2

24
− 5

2
β − 5

4
α

)(
‖si‖3 + ‖si+1‖3

)
+
(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

)
ε31,

where (i) follows from the fact that before the algorithm terminates we always have that ‖si‖ > ε1 or ‖si+1‖ > ε1,
which gives that ‖si‖3 + ‖si+1‖3 > ε31. Therefore, we have

k∑

i=1

(
3M − 2L2

24
− 5

2
β − 5

4
α

)(
‖si‖3 + ‖si+1‖3

)
6 f(x0)− f∗ +

(
β +

α

2

)
‖s0‖3 +

(
β +

α

2

)
ε31

(i)
= f(x0)− f∗ + (2β + α) ε31 (41)

where (i) follows from the fact that ‖s0‖ = ε1. Thus, if the algorithm never terminates, then we always have that
‖si‖ > ε1 or ‖si+1‖ > ε1, which gives ‖si‖3 + ‖si+1‖3 > ε31. Following from Equation (41), we obtain that

k × γε31 6 f(x0)− f∗ + (2β + α) ε31, (42)

where γ ,
(
3M−2L2

24 − 5
2β − 5

4α
)
. Therefore, we obtain

k 6 f(x0)− f∗ + (2β + α) ε31
γε31

, (43)

which shows that the algorithm must terminates if the total number of iterations exceeds O(ε−31 ). With the choice
of ε1 in Theorem 1 , we obtain that the algorithm terminates at most with total iteration k = O(ε−3/2).
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Suppose that the algorithm terminates at iteration k, then according to the analysis in eq. (41), we have that

k−1∑

i=1

γ
(
‖si‖3 + ‖si+1‖3

)
6 f(x0)− f∗ + (2β + α) ε31. (44)

On the other hand, according to eq. (44) and the terminal condition that ‖si‖ 6 ε1 and ‖si+1‖ 6 ε1, we obtain

k∑

i=1

γ
(
‖si‖3 + ‖si+1‖3

)
6 f(x0)− f∗ + (2β + α+ 2γ) ε31,

which gives that

k+1∑

i=1

‖si‖3 6 f(x0)− f∗ + (2β + α+ 2γ) ε31
γ

. (45)

We next consider the convergence of ‖∇f(xk)‖ and
∥∥∇2f(xk)

∥∥. Next, we prove the convergence rate of ∇f(·)
and ∇2f(·). We first derive

‖∇f(xk+1)‖ (i)
=

∥∥∥∥∇f(xk+1)−
(

gk + Hksk+1 +
M

2
‖sk+1‖ sk+1

)∥∥∥∥

6 ‖∇f(xk+1)− (gk + Hksk+1)‖+
M

2
‖sk+1‖2

6
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)sk+1

∥∥+ ‖∇f(xk)− gk‖+
∥∥(∇2f(xk)−Hk)sk+1

∥∥+
M

2
‖sk+1‖2

(ii)

6 L2

2
‖sk+1‖2 + β(‖sk‖2 + ε21) + α(‖sk‖+ ε1) ‖sk+1‖+

M

2
‖sk+1‖2

(iii)

6
(
L+M

2
+ 2β + 2α

)
ε21

(iv)

6 ε,

where (i) follows from eq. (32) with g = gk,H = Hk and s = sk+1, (ii) follows from eq. (29) in Lemma 8 and
Assumption 2, (iii) follows from the terminal condition of the algorithm, and (iv) follows from eq. (10).

Similarly, we have

∇2f(xk+1)
(i)

< Hk −
∥∥Hk −∇2f(xk+1)

∥∥ I

(ii)

< −M
2
‖sk+1‖ I−

∥∥Hk −∇2f(xk+1)
∥∥ I

< −M
2
‖sk+1‖ I−

∥∥Hk −∇2f(xk)
∥∥ I−

∥∥∇2f(xk)−∇2f(xm+1)
∥∥ I

(iii)

< −M
2
‖sk+1‖ I− α(‖sk‖+ ε1)I− L2 ‖sk+1‖ I

(iv)

< −
(
M + 2L2

2
+ 2α

)
ε1I

(v)

< εI,

where (i) follows from Weyl’s inequality, (ii) follows from eq. (33) with H = Hm and s = sm+1, (iii) follows from
Assumption 2 and the fact that ∇2f(·) is L2-Lipschitz, (iv) follows from the terminal condition of the algorithm,
and (v) follows from eq. (10).

B Proofs for SVRC under Sampling with Replacement

B.1 Proof of Theorem 2

The idea of the proof is to apply the following matrix Bernstein inequality Tropp (2012) for sampling with
replacement to characterize the sample complexity in order to satisfy the inexactness condition

∥∥Hk −∇2F (xk)
∥∥ 6

αmax{‖sk‖ , ε1} with the probability at least 1− ζ.
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Lemma 10 (Matrix Bernstein Inequality). Consider a finite sequence {Xk} of independent, random matrices
with dimensions d1 × d2. Assume that each random matrix satisfies

EXk = 0 and ‖Xk‖ 6 R almost surely.

Define

σ2 , max
(∥∥∥
∑

k
E(XkX

∗
k)
∥∥∥ ,
∥∥∥
∑

k
E(X∗kXk)

∥∥∥
)
. (46)

Then, for all ε > 0,

P

(∥∥∥
∑

k
Xk

∥∥∥ > ε

)
6 2(d1 + d2) exp

(
− ε2/2

σ2 +Rε/3

)
.

Let ξH(k) be the collection of index that uniformly picked from 1, · · · , N with replacement, and Xi be

Xi =
1

|ξH(k)|
(
∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk)

)
,

then we have

Hk −∇2F (xk) =
∑

i∈ξH(k)

Xi. (47)

Moreover, we have EXi = 0, and

R , ‖Xi‖ =
1

|ξH(k)|
∥∥∇2fξi(xk)−∇2fξi(x̃) +∇2F (x̃)−∇2F (xk)

∥∥

(i)

6 2L2

|ξH(k)| ‖xk − x̃‖ , (48)

where (i) follows because ∇2fi(·) is L2 Lipschitz, for 1 6 i 6 N .

The variance also can be bounded by

σ2 , max

(∥∥∥∥
∑

k∈ξH(k)
E(XkX

∗
k)

∥∥∥∥ ,
∥∥∥∥
∑

k∈ξH(k)
E(X∗kXk)

∥∥∥∥
)

(i)

6
∥∥∥∥
∑

k∈ξH(k)
E(X2

k)

∥∥∥∥
(ii)

6
∑

k∈ξH(k)
E
∥∥X2

k

∥∥ 6
∑

k∈ξH(k)
E ‖Xk‖2

(ii)

6 4L2
2

|ξH(k)| ‖xk − x̃‖2 (49)

where (i) follows from the fact that Xk is real and symmetric, (ii) follows from Jensen’s inequality, and (iii)
follows from eq. (48).

Therefore, in order to satisfy
∥∥Hk −∇2F (xk)

∥∥ 6 αmax{‖sk‖ , ε1} with probability at least 1− ζ, by eq. (47), it is

equivalent to require
∥∥∥
∑
i∈ξH(k) Xi

∥∥∥ 6 αmax{‖sk‖ , ε1} with probability at least 1− ζ. We now apply Lemma 10

for Xi, and it is sufficient to have:

2(d1 + d2) exp

( −ε2/2
σ2 +Rε/3

)
6 ζ

which is equivalent to have

1

σ2 +Rε/3
> 2

ε2
log

(
2(d1 + d2)

ζ

)
. (50)
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Plugging eqs. (48) and (49) into eq. (50) yields

1
4L2

2

|ξH(k)| ‖xk − x̃‖2 + 2L2

|ξH(k)| ‖xk − x̃‖ ε/3
> 2

ε2
log

(
4d

ζ

)
,

which gives

|ξH(k)| >
(

8L2
2

ε2
‖xk − x̃‖2 +

4L2

3ε
‖xk − x̃‖

)
log

(
4d

ζ

)
. (51)

Substituting ε = αmax{‖sk‖ , ε1}, we obtain the required sample size to be bounded by

|ξH(k)| >
(

8L2
2

α2 max{‖sk‖2 , ε21}
‖xk − x̃‖2 +

4L2

3αmax{‖sk‖ , ε1}
‖xk − x̃‖

)
log

(
4d

ζ

)
. (52)

We next bound the sample size |ξg(k)| for the gradient in the similar procedure. We first define Xi ∈ Rd×1 as

Xi =
1

|ξg(k)| (∇fξi(xk)−∇fξi(x̃) +∇F (x̃)−∇F (xk)) , (53)

then we have

gk −∇f(xk) =
∑

i∈ξg(k)
Xi (54)

Furthermore,

R = ‖Xi‖ =
1

|ξg(k)| ‖∇fξi(xk)−∇fξi(x̃) +∇F (x̃)−∇F (xk)‖
(i)

6 2L1

|Sg,k|
‖xk − x̃‖ , (55)

where (i) follows because ∇fi(·) is L1 Lipschitz, for i = 1, . . . , N , and

σ2 , max

(∥∥∥∥
∑

k∈ξg(k)
E(XkX

∗
k)

∥∥∥∥ ,
∥∥∥∥
∑

k∈ξg(k)
E(X∗kXk)

∥∥∥∥
)

6
∑

k∈ξH(k)
E ‖Xk‖2

(ii)

6 4L2
1

|ξg(k)| ‖xk − x̃‖2

In order to satisfy ‖gk −∇F (xk)‖ 6 βmax
{
‖sk‖2 , ε21

}
with the probability at least 1 − ζ, by eq. (54), it is

equivalent to require
∥∥∥
∑
i∈ξg(k)|Xi

∥∥∥ 6 βmax
{
‖sk‖2 , ε21

}
with the probability at least 1 − ζ. We then apply

Lemma 10 for Xi in the way similar to that for bounding the sample size for Hessian, with R = 2L1

|Sg,k| ‖xk − x̃‖,
ε = βmax

{
‖sk‖2 , ε21

}
, and σ2 =

4L2
1

|ξg(k)| ‖xk − x̃‖2, and obtain the required sample size to satisfy

|ξg(k)| >
(

8L2
1

β2 max{‖sk‖4 , ε41}
‖xk − x̃‖2 +

4L1

3βmax{‖sk‖2 , ε21}
‖xk − x̃‖

)
log

(
2(d+ 1)

ζ

)
. (56)

B.2 Proof of Theorem 3

First, by eq. (13), we have

k+1∑

i=1

‖xi − xi−1‖3 6 C. (57)

We then derive

k/m−1∑

i=0

m−1∑

j=1

‖xi·m+j − xi·m‖2
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6
k/m−1∑

i=0

m−1∑

j=1

(
‖xi·m+j − xi·m+j−1‖+ · · ·+ ‖xi·m+1 − xi·m‖

)2

6
k/m−1∑

i=0

m−1∑

j=1

(
‖xi·m+m−1 − xi·m+m−2‖+ · · ·+ ‖xi·m+1 − xi·m‖

)2

=

k/m−1∑

i=0

m−1∑

j=1

(m−1∑

l=1

‖xi·m+l − xi·m+l−1‖
)2 (i)

6
k/m−1∑

i=0

m−1∑

j=1

m
m−1∑

l=1

‖xi·m+l − xi·m+l−1‖2

(ii)

6 m2

k/m−1∑

i=0

m−1∑

l=1

‖xi·m+l − xi·m+l−1‖2 6 m2
k∑

i=1

‖xi − xi−1‖2

(iii)

6 m2k1/3
( k∑

i=1

‖xi − xi−1‖3
)2/3 (iv)

6 m2k1/3C2/3, (58)

where (i) follows from the Cauthy-Schwaz inequality (ii) follows because j is not a variable in the inner summation,
(iii) follows from Holder’s inequality, and (iv) follows from eq. (57).

Similarly, we have that

k/m−1∑

i=0

m−1∑

j=1

‖xi·m+j − xi·m‖ 6
k/m−1∑

i=0

m−1∑

j=1

(
‖xi·m+j − xi·m+j−1‖+ · · ·+ ‖xi·m+1 − xi·m‖

)

6
k/m−1∑

i=0

m−1∑

j=1

(
‖xi·m+m−1 − xi·m+m−2‖+ · · ·+ ‖xi·m+1 − xi·m‖

)

=

k/m−1∑

i=0

m−1∑

j=1

(m−1∑

l=1

‖xi·m+l − xi·m+l−1‖
)

(i)

6 m

k/m−1∑

i=0

m−1∑

l=1

‖xi·m+l − xi·m+l−1‖

6 m
k∑

i=1

‖xi − xi−1‖
(ii)

6 mk2/3
( k∑

i=1

‖xi − xi−1‖3
)1/3 (iii)

6 mk2/3C1/3, (59)

where (i) follows because j is not a variable in the inner summation, (ii) follows from Holder’s inequality, and (iii)
follows from eq. (57).

Thus, the total sample size for Hessian is given by

m+
kN

m
+

k/m−1∑

i=0

m−1∑

j=1

|ξH(k)|

(i)

6 CkN

m
+

k/m−1∑

i=0

m−1∑

j=1

(
8L2

2

α2 max{‖sk‖2 , ε21}
‖xi·m+j − xi·m‖2 +

4L2

3αmax{‖sk‖ , ε1}
‖xi·m+j − xi·m‖

)
log

(
4d

ζ

)

6 CkN

m
+

k/m−1∑

i=0

m−1∑

j=1

(
8L2

2

α2ε21
‖xi·m+j − xi·m‖2 +

4L2

3αε1
‖xi·m+j − xi·m‖

)
log

(
4d

ζ

)

(ii)

6 CkN

m
+

(
8L2

2

α2ε21
m2k1/3C2/3 +

4L2

3αε1
mk2/3C1/3

)
log

(
4d

ζ

)

(iii)

6 log

(
4d

ζ

)(
N

mε3/2
+

C

ε3/2
m2 +

C

ε3/2
m

)
= log

(
4d

ζ

)
C

ε3/2

(
N

m
+m2

)

where (i) follows form Theorem 2, and (ii) follows form eqs. (58) and (59), (iii) follows from the fact that ζ 6 1

and d > 1 which gives log
(

4d
ζ

)
> 1, and ε1 = O(ε1/2) such that k = O(ε−3/2) according to Theorem 1
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We minimize the above bound over m, substitute the minimizer m? = N1/3, and obtain

k∑

i=0

|ξH(k)| 6 CN2/3

ε3/2
log

(
4d

ζ

)
.

Next, according to Theorem 2, Assumption 2 is satisfies with probability at least 1− ζ for gradient and 1− ζ for
Hessian . Thus, according to the union bound, the probability of a failure satisfaction per iteration is at most 2ζ.
Then, for k iteration, the probability of failure satisfaction of Assumption 2 is at most 2kζ according to the union
bound. To obtain Assumption 2 holds for the total k iteration with probability least 1− δ, we require

1− 2kζ > 1− δ,

which yields

ζ 6 δ

2k
.

Thus, with probability 1− δ, the algorithms successfully outputs an ε approximated second-order stationary point,
with the total Hessian sample complexity is bounded by

k∑

i=0

|ξH(k)| 6 CN2/3

ε3/2
log

(
8d

ε3/2δ

)
6 CN2/3

ε3/2
log

(
8d

εδ

)
. (60)

which gives

k∑

i=0

|ξH(k)| = Õ

(
N2/3

ε3/2

)
. (61)

C Proof of Concentration Inequality for Sampling without replacement

The proof generalizes the Hoeffding-Serfling inequality for scalar random variables in Bardenet and Maillard
(2015) to that for random matrices. We also apply various properties for handling random matrices in Tropp
(2012).

C.1 Definitions and Useful Lemmas

We first introduce the definition of the matrix function following Tropp (2012), and then introduce a number of
Lemmas that are useful in the proof.

Given a symmetric matrix A, suppose its eigenvalue decomposition is given by A = UΛUT ∈ Rd×d, where
Λ = diag(λ1, · · · , λd). Then a function f : R→ R of A is defined as:

f(A) , Uf(Λ)UT , (62)

where f(Λ) = diag(f(λ1), · · · , f(λd)), i.e., f(Λ) applies the function f(·) to each diagonal entry of the matrix Λ.

The trace exponential function tr exp : A→ treA, i.e., tr exp(A), is defined to first apply the exponential matrix
function exp(A), and then take the trace of exp(A). Such a function is monotone with respect to the semidefinite
order:

A 4 H =⇒ tr exp(A) 4 tr exp(H), (63)

which follows because for two symmetric matrices A and H, if A 4 H, then λi(A) 6 λi(H) for every i, where
λi(A) is the i-th largest eigenvalue of A. Furthermore, the matrix function log(·) is monotone with respect to
the semidefinite order (see the exercise 4.2.5 in Bhatia (2007)):

0 ≺ A 4 H =⇒ log(A) 4 log(H). (64)

The next three lemmas follow directly from Bardenet and Maillard (2015) because the proofs are applicable for
matrices.
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Lemma 11. [Bardenet and Maillard (2015)] Let Zk , 1
k

∑k
i=1 Xi. The following reverse martingale structure

holds for {Zk}k6N :

E[Zk|Zk+1, · · ·ZN−1] = Zk+1. (65)

Lemma 12. [Bardenet and Maillard (2015)] Let Yk , ZN−k for 1 6 k 6 N − 1. For any λ > 0, the following
equality holds for 2 6 k 6 n,

λYk = λYk−1 − λ
XN−k+1 − µ−Yk−1

N − k . (66)

Lemma 13. [Bardenet and Maillard (2015)] Let Yk , ZN−k for 1 6 k 6 N − 1. For 2 6 k 6 N , the following
equality holds

E[XN−k+1 − µ−Yk−1|Y1, · · · ,Yk−1] = 0, (67)

where µ = 1
N

∑N
t=1 Xt.

The following lemma is an extension of Hoeffding’s inequality for scalars to matrices. We include a brief proof for
completeness.

Lemma 14 (Hoeffding’s Inequality for Matrix). For a random symmetric matrix X ∈ Rd×d, suppose

E[X] = 0 and aI 4 X 4 bI.

where a and b are real constants. Then for any λ > 0, the following inequality holds

E[eλX] 4 exp

(
1

8
λ2(b− a)2I

)
. (68)

Proof. The proof follows from the standard reasoning for scalar version. We emphasize only the difference in
handling matrices. Suppose the eigenvalue decomposition of the symmetric random matrix X can be written as
X = UΛUT , where U = [u1, · · · ,ud] and Λ = diag(λ1, · · · , λd). Therefore, we obtain eλX =

∑d
i=1 e

λλiuiu
T
i .

Since scalar function eλx is convex for any λ > 0, for 1 6 i 6 d, we have

eλλi 6
(
b− λi
b− a e

λa +
λi − a
b− a e

λb

)
, (69)

which implies that

eλλiuiu
T
i 4

(
b− λi
b− a e

λa +
λi − a
b− a e

λb

)
uiu

T
i . (70)

Then,

E[eλX] = E
[ d∑

i=1

eλλiuiu
T
i

]
(i)

4 E
[ d∑

i=1

(
b− λi
b− a e

λa +
λi − a
b− a e

λb

)
uiu

T
i

]

= E
[ d∑

i=1

b

b− ae
λauiu

T
i −

d∑

i=1

λi
b− ae

λauiu
T
i +

d∑

i=1

λi
b− ae

λbuiu
T
i −

d∑

i=1

a

b− ae
λbuiu

T
i

]

(ii)
= E

[ d∑

i=1

b

b− ae
λauiu

T
i −

eλa

b− aX +
eλb

b− aX−
d∑

i=1

a

b− ae
λbuiu

T
i

]

(iii)
= E

[ d∑

i=1

b

b− ae
λauiu

T
i −

d∑

i=1

a

b− ae
λbuiu

T
i

]

(iv)
= E

[
b

b− ae
λaI− a

b− ae
λbI

]
=

(
b

b− ae
λa − a

b− ae
λb

)
I
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4 exp

(
1

8
λ2(b− a)2

)
I

(v)
= exp

(
1

8
λ2(b− a)2I

)
, (71)

where (i) follows from eq. (70) and the fact that the expectation of random matrix preserves the semi-definite order,

(ii) follows from X =
∑d
i=1 λiuiu

T
i , (iii) follows because E[X] = 0, (iv) follows because I = UUT =

∑d
i=1 uiu

T
i ,

and (v) follows from the standard steps in the proof of the scalar version of Hoeffding’s inequality.

Lemma 15. Tropp (2012)[Corollary 3.3] Let H be a fixed self-adjoint matrix, and let X be a random self-adjoint
matrix. The following inequality holds

E tr exp(H + X) 6 tr exp(H + log(EeX)). (72)

Lemma 16. Bardenet and Maillard (2015) For integer n 6 N , the following inequality holds

n∑

t=1

( 1

N − t
)2 6 n

(N − n)2
(
1− n− 1

N

)

C.2 Proof of Theorem 4

First, it suffices to show the theorem only for symmetric matrices, due to the technique of dilations in Tropp
(2012) that transforms the asymmetric matrix to a symmetric matrix while keeping the spectral norm to be the
same.

Second, it also suffices to show that for 1 6 i 6 N , Xi are symmetric and bounded, i.e., aI 4 Xi 4 bI, and
1 6 n 6 N − 1, the following inequality holds

P

(
λmax

(
1

n

n∑

i=1

Xi − µ
)

> ε

)
6 d exp

(
− nε2

2(b− a)2(1 + 1/n)(1− n/N)

)
.

This is because the above result, with Xi being replaced with −Xi, implies

P

(
λmin

(
1

n

n∑

i=1

Xi − µ
)

6 −ε
)

6 d exp

(
− nε2

2(b− a)2(1 + 1/n)(1− n/N)

)
. (73)

Then the combination of the two results completes the desired theorem.

We start the proof by applying the matrix version of Chernoff inequality as follows. Let Zk , 1
k

∑k
i=1 Xi, for any

λ > 0, we obtain

P

(
λmax(Zn) > ε

)
= P

(
exp(λλmax(Zn)) > exp(λε)

)

(i)

6 exp(−λε)E exp
(
λλmax(Zn)

)

(ii)

6 exp(−λε)E λmax

(
exp(λZn)

)

(iii)

6 exp(−λε)E tr exp(λZn)

(iv)

6 exp(−λε) tr exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
I

)

(v)

6 d exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

))
exp(−λε)

= d exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
− λε

)
(74)

where (i) follows from the matrix version of Chernoff inequality, (ii) follows from the fact that exp(·) is an increasing
function, thus exp

(
λλmax(Zn)

)
= λmax

(
exp(λZn), and (iii) follows from the fact that λmax(A) 6 tr(A), with

A = exp(λZn), we get the desire result.
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We next bound E tr exp(λZn). Let Yk , ZN−k for 1 6 k 6 N − 1, and Ek[ · ] , E[ · |Y1, · · · ,Yk]. Thus,

E tr exp(λYn)
(i)
= E tr exp

(
λYn−1 − λ

XN−n+1 − µ−Yn−1
N − n

)

(ii)
= E En−1 tr exp

(
λYn−1 − λ

XN−n+1 − µ−Yn−1
N − n

)

(iii)

6 E tr exp

(
λYn−1 + logEn−1 exp

(
− λXN−n+1 − µ−Yn−1

N − n

))
, (75)

where (i) follows from Lemma 12, (ii) follows from the tower property of expectation, (iii) follows by applying
Lemma 15, where λYn−1 is deterministic given Y1, · · · ,Yk, and −λ

(
XN−n+1−µ−Yn−1

)
/(N − n) is a random

variable matrix.

In order to apply Lemma 14 to bound En−1 exp(−λ
(
XN−n+1 − µ−Yn−1

)
/(N − n)), we first bound XN−n+1 −

µ−Yn−1 as follows:

XN−n+1 − µ−Yn−1
(i)
= XN−n+1 − µ− ZN−n+1

(ii)
= XN−n+1 − µ−

1

N − n+ 1

N−n+1∑

i=1

(
Xi − µ

)

= XN−n+1 −
1

N − n+ 1

N−n+1∑

i=1

Xi, (76)

where (i) follows from the definition of Yn−1 and (ii) follows from the definition of ZN−n+1. Since aI 4 Xi 4 bI,
the above equality implies

− (b− a)

N − n I 4 XN−n+1 − µ−Yn−1
N − n 4 (b− a)

N − n I. (77)

By applying Lemma 14, and the fact En−1[XN−n+1 − µ−Yn−1] = 0 due to Lemma 13, we obtain

En−1 exp

(
XN−n+1 − µ−Yn−1

)
4 exp

(
1

8
λ2
(

2(b− a)

N − n

)2

I

)
= exp

(
1

2
λ2
(
b− a
N − n

)2

I

)
, (78)

Substituting eq. (78) into eq. (75), we obtain

E tr exp(λYn)
(i)

6 E tr exp

(
λYn−1 + log exp

(
1

2
λ2
(
b− a
N − n

)2

I

))

= E tr exp

(
λYn−1 +

λ2

2

(
b− a
N − n

)2

I

)

· · · · · ·
(ii)

6 tr exp

(
logE[eλY1 ] +

n∑

t=2

λ2

2

(
b− a
N − t

)2

I

)
. (79)

where (i) follows from eqs. (63) and (64), and (ii) follows by applying the steps similar to obtain eq. (78) for n− 2
times.

To bound E[eλY1 ], we first note that

Y1 = ZN−1 =
1

N − 1

N−1∑

i=1

(
Xi − µ

)
(i)
=

1

N − 1

(
Nµ−XN − (N − 1)µ

)
=

1

N − 1

(
µ−XN

)
,

where (i) follows because Nµ =
∑N
i=1 Xi. Thus with aI 4 Xi 4 bI and aI 4 µ 4 bI, we obtain

− (b− a)

N − 1
I 4 Y1 4 (b− a)

N − 1
I. (80)
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Applying the matrix Hoeffding lemma with eq. (80) and E[Y1] = E[ZN−1] = 0, we obtain

E[eλY1 ] 4 exp

(
1

2
λ2
(
b− 1

N − 1

)2

I

)
. (81)

Substituting eq. (81) into eq. (79), we obtain

E tr exp(λYn) 6 tr exp

( n∑

t=1

λ2

2

(
b− a
N − t

)2

I

)

= tr exp

(
λ2

2
(b− a)2

n∑

t=1

(
1

N − t

)2

I

)

(i)

6 tr exp

(
λ2

2
(b− a)2

n

(N − n)2

(
1− n− 1

N

)
I

)
, (82)

where (i) follows from lemma 16.

Now let m = N − n, where 1 6 m 6 N − 1, and hence Yn = ZN−n. Thus, eq. (82) implies

E tr exp(λZm) 6 tr exp

(
λ2

2
(b− a)2

(m+ 1)

m2

(
1− m

N

)
I

)
.

Substituting the above bound into eq. (74), we obtain

P

(
λmax(Zn) > ε

)
6 exp(−λε) tr exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
I

)

= d exp

(
λ2

2
(b− a)2

(n+ 1)

n2

(
1− n

N

)
− λε

)
, (83)

where the last step follows form the equation tr(aI) = da for I ∈ Rd×d. The proof is completed by minimizing the
above bound with respect to λ > 0, and then substituting the minimizer λ? = nε

(b−a)2(1+ 1
n )(1− n

N )
.

D Proofs for SVRC under Sampling without Replacement

D.1 Proof of Theorem 5

Proof. The idea of the proof is to apply the matrix concentration inequality for sampling without replacement
that we developed in Theorem 4 to characterize the sample complexity in order to satisfy the inexactness condition∥∥Hk −∇2F (xk)

∥∥ 6 αmax{‖sk‖ , ε1} with the probability at least 1− ζ.

We first note that

Hk −∇2F (xk)
(i)
= 1
|ξH(k)|

[∑
i∈ξH(k)(∇2fi(xk)−∇2fi(x̃))

]
+∇2F (x̃k)−∇2F (xk)

=
1

|ξH(k)|
∑

i∈ξH(k)

(
∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk)

)

where (i) follows from the definition of Hk in Algorithm 1. In order to apply the concentration inequality
(Theorem 4) to bound Hk −∇2F (xk), we define, for 1 6 i 6 N ,

Xi = ∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk),

which gives

Hk −∇2F (xk) =
1

|ξH(k)|
∑

i∈ξH(k)

Xi. (84)
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Moreover, we have µ , 1
N

∑N
i=1 Xi = 0, and

σ , ‖Ai‖ =
∥∥∇2fi(xk)−∇2fi(x̃) +∇2F (x̃)−∇2F (xk)

∥∥ (i)

6 2L2 ‖xk − x̃‖ ,

where (i) follows because ∇2fi(·) is L2 Lipschitz, for 1 6 i 6 N .

Thus, in order to satisfy
∥∥Hk −∇2F (xk)

∥∥ 6 αmax{‖sk‖ , ε1} with probability at least 1 − ζ, by eq. (84), it

is equivalent to satisfy
∥∥∥ 1
|ξH(k)|

∑
i∈ξH(k) Xi − µ

∥∥∥ 66 αmax{‖sk‖ , ε1} with probability at least 1− ζ. We now

apply Theorem 4 for Xi, and it is sufficient to have:

2(d1 + d2) exp

(
− nε2

8σ2(1 + 1/n)(1− n/N)

)
6 ζ,

which implies

nε2

8σ2(1 + 1/n)(1− n/N)
> log(

2(d1 + d2)

ζ
).

Using (1 + 1/n) 6 2, it is sufficient to have:

nε2

16σ2(1− n/N)
> log(

2(d1 + d2)

ζ
),

which implies

n > 1
1
N + ε2

16σ2 log(2(d1+d2)/ζ)

. (85)

We then substitute σ = 2L2 ‖xk − x̃‖, ε = αmax{‖sk‖ , ε1}, and n = |ξH(k)|, and obtain the required sample size
to satisfy

|ξH(k)| > 1

1
N +

α2 max{‖sk‖2,ε21}
64L2

2‖xk−x̃‖2 log(4d/ζ)

. (86)

We next bound the sample size |ξg(k)| for the gradient, the proof follows the same procedure. We first define
Xi ∈ Rd×1 as

Xi = ∇fi(xk)−∇fi(x̃) +∇F (x̃)−∇F (xk), (87)

and hence

gk −∇F (xk) =
1

|ξg(k)|
∑

i∈ξg(k)
Xi. (88)

Moreover, we have µ = 1
N

∑
i∈ξg(k) Ai = 0, and

σ , ‖Ai‖ = ‖∇fi(xk)−∇fi(x̃) +∇F (x̃)−∇F (xk)‖
(i)

6 2L1 ‖xk − x̃‖ ,

where (i) follows because ∇fi(·) is L1 Lipschitz, for 1 6 i 6 N .

In order to satisfy ‖gk −∇F (xk)‖ 6 βmax{‖sk‖2 , ε21} with probability at least 1− ζ, by eq. (88), it is equivalent

to satisfy
∥∥∥ 1
|ξg(k)|

∑
i∈ξg(k) Xi − µ

∥∥∥ 6 βmax{‖sk‖2 , ε21} with probability at least 1− ζ. We then apply Theorem 4

for Xi in the way similar to that for bounding the sample size for Hessian, with σ = 2L1 ‖xk − x̃‖, µ = 0,

ε = βmax{‖sk‖2 , ε21}, and n = |ξg(k)|, and obtain the required sample size to satisfy

|ξg(k)| > 1

1
N +

β2 max{‖sk‖4,ε41}
64L2

1‖xk−x̃‖2 log(2(d+1)/ζ)

. (89)
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D.2 Proof of Proposition 6

Proof. The proof of Proposition 6 is similar to the proof of Theorem 5. We first define Ai ∈ Rd×d as

Ai = ∇2fi(xk)−∇2F (xk), (90)

and hence µ = 1
N

∑
i∈ξH(k) Ai = 0. Furthermore,

σ , ‖Ai‖ =
∥∥∇2fi(xk)−∇2F (xk)

∥∥ (i)

6 2L1,

where (i) follows from Assumption 1.

Let {Xi}|ξg(k)|i=1 = {Ai : i ∈ ξH(k)}, and we have

1

|ξH(k)|
∑

i∈ξH(k)

Xi − µ
(i)
=

1

|ξH(k)|
∑

i∈ξH(k)

Ai
(ii)
= Hk −∇2F (xk), (91)

where (i) follows from the fact that µ = 0 and (ii) follows from the definition of Hk in Algorithm 1.

We then apply Theorem 4 for Xi with σ = 2L1, µ = 0, ε = C2 ‖xk+1 − xk‖, and n = |ξH(k)|, and obtain the
require sampled size to satisfy

|ξH(k)| > 1

1
N +

C2
2‖xk+1−xk‖2

64L2
1 log(4d/ζ)

. (92)

To bound the sample size of gradient, i.e., |ξg(k)|, we follow the similar proof by constructing

Ai = ∇fi(xk)−∇F (xk), (93)

and applying Theorem 4 with σ = 2L0, µ = 0, ε = C1 ‖xk+1 − xk‖2, and n = |ξg(k)|, and obtain the required
sample size to satisfy

|ξg(k)| > 1

1
N +

C2
1‖xk+1−xk‖4

64L2
0 log(2(d+1)/ζ)

. (94)

D.3 Proof of Theorem 7

Proof. Assume the algorithm terminates at iteration k, then the total Hessian complexity is given by

m+
kN

m
+

k/m−1∑

i=0

m−1∑

j=1

|ξH(k)|
(i)

6 CkN

m
+

k/m−1∑

i=0

m−1∑

j=1

1

1
N +

α2 max{‖sk‖2,ε21}
64L2

2‖xi·m+j−xi·m‖2 log(4d/ζ)

6 CkN

m
+

k/m−1∑

i=0

m−1∑

j=1

64L2
2 ‖xi·m+j − xi·m‖2 log(4d/ζ)

α2ε21

(ii)

6 CkN

m
+

64L2
2

α2ε21

(
m2k1/3C2/3

)
log

(
4d

ζ

)

(iii)

6 C log

(
4d

ζ

)(
N

mε3/2
+
m2

ε3/2

)
=

C

ε3/2
log

(
4d

ζ

)(
N

m
+m2

)

where (i) follows form Theorem 5, and (ii) follows form eq. (58), (iii) follows from the fact that ζ < 1 and d > 1

which gives log
(

4d
ζ

)
> 1, and the fact that ε1 = O(ε1/2) such that k = O(ε−3/2) according to Theorem 1.
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We minimize the above bound over m, substitute the minimizer m? = N1/3, and follows the similar procedure in
the proof of eq. (13) to ensure a successful event overall iteration with at least 1− δ, which gives that

k∑

i=0

|ξH(k)| 6 CN2/3

ε3/2
log

(
8d

εδ

)
. (95)

Thus, we have

k∑

i=0

|ξH(k)| = Õ

(
N3/2

ε3/2

)
. (96)


