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Abstract

We propose a general and efficient hierarchi-
cal robust partitioning framework to generate
a deterministic sequence of mini-batches,
one that offers assurances of being high
quality, unlike a randomly drawn sequence.
We compare our deterministically generated
mini-batch sequences to randomly generated
sequences; we show that, on a variety of deep
learning tasks, the deterministic sequences
significantly beat the mean and worst case
performance of the random sequences, and
often outperforms the best of the random
sequences. Our theoretical contributions in-
clude a new algorithm for the robust submod-
ular partition problem subject to cardinality
constraints (which is used to construct mini-
batch sequences), and show in general that
the algorithm is fast and has good theoretical
guarantees; we also show a more efficient
hierarchical variant of the algorithm with
similar guarantees under mild assumptions.

1 INTRODUCTION

Stochastic mini-batch gradient methods achieve
outstanding performance in practice without placing
excessive demands on machine memory. Theoretically,
such methods (Duchi et al., 2011; Li et al., 2014;
Sutskever et al., 2013; Kingma and Ba, 2014) require
a mini-batch of unbiased random samples of data for
each gradient update step (Bottou, 2010), so that the
gradient estimate is unbiased and a good convergence
rate can be achieved.

While sampling independent random mini-batches is
essential from a theoretical perspective, it intrinsically
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conflicts with the efficient use of computational learn-
ing systems. Training sets are getting larger (thereby
driving accuracy higher) and they typically do not fit
in cache or memory. The only feasible approach is to
repeatedly load data from main memory and/or disk
to form mini-batches, but doing so from a convergence
rate perspective (i.e., randomly with replacement) is
costly because caches do not help when memory access
patterns are random and hence unpredictable.

In general, to achieve high computational efficiency,
time spent loading an independent minibatch should
occur simultaneously with computation on a previous
minibatch, as in a pipeline. Prepossessing techniques,
such as data augmentation (Cui et al., 2015; Ko et al.,
2015; Uhlich et al., 2017; He et al., 2016), which have
been developed to improve the accuracy, can mitigate
demands on memory bandwidth since augmented
data may be created via access only to local caches.
While this reduces memory bandwidth requirements,
at a cost of less independent minibatches, it is only
a stopgap measure, as computational capability is
improving faster than available memory bandwidth.
For example, GPUs are more than five times faster
than a few years ago, e.g., the Nvidia V100 (7.8
TFLOPs) vs. the K40 (1.4 TFLOPs), not to mention
issues associated with having multiple hungry GPUs
on the same machine running simultaneously. Hence,
independent random sampling of mini-batches is
becoming ever more impractical.

As sequential access is significantly faster than ran-
dom access, the only practical strategy is to iterate
through a fixed sequence of data samples (written a
priori to disk) rather than obtain an unbiased random
mini-batch at every gradient update step. Although
we could consider randomly re-shuffle the data points
after every epoch, this can also be an overwhelmingly
costly operation. Therefore, to achieve efficient train-
ing systems in practice, we often rely on one fixed se-
quence of data points to iterate through multiple times
to train a model (Yu et al., 2012). For example, when
training a deep model on ImageNet (Russakovsky
et al., 2015), a commonly used approach is to generate
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a fixed randomly shuffled list of indices of the images,
construct a database (usually optimized for sequential
access) based on this list, and iterate through the
order multiple times (Jia, 2014). Even though ap-
plying stochastic gradient methods on a deterministic
sequence of data can be theoretically suboptimal, the
benefits include improved and predictable data access
patterns and better reproducibility.

Ideally, a good deterministic sequence of mini-batches
should have the following properties: (1) mini-batch
representativeness, where every mini-batch is rep-
resentative and non-redundant, and thus stochastic
gradients calculated using the mini-batches are not too
far from the true gradients; and (2) order consistency,
where groups of mini-batches in the sequence should
be more broadly representative, so the corresponding
sequence of gradients does not drive a model in the
wrong direction. As mentioned above, however, one
widely used approach to generate the fixed sequence is
random shuffling, which could result in a suboptimal
sequence due to non-representativeness. This can
impede the performance of the trained model.a

In this paper, we propose a method to generate a
deterministic sequence of mini-batches. Our method
consists of hierarchical runs of the max-min robust
submodular partition algorithm (Wei et al., 2015b)
of the dataset with various cardinality constraints,
which generates a partial order over mini-batches of
data points within a hierarchical structure, and where
both mini-batches and groups of mini-batches in the
hierarchy are encouraged to be representative of the
entire dataset (see Figure 1, bottom, for a simple
illustration). Specifically, we offer the following contri-
butions: (1) we provide new theoretical guarantees on
a cardinality constrained max-min robust submodular
partition problem; (2) we propose a hierarchical
structure for robust partitioning to significantly
improve the efficiency of the original partitioning
algorithm (especially when the number of blocks in
the partition is very large) with theoretical guarantees
under mild assumptions; (3) with the new hierarchi-
cal partitioning approach, we can deterministically
generate a sequence of representative mini-batches,
and utilize such a sequence for stochastic gradient
methods; (4) on deep learning tasks, we show that our
deterministic sequences of mini-batches significantly
outperform the worst case and mean of randomly
generated sequences (both likely to occur in practice);
for most of the cases, our approach outperforms the
best of the random sequences.

2 RELATED WORK

Robust submodular partitioning (i.e., the submodular
fair allocation) was introduced in Golovin (2005)
and further studied in Khot and Ponnuswami (2007);

Asadpour and Saberi (2010); Wei et al. (2015b)
with algorithms and guarantees. In the more recent
work (Wei et al., 2015b), they used the partitioning
algorithm to separate datasets into blocks for training
machine learning models in parallel, with the intu-
ition that the partitioned data block on each machine
should be consistent with the whole dataset so the
convergence of the parallel system can be improved.
We extend their methods substantially to solve the
problem of deterministically generating mini-batch
sequences for SGD training. In particular, we propose
a fast and scalable algorithm to approximately solve
the robust submodular partitioning problem under
a block size (cardinality) constraint (see Section 3).
While this problem is a special case of that considered
in Cotter et al. (2018), our analysis is for a different
and simpler algorithm that still has guarantees.
Moreover, in Wei et al. (2015b), the number of
partitioned blocks is typically limited in quantity as
every block should contain sufficient data for training
the model on a single machine, whereas in our setting,
the number of mini-batches can be very large, and
the priority queues generated based on the lazy
greedy trick (Minoux, 1978) impose a considerable
memory cost thereby making the algorithm infeasible
in practice (see Sec. 3 for details). To overcome this
problem, we extend the robust submodular partition-
ing method to a recursive hierarchical formulation,
which also enforces an order consistency property over
the generated mini-batch sequence (see Section 4).

A mini-batch diversification method based on deter-
minantal point processes (DPPs) is given in Zhang
et al. (2017), which relies on similarity measurements
between data points so that mini-batches with redun-
dant data are given low-probability and mini-batches
with more diverse data are given high-probability.
Our objective is different from Zhang et al. (2017), as
we aim to generate a fixed sequence of representative
mini-batches for sequential disk access, while their
method generates non-deterministic mini-batches.
Moreover, their method does not enforce repre-
sentativeness of groups of mini-batches, while our
approach does. We also note that DPPs are related
to submodular functions (a DPP is log-submodular),
and our framework is very general as it can be used
with any submodular function. Finally, DPP methods
are computationally expensive, while our hierarchical
partitioning method is efficient enough for very large
datasets such as ImageNet. Salehi et al. (Salehi et al.,
2017) give a multi-arm bandit sampling approach to
adaptively sample mini-batches for stochastic opti-
mization with the aim to better control the variance
of gradients of the mini-batches and to improve the
convergence rate. This work focuses on generating
random mini-batches with less variance than uni-
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formly random during training (their method requires
accessing gradient information), while we strive to
find a fixed mini-batch sequence before training starts.
Both Zhang et al. (2017) and Salehi et al. (2017)
shares similar intuition with us that mini-batches with
more representativeness/more diversity can contribute
to better performance of the training system. Our
approach, however, stays mindful of the computa-
tional requirements as well. Shamir (2016) proposes a
sampling strategy specifically for the sampling with-
out replacement scenario, which exhibits convergence
properties for convex problems but it requires a global
(entire dataset) gradient calculation at each minibatch
which can be very slow especially for DNNs; it also
takes as input a permutation rather than producing
as output a good sequence of minibatches. Zhu et al.
(2016) modifies the stochastic algorithms to utilize the
structural information obtained from raw clustering
on the training dataset to get improved running time.
Again, it requires a global gradient calculation and
is not designed for minibatch stochastic gradient
settings. Curriculum learning (Bengio et al., 2009)
and self-paced learning with diversity (Jiang et al.,
2014) are also related as they focus on generating
mini-batches better during the training process. How-
ever, they require random data access, which is often
infeasible for very large data sets, while our method
produces a single reusable sequential high quality data
access pattern, a key unique benefit of our method.

3 SUBMODULAR PARTITIONS
FOR MINI-BATCHES

A submodular function f is a set function 2V → R,
with V as the ground set, and satisfying the property
that f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B), where
A,B ⊆ V . Submodular functions have favorable
theoretical properties while achieving good results
in practice on various real world applications (Zheng
et al., 2014; Nagano et al., 2010; Krause et al., 2008a;
Jegelka and Bilmes, 2011; Krause et al., 2008b; Wei
et al., 2015a). Unless stated otherwise, the submod-
ular functions we discuss in this paper are restricted
to monotone non-decreasing normalized submodular
functions (f(B) ≥ f(A)∀A ⊆ B ⊆ V , f(∅) = 0). Sub-
modular functions are expressive models to describe
the level of representativeness of a given set with
respect to the ground set. In addition, algorithms as-
sociated with optimizing various forms of submodular
functions often rely on greedy procedures and generate
deterministic results often with theoretical guarantees.

Given a submodular function f on a ground set V ,
the max-min robust partition problem (submodular
fair allocation) (Golovin, 2005) is defined as:

max
π∈Π(V )

min
i=1:m

f(πi(V )), (1)

where Π(V ) indicates all possible partitions of ground
set V , πi(V ) represents the set of data points of block
i in partition π, and m = |π| denotes the number
of blocks in the partition. Intuitively, the max-min
robust partition objective encourages the worst block
(according to the submodular function evaluation) of
the partition to be representative of the ground set of
data points, and therefore, all blocks in the partition
are at least that representative as well.

For our mini-batch partitioning task, we focus on gen-
erating a sequence of blocks where every block in the
partition is a mini-batch. Suppose every resulting
mini-batch is representative due to the max-min ro-
bust objective, then the ordering of the mini-batches
used to train becomes less crucial, and an arbitrary
ordering of the mini-batches will suffice. However, for
most problems, the mini-batches are too small to rep-
resent the ground set V (meaning maxi f(Bi)� f(V )
where i is an index over mini-batches and Bi is the
ith mini-batch, a property that may be true even if
Eq. (1) is solved optimally), in which case the order-
ing of the mini-batches is critical. The reason is that,
with a poor order, a sub-sequence of minibatches can
be redundant and non-representative even though ev-
ery mini-batch is as representative and non-redundant
as possible for its size.

For the remainder of this section, however, we as-
sume the simple case where the mini-batch size is large
enough to represent the ground set. This allows us to
introduce our approach. We discuss the more general
case with small mini-batches later in Section 4.

Since every partition block is a mini-batch, we need to
enforce a block size/cardinality constraint such that
every block should have a fixed size k. We define
Π(V, k) to be the set of all possible partitions with
size k (for simplicity, assume |V | mod k = 0), then we
have:

max
π∈Π(V,k)

min
i=1:m

f(πi(V )). (2)

We also presents a binary programming version of the
objective in Section E in the supplement (Wang et al.,
2018). Assuming large k, Eq. (2) naturally describes
what we desire for a deterministic mini-batch sequence
of training data. Firstly, the max-min objective en-
sures that all mini-batches are as representative of the
entire training dataset as possible. Secondly, the class
of submodular functions we can use for the objective is
sufficiently expressive that by solving such a problem,
we have a general framework that could potentially
work for various forms of data and different notions
of representativeness (in Section 5, we use a variant
of the facility location function as the submodular
function to model the representativeness). Finally,
we claim that variations of the greedy algorithm can
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Figure 1: Simple example about how hierarchical partitioning can enforce better order consistency. Suppose
we partition a dataset of 12 samples into mini-batches of size 3, and representativeness can be defined as the
number of samples with distinct colors. In the upper part, though every mini-batch is representative for its size,
the combination of either the first two or the last two mini-batches becomes non-representative for a combined
block of size 6 (3 different colors for a set of size 6). On the other hand, the lower part shows the case where
we first partition the data into blocks of size 6, and then further partition into mini-batches of size 3, which in
this example enforces the representativeness of the combination of blocks.

be applied to solve Eq. (2) efficiently with theoretical
guarantees, and that are applicable to large datasets
such as ImageNet. We propose Algorithm 1 to address
Eq. (2) and show it has guarantees.

Algorithm 1: Cardinality Constrained Submodular
Robust Partition (RobustPartitionK(f , V , k))

1 p
input : f , V , k

2 m := |V |/k R := V Let A1 = A2 = ... = Am = ∅
while R 6= ∅ do

3 j∗ ∈ argminj,|Aj |<k f(Aj) ; // least valued block.

4 v∗ ∈ argmaxv∈R f(v|Aj∗) ; // best for block.

5 Aj∗ := Aj∗ ∪ {v∗} ; // add to block.

6 R = R \ {v∗}
7 end
8 Sort Aj ’s by f(Aj) so that

f(Aj1) ≥ f(Aj2) ≥ ... ≥ f(Ajm)
9 return (Aj1 , Aj2 , ..., Ajm)

Theorem 1. For submodular function f on ground set
V and block size (mini-batch size) constraint k, sup-
pose m = |V |/k, Algorithm 1 gives an approximation
ratio of e−1

(e−1)m+1 .

The proof is in the supplement (Wang et al., 2018)
Sec. C. The bound almost matches (within a factor
of m/(m + 1)) the best known bound for the uncon-
strained case (Eq. 1) in Wei et al. (2015b). The more
general approach of Cotter et al. (2018) can achieve
a bi-criterion bound that is hard to compare to the
current bound. In Algorithm 1, every iteration finds

the worst expandable (i.e., size less than the constraint
k) block Aj∗ in the current partition, and greedily
adds element v∗ to the block Aj∗ that increases the
gain f(v∗|Aj∗) the most. In addition, we sort the
partitioned blocks by their submodular evaluations
in descending order (line 9 of Algorithm 1). Due
to the robust max-min objective, all the blocks are
encouraged to have similar evaluations, and we choose
to put the slightly more representative blocks first,
in accordance with the intuition behind curriculum
learning (Bengio et al., 2009), which selects easy
samples first. Thus, we get a deterministic sequence
of representative mini-batches.

The worst case running time of Algorithm 1 is
O(|V |2) evaluations of f plus O(|V |2) basic opera-
tions. We care mostly about the number of function
evaluations as each f evaluation can be significantly
more expensive than a basic operation. Though not
wholly intractable, O(|V |2) evaluations can become
overwhelming when the dataset size gets large. To
accelerate the algorithm, we can apply the lazy eval-
uation trick (Minoux, 1978) at line 5 of Algorithm 1.
Essentially, we can create a priority queue for each of
the m blocks, and initialize every priority queue with
all the singleton values f(v), v ∈ V . When we pop the
top of the priority queue, get element v and evaluate
f(v|Aj∗), and if such value is larger than the next
value in the priority queue, then by submodularity, v
is guaranteed to be in argmaxv∈Rf(v|Aj∗), or other-
wise we push f(v|Aj∗) back to the priority and keep
popping. In the worst case, the running time with the
priority queue would still be O(|V |2) evaluations of
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f , however, it is widely recognized that, in practice,
the running time will be much less than O(|V |2) and
close to O(|V | log |V |) depending on the specific f .

While the acceleration that the lazy evaluation
trick brings to the algorithm is good, it has a
significant memory cost. The peak memory taken
by the collection of priority queues is proportional
to m|V | = |V |2/k (assuming the priority queue
implementation has linear memory cost), which could
be extreme for a large number of blocks. We hence
propose a method to construct the priority queues
online rather than initialize every priority queue with
all the singleton values. The details of this method
can be found in the supplementary document (Wang
et al., 2018) Section B, but in the worst case, the
memory cost is still quadratic in |V |.

We also note that lazier-than-lazy greedy
(LTLG) (Mirzasoleiman et al., 2015) can also be
applied to line 5 of Algorithm 1 to speed up the
greedy step. Depending on the sample size of LTLG
method, we can trade-off the performance of the
algorithm with the memory and computational cost.
If efficiency is the priority, we can apply LTLG on top
of our method to achieve an improved speed-up at the
cost of some performance.

To further mitigate the computation and memory
efficiency issue of Algorithm 1, and also generate
mini-batches with better order consistency (which is
critical if the mini-batch size k is small relative to
|V | and every mini-batch cannot represent the entire
dataset), we propose a hierarchical robust partitioning
framework, which runs Algorithm 1 with various block
size constraint k’s on different hierarchical levels.

4 HIERARCHICAL ROBUST
SUBMODULAR PARTITION

In Algorithm 2, we describe our hierarchical robust
partitioning framework. Instead of having one block
size constraint k and partitioning only once, we have
a hierarchy of constraints k1 > k2 > . . . > kr, and
ideally ki mod ki+1 = 0. We start by partitioning
the ground set into blocks of size k1, and for every
block we get from running Algorithm 1, we further
partition each block into smaller blocks with a block
size constraint k2 and so on. In the end, kr is the
mini-batch size, so we get representative mini-batches.

By using Algorithm 2, we significantly reduce
the memory cost of applying the lazy evaluation
greedy trick. For iteration i of Algorithm 2, the
peak memory cost is proportional to miki−1 (note
k0 = |V |), assuming the memory cost of a priority
queues increases linearly. The overall peak mem-
ory cost is maxi=1:rmiki−1. It is easy to see that

Algorithm 2: Hierarchical Submodular Robust Par-
titioning

input : f , V , k1, ..., kr
1 k0 := |V |; Q1 := (V ) ; // Qi’s store sequence of sets to

further partition

2 for i := 1; i ≤ r; i := i+ 1 do
3 mi := ki−1/ki ; // mi: number of blocks for the next

partition

4 Qi+1 = () ; // Qi+1 initialized with an empty sequence

5 for j := 1; j ≤ |Qi|; j := j + 1 do
6 A1, ..., Ami = RobustPartitionK(f,Qi[j], ki) ;

// Qi[j]: jth set in the sequence

7 Append A1, ...., Ami to Qi+1 ; // Add partitioned

blocks of Qi[j] to solution

8 end

9 end
10 return Qr+1

∀i = 1 : r,miki−1 ≤ m|V |, which is the peak memory
cost of Algorithm 1 (note m|V | = m1m2...mrk0). In
fact, if we have r = 2 and k1 = |V |/2, the memory
cost is halved, and the more layers we have in the
hierarchy, the less the overall memory cost becomes.

!","
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Figure 2: An example partition hierarchy. Leaves vis-
ited by any depth-first-search traversal order is consis-
tent with the partial ordering defined by the hierarchy.

In addition to the memory efficiency with the lazy
evaluation trick, Algorithm 2 also enforces groups of
mini-batches in the hierarchy structure to be repre-
sentative. Essentially, as we have a hierarchy of block
size constraints k1, ..., kr, not only the final (lowest)
level mini-batches are representative for their size, but
the combination of multiple mini-batches is also rep-
resentative for their combined size based on the choice
of k’s (see Figure 1 for a simple illustration). The
original partitioning algorithm is a special case of the
hierarchical partitioning with one level in the struc-
ture of hierarchy. As mentioned above, Algorithm 1
only applies to the case where the mini-batch is large
enough to represent the dataset, and Algorithm 2
applies to general mini-batch sizes, while also making
the original algorithm more efficient. Also, note that
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the generated hierarchy structure defines a partial or-
dering of the data samples, and any depth-first-search
traversal of the hierarchy structure is consistent with
the partial ordering (see Figure 2). We can also
continue to use the decreasing submodular evaluation
ordering as well (Algorithm 1 line 9).

Though we can get a significant reduction in memory
cost, as well as generating representative groups
of mini-batches by utilizing the hierarchical robust
partitioning algorithm, we lose the original theoretical
guarantee relative to the objective defined in Eq. (2).
In fact, we show that the approximation ratio can be
arbitrarily bad by a simple example in the supplemen-
tary material (Wang et al., 2018) Section D. However,
under mild assumptions about the data points and
the function f , i.e., if we assume that in the process
of calling Algorithm 1 from Algorithm 2 blocks are
not filled in an extremely imbalanced way (which we
find not typically occur in practice), then we have the
following bound for Algorithm 2.

Definition 1. We run Algorithm 1 with ground set
V ′, block size constraint k′ and m′ = |V ′|/k′, the
greedy step (line 5) gets executed T = |V ′| times. and
we get a sequence of sets Q = (AT1 , A

T
2 , . . . , A

T
m′) as

the output, with A′Tj having the minimal evaluation,

i.e. j′ ∈ argmini=1:m′ f(ATi ). There exists an earliest
greedy step t (1 ≤ t ≤ T ), such that |Atj′ | = k′, and

j′ ∈ argmin1:m′ f(Ati) (Ati is the ith block at greedy
step t), we define τ := mini=1:m′ |Ati|.
Theorem 2. If we have τ ≥ 2 as defined in Def. 1
for every call to Algorithm 1 from Algorithm 2, then
we achieve an approximation ratio of ( τ−1

2τ−1 )r kr|V | .

The proof is in the supplement (Wang et al., 2018)
Sec. D. τ as defined in Def. 1 indicates whether the
blocks are filled in a balanced manner in Algorithm 1.
τ ≥ 2 means that when the worst block (i.e., the
block with minimal evaluation) has size k′, and all
other blocks have higher evaluations, the smallest
block (in terms of size) has at least two elements,
or in other words, the greedy steps do not generate
drastically imbalanced blocks. In practice, for the
real datasets in our experiments, τ always has large
values, so the extra factor we get from Theorem 2
compared to Theorem 1 is close to 2−r, and r is the
number of layers in the hierarchy structure, which is
at most log |V | and typically quite small in practice
(3 to 5 in our experiments). This means Algorithm 2
will perform well. More details are found in the
supplement (Wang et al., 2018) Section F.

The {ki}ri=1 values are hyper-parameters for our
method. Suppose the desired mini-batch size is
large enough to represent the entire dataset, then
the choices of {ki}ri=1 essentially should follow the

memory capacity of the hardware. However, for
real-life problems, the data may be very complex, and
the mini-batch size is restricted by the GPU’s memory
size, and thus quite small compared to the dataset size.
For example, in ImageNet, there are over one million
training data points in 1000 classes, while the most
widely adopted batch sizes on a single GPU card range
from 128 to 512. The batch size of 128 can hardly be
fully representative, as there are 1000 distinct classes.
Therefore, Algorithm 2 is indeed required for parti-
tioning such datasets as a poor order could happen
similar to the case shown in Figure 1. Thus, one guide-
line for setting {ki}ri=1 in addition to the efficiency
restriction is to have {ki}ri=1 start with multiple times
of the number of classes, and gradually drill down to
the desired mini-batch size. Algorithm 2 generates
mini-batches of better quality than the ordinary
robust partitioning case when we encounter datasets
with more number of classes and larger data point size.

5 CHOICE OF SUBMODULAR f

Our objective defined in Eq. (2) is a general framework
for generating deterministic mini-batch sequences as
the class of submodular function f is flexible and ex-
pressive for describing the representativeness of a set
of data points. In this paper, for supervised classi-
fication tasks, we use a nearest-neighbor submodular
function (a special case of a facility location function)
as our choice of f :

fNN (S) =
∑
v∈V

max
v′∈S

sim(v, v′), (3)

where sim(·) is defined over a pair of data points,
and outputs the similarity of the two points. fNN
is a special case of the facility location function since
similarities between data points with different class
labels are zero (i.e., a sparse similarity graph), i.e.
y(v) 6= y(v′)→ sim(v, v′) = 0, where y(v) denotes the
label of data point v. Variations of the facility loca-
tion function have been successfully applied to various
data selection/summarization tasks (Wei et al., 2014,
2013; Tsang et al., 2005).

fNN naturally captures the maximum likelihood esti-
mates over the given data set for a nearest-neighbor
classifier. Under mild assumptions, maximizing
fNN is equivalent to find the optimal subset of data
points to form a nearest-neighbor classifier (Wei
et al., 2015a). Ideally, given a specific model (e.g., a
nearest-neighbor classifier or a deep neural network),
we should design f based on the objective of the
model, so the exact quantization of representativeness
defined by f is consistent with the given model.
We choose to use fNN because the nearest-neighbor
classifier is quite generic, and fNN is efficient to
compute even for large datasets. Moreover, fNN is
also very flexible as it can be applied with various
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ways of calculating the similarity graph, We calculate
the similarities between pairs of data points using:

sim(v1, v2) = e
−||x(v1)−x(v2)||2

σ . (4)

where x(v) represents the vector representation or
features of data point v, and σ is a chosen parameter,
which works as a normalization factor. In practice,
x(v) can be the original data representation (e.g. raw
pixel values for images), the final layer output of a
deep neural network classifier, or the bottleneck layer
of an autoencoder. While σ can be tuned, in principle
we set it to meani,j ||x(vi) − x(vj)||2 for all the i, j
pairs in the fNN similarity graph.

6 EXPERIMENTS

We evaluate our hierarchical robust partitioning al-
gorithm for generating mini-batch sequences for the
CIFAR-100 (Krizhevsky and Hinton, 2009) and Ima-
geNet(ILSVRC12) (Russakovsky et al., 2015) datasets.
We show that our deterministically generated se-
quences consistently outperform randomly generated
sequences, a widely-adopted approach for training
deep neural networks. The initialization of the two
datasets are fixed by random seed. For CIFAR-100,
we use the PyTorch toolkit (Paszke et al., 2017), and
for ImageNet, we use MXNET (Chen et al., 2015).

6.1 CIFAR-100 Dataset

CIFAR-100 dataset is an image classification dataset
with 50,000 training images and 10,000 testing im-
ages, with each image of dimension (3, 32, 32) = 3072.
The dataset has 100 classes, and all the classes have
the same number of training/testing data points.
We randomly select 100 samples from each class in
the training set as the validation set. We train a
convolutional autoencoder network to extract more
compact representations of the raw pixel data (see the
supplement (Wang et al., 2018) Sec. G for details of
the autoencoder structure). The autoencoder network
in use has 48 layers with a 128-dimensional bottleneck
layer and was trained on the large TinyImage data
set (Torralba et al., 2008). The network employs
residual blocks (He et al., 2015). Furthermore, the
training was performed using ADAM (Kingma and
Ba, 2014) with batch normalization and rectified
linear units. The output of the bottleneck layer act
as the 128-dimensional feature representation of the
data, which is then used to compute the similarities
between data points for fNN .

The deterministic data sequence is generated through
a multi-step mechanism. First, we generate a sparse
similarity graph using the similarity metric discussed
in Sec 5 (containing 4002 × 100 = 16M entries) that
can be used to instantiate fNN . Next, we apply
Algorithm 2 with fNN as the submodular function,
and block size constraints k1 = 1024, k2 = 512 and

k3 = 128, where k3 is equal to the mini-batch size
used for training the deep neural network. We also
note that for the data points that are not selected by
Algorithm 2 (40000 mod 1024 = 64), we form a fi-
nal batch (padded depending on the implementation
of the toolkit) and append to the end of our mini-batch
sequence.

For a given sequence of mini-batches, we train a Wide
Res-net (Zagoruyko and Komodakis, 2016) having
structure WRN-28-8 (using the same terminology
as Zagoruyko and Komodakis (2016)). The network
was trained using the NAG (Sutskever et al., 2013)
optimization method, an initial learning rate of 0.1
and a linearly decaying learning rate schedule. The
data was augmented using random flipping of images.
We note that the training hyper-parameters are
determined by manually tuning on the validation set
accuracy while training on a randomly generated se-
quence (same for ImageNet dataset described below).
We compare the validation set accuracy, and test set
accuracy of our deterministically generated sequence
to 30 randomly generated sequences. Figures 3a
and 3b demonstrate that our method outperforms the
random generated sequences, and can also do better
than the best over 30 random runs. The p-value
significance test for the test accuracy is 0.0009, which
means our improvement is quite significant.

(a)

(b)

Figure 3: Accuracy over the {validation set (a), test
set (b)} for our sequence along with the performance
spread for the random sequences.
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6.2 ImageNet Dataset

The ImageNet classification dataset contains roughly
1.2 million training images and 1000 classes. The
number of data points for each class is almost bal-
anced, and each class has around 1k data points.
The validation set consists of around 50k samples,
and there is no standard test set. We train a deep
neural net classifier and retrieve the final layer out-
put (before softmax) as the feature representations
for data points. The DNN classifier is a Residual
Network (He et al., 2016) with 18 layers (Resnet-18),
and the feature representation has 1000 dimensions.
Similar to the CIFAR-100 dataset case, we use the
extracted 1000 dimensional features to generate the
sparse similarity graph. Then we utilize Algorithm 2
with k1 = 32768, k2 = 16384, k3 = 8192, k4 = 4096,
k5 = 128 to generate the deterministic sequence of
mini-batches. For the non-selected data points (3215
data samples, since the total number of samples does
not divide k1), we form a new ground set and run
Algorithm 1 to partition them into mini-batches of
size 128 and append them to the end of the sequence.

We compare the performance of different sequences
using the same model used to generate features for
data points, i.e., the Resnet-18 network structure. For
both cases, we use again the NAG (Sutskever et al.,
2013) optimization method with an initial learning
rate 0.1, exponentially decaying learning rate schedule,
and data augmentation of random flipping and random
cropping. We note that for training the feature extrac-
tion model, we use a deterministic sequence generated
using the L2 distance of the raw data as the distance
measurement for constructing the similarity graph.

As shown in Figures 4a and 4b, for most cases, our
deterministic sequence yields better results than even
the best among the 15 randomly generated sequences,
significantly beating the mean and the worst random,
which are both likely to happen when training deep
models. The p-value significance test result is 0.0151
for top-1 accuracy, and 0.0209 for top-5 accuracy,
which means our improvement is quite significant.

In the supplement (Wang et al., 2018) Sec. A, We show
the running time results of Algorithm 1 with the lazy
evaluation trick, which due to memory demands is only
feasible in the hierarchical partitioning framework.

7 CONCLUSION

We proposed a robust submodular partitioning based
framework to generate a fixed sequence of mini-
batches for training machine learning systems with
stochastic mini-batch gradient methods. We show
such deterministic sequences outperform the randomly
generated sequences on the CIFAR-100 and ImageNet
datasets. We proposed a hierarchical robust parti-

(a)

(b)

Figure 4: {Top-1 Accuracy (a), Top-5 Accuracy (b)}
over the validation set for our sequence along with
the performance spread for the random sequences.

tioning algorithm, which dramatically improves the
efficiency of the ordinary partitioning method, while
enhances the quality of the generated sequence of
blocks. We also note that the deterministic sequences
apply to multi-epoch training systems that require hy-
perparameter tuning, and therefore the computational
cost of our method becomes negligible in the long run.

We would like to explore more forms of the sub-
modular function f . As discussed in Section 5,
for different training models, we can use different
f having customized notions of representativeness
(e.g., for different classifiers (Wei et al., 2015a)).
Moreover, f need not be submodular, e.g., difference
of submodular functions may be useful. Furthermore,
our robust objective is imperfect in describing the
optimal mini-batch sequence objective. The current
objective is a partitioning problem, but the actual
goal is to produce an ordering of sets. Though we
use a hierarchical decomposition to partially generate
a good block ordering, it is still only indirect. We
hope to focus on directly optimizing on the optimal
sequence of sets in the future.

This work was supported in part by the CONIX Re-
search Center, one of six centers in JUMP, a Semi-
conductor Research Corporation (SRC) program spon-
sored by DARPA.
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