
Multitask Metric Learning: Theory and Algorithm

1 Generalization Bound of Multitask Metric Learning

1.1 Preliminaries

The proof of the generalization bound is based on the framework of algorithm stability [5]. One obstacle to derive
generalization bound for mtML is the fact that the training examples for metric learning algorithms are formed
by the pairs or triplets of the data points, and therefore cannot be independent. If one data point is changed,
some other pairs/triplets are also changed. To bridge this gap, we adapt the definition of uniform stability for
metric learning in [11], and formalize the notations as follows.

Let D be a probability distribution over X × Y, where X ⊆ Rd, Y is the set of class labels, and let S = {zi =
(xi, yi)}ni=1 be the training examples drawn from some distribution D. In this work, we assume that for any pair
of vectors x, x′, we have ||x−x′||2 ≤ R. The objective of metric learning is to learn a symmetric positive definite
(SPD) matrix M ∈ Sd+ such that

min
M
LS(M) +R(M),

where LS(M) = 1
|Ct|
∑

(zi,zj)∈C ` (yiyj , hM (xi, xj)) is empirical loss of M over the training set S, hM (xi, xj) is a

function parameterized by a matrix M over pairs of data points xi and xj , yiyj = 1 if yi = yj and −1 otherwise,
` (·) is the loss function, C is the set of similar/dissimilar pair-based constraints formed by the labels of data
points or any other side-information, and |C| is the number of the constraints. For simplicity, we assume that the

numbers of constraints associated with each data point, κ, are the same (e.g., κ = |C|
n for all the data points).

R(M) is the regularization function to balance the empirical loss and the complexity of M .

In this work, we consider admissible and difference-bounded convex loss functions, as defined below.

Definition 1.1 (σ-admissibility). (See [5], Definition 19; [15], Chapter 11.3) A loss function ` (yy′, hM (x, x′))
is σ-admissible with respect to hM , if for any two matrices M and M ′, and any pairs of examples z and z′ ,
there exists σ > 0 such that

|` (M, z, z′)− ` (M ′, z, z′)| ≤ σ
∣∣(x− x′)>M(x− x′)− (x− x′)>M ′(x− x′)

∣∣
where we have, for simplicity, written `(M, z, z′) = `(yy′, hM (x, x′)) by abusing the notation a little bit without
confusion.

In this paper, the tool used to derive generalization bound for mtML algorithms is algorithmic stability. An
algorithm is stable if its output does not change much with small change in training set. More specifically, we
focus on uniform stability of metric learning algorithms introduced in [11].

Definition 1.2 (Uniform stability). (See [11], Section 3) A metric learning algorithm has β-uniform stability,
with β ≥ 0, if

sup
z,z′∼D

|`(MS , z, z′))− `(MSi , z, z′)| ≤ β, ∀S,Si

where Si is the training sample S with the i-th example zi replaced by an independent and identically distributed
(i.i.d.) example z′i, MS and MSi are the metric matrices learned from S and Si respectively.

Remark 1. The notations and definitions above can be readily extended to triplet-based metric learning algo-
rithms. For example, let C be a triplet-based constraint such that (x, x′, x′′) ∈ C indicates x should be more similar
to x′ than to x′′ (e.g., y = y′ 6= y′′), and let hM (x, x′, x′′) be a function defined over the triplet (x, x′, x′′) (e.g.,
hM (x, x′, x′′) = (x− x′′)>M(x− x′′)− (x− x′)>M(x− x′)). Then uniform stability can be defined as

sup
z,z′,z′′∼D

|`(MS , x, x′, x′′)− `(MSi , x, x′, x′′)| ≤ β, ∀S,Si,

where we have omitted the label information since it has been embedded in the function hM . For simplicity,
the analysis below mainly focuses on pair-based constraints, but the conclusion is also applicable to triplet-based
metric learning algorithms, such as mt-BML presented in our paper.

Definition 1.3 (Bregman divergence). Given a differentiable and strictly convex function of matrix F , the
Bregman divergence dF (M,M ′) between two matrices M and M ′ is defined as

dF (M,M ′) = F (M)− F (M ′)− 〈M −M ′,∇F (M ′)〉,

where 〈A,B〉 = tr(AB>), tr(·) being the trace of a matrix, is the Frobenius product of A and B.
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1.2 Multitask Metric Learning

Now we introduce the setting of mtML. Specifically, S = {St}Tt=1 be T related tasks, where St = {zti = (xti, y
t
i)}

nt
i=1

is the data set for the t-th task, where nt is the number of training data points of the t-th task. Then, the objective
function of mtML becomes

min
{Mt}Tt=1

1

T

T∑
t=1

(LSt(Mt) +Rt(Mt)) ,

where LSt(Mt) = 1
|C|
∑

(zti ,z
t
j)∈Ct

`
(
Mt, z

t
i , z

t
j

)
is the empirical loss over the t-th task, `(·) is a loss function of

the constraints (e.g., pairs, triplets), Ct is the set of constraints, and |Ct| is the number of constraints. Rt is
the regularization function to balance the empirical loss and the model complexity. In this paper, we analyze a
specific mtML formulation by assuming that each Mt can be decomposed as Mt = H0 +Ht, where H0 is a global
parameter which is shared across tasks, and Ht is a task-specific model parameter. Consequently, the goal of
mtML is to find the matrices {Ht}Tt=0 which minimize the following objective function:

min
{Ht}T0=1

1
T

∑T
t=1 (LSt(H0 +Ht) +Rt(H0, Ht)) , s.t. Ht ∈ Sd+, ∀t = {0, . . . , T}. (1)

In this paper, we study the widely used Frobenius norm regularizer (e.g., [11, 17, 19]). In addition, to control
the model diversity, one should impose different regularization strengths on H0 and Ht>0. To this end, we study
the regularization term

Rt(H0, Ht) = λ0||H0||2F + λt||Ht||2F (2)

where || · ||F is the Frobenius norm, λ0 and λt>0 are the trade-off regularization parameters. If λ0 → ∞, (1)
reduces to single-task learning approach, which solves T tasks individually, and if λt>0 → ∞, (1) reduces to
pooling-task approach, which simply treats the T tasks as a single one. For simplicity, we assume λt>0 = λ.

1.3 Generalization Bound for Stable Metric Learning Algorithms

Lemma 1.4. Let ` be a loss function upper bounded by B ≥ 0, and let S be a training set of n data points
drawn from some distribution D, and MS be the matrix learned over the training set S by a β-uniformly stable
metric learning algorithm. Let LD(MS) = Ez,z′ ∼D[`(MS , z, z

′)] be the expected loss of MS over D. Then, for
any δ ∈ (0, 1), with probability at least 1− δ, the following holds:

LD(MS)− LS(MS) ≤ 2β + (2nβ + 2B)

√
log 1

δ

2n
,

for a pair-based metric learning algorithm, and

LD(MS)− L(MS) ≤ 3β + (2nβ + 3B)

√
log 1

δ

2n
.

for a triplet-based metric learning algorithm.

Remark 2. Lemma 1.4 shows that if the stable coefficient β is in the order of O( 1
n ), the generalization gap will

converge in the order of O( 1√
n

) with high probability. Also note that this bound is applicable to any stable metric

learning algorithm, not limited to mtML. In the following sections, we will prove that mtML algorithms solving
(1) is uniformly stable. More important, we also show that B is associated with the training loss of single-task
approach, as well as the gap of training loss between the pooling-task approach and single-task approach.

Proof. The proof utilizes McDiarmid’s inequality [14] and follows from [15]. Yet it needs some modifications to
adapt to the setting of pair/triplet training examples.

Specifically, define Φ(S) = LD(MS)− LS(MS). By applying triangle inequality, the following inequality holds:∣∣Φ(S)− Φ(Si)
∣∣ ≤ |LD(MS)− LD(MSi)|+ |LS(MS)− LSi(MSi)|



Multitask Metric Learning: Theory and Algorithm

By the stability of the algorithm, we have

|LD(MS)− LD(MSi)| = |E [`(MS , z, z
′)]− E [`(MSi , z, z

′)]| ≤ β.

In addition, we also have

|LS(MS)− LSi(MSi)| (3)

=
1

|C|

∣∣∣∣∣∑
j 6=i

∑
k 6=i

`(MS , zj , zk)− `(MSi , zj , zk) +
∑
j 6=i

`(MS , zj , zi)− `(MSi , zj , z′i)

+
∑
k 6=i

`(MS , zi, zk)− `(MSi , z′i, zk)

∣∣∣∣∣ (definition of L)

≤ 1

|C|

(∑
j 6=i

∑
k 6=i

|`(MS , zj , zk)− `(MSi , zj , zk)|+
∑
j 6=i

|`(MS , zj , zi)− `(MSi , zj , z′i)|

+
∑
k 6=i

|`(MS , zi, zk)− `(MSi , z′i, zk)|

)
(triangle inequality)

≤ n− 2

n
β +

2B

n
≤ β +

2B

n
. (β-uniform stability and B-boundedness)

By applying McDiarmid’s inequality, we have

Pr
[
Φ(S) ≥ ε+ E[Φ(S)]

]
≤ exp

(
−2nε2

(2nβ + 2B)2

)
. (4)

By setting δ = exp
(
−2nε2

2nβ+2B

)
, we obtain ε = (2nβ + 2B)

√
log 1

δ

2n . Plugging ε back to (4) and rearranging terms,

with probability 1− δ, we have

Φ(S) ≤ E[Φ(S)] + (2nβ + 2B)

√
log 1

δ

2n
.

On the other hand, it can be proved that E[Φ(S)] is upper bounded by 2β [11, 19]. Consequently, we can obtain
the generalization bound for a β-uniformly stable pair-based metric learning algorithm

Φ(S) ≤ 2β + (2nβ + 2B)

√
log 1

δ

2n
.

For a triplet-based metric learning algorithm as defined in Remark 1, it can be shown that |L(MS)− L(MSi)| ≤
β + 3B

n by the similar proof method of Eq. 3. To upper bound E[Φ(S)], we have

E[Φ(S)] (5)

= E[LD(MS)− L(MS)]

≤ ES,z,z′,z′′∼D

[∣∣∣∣∣`(MS , z, z′, z′′)− 1

|C|
∑

(zi,zj ,zk)∈C

`(MS , zi, zj , zk)

∣∣∣∣∣
]

= ES,z,z′,z′′∼D

[∣∣∣∣∣ 1

|C|
∑

(zi,zj ,zk)∈C

`(MSijk , zi, zj , zk)− `(MSij , zi, zj , zk)

+ `(MSij , zi, zj , zk)− `(MSi , zi, zj , zk) + `(MSi , zi, zj , zk)− `(MS , zi, zj , zk)

∣∣∣∣∣
]

≤ ES,z,z′,z′′∼D

[
1

|C|
∑

(zi,zj ,zk)∈C

∣∣∣∣`(MSijk , zi, zj , zk)− `(MSij , zi, zj , zk)

∣∣∣∣ (triangle inequality)

+

∣∣∣∣`(MSij , zi, zj , zk)− `(MSi , zi, zj , zk)

∣∣∣∣+

∣∣∣∣`(MSi , zi, zj , zk)− `(MS , zi, zj , zk)

∣∣∣∣
]
≤ 3β, (β-uniform stability)
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where Sijk is the training sample S with the i, j, k-th examples zi, zj , zk replaced by z, z′, z′′ respectively, and
Sij is the training sample S with the i, j-th examples zi, zj replaced by z, z′ respectively. MSijk and MSij are
the metric matrices learned from Sijk and Sij respectively. Eq. 5 holds because S, z, z′, z′′ are i.i.d. examples
from S, and therefore the expected loss does not change by exchanging the examples. Consequently, we have

Φ(S) ≤ 3β + (2nβ + 3B)

√
log 1

δ

2n
,

for a triplet-based metric learning algorithm.

1.4 Uniform Stability of mtML Algorithms

The following Theorem shows that the mtML algorithms solving (1) with the regularizer (2) is uniformly stable.

Theorem 1.5. The mtML algorithm solving (1) with a σ-admissible loss function and the regularizer R(H0 +
Ht) = λ0||H0||2F + λt||Ht||2F is β-uniform stable, with

β ≤ σ2R4

λ0Tn
+
σ2R4

λn
(6)

for a pair-based mtML algorithm, and

β ≤ 4σ2R4

λ0Tn
+

4σ2R4

λn
(7)

for a triplet-based mtML algorithm, where R = maxx,x′ ||x− x′||.

Remark 3. Theorem 1.5 also indicates that increasing the number of constraints associated with each data point
is not necessarily helpful due to the dependency and redundancy between the constraints. In other words, it reveals
that only the number of data points matters, not the number of constraints.

Proof. Let H = [H0, H1, . . . ,HT ]. We define convex function VS(H) as

VS(H) = LS(H) +N (H),

where LS(H) = 1
T

∑T
t=1 LSt(H0 +Ht) is the empirical loss of v over S, and N (H) = λ0||H0||2F + λ

T

∑T
t=1 ||Ht||2F.

By the definition of Bregman divergence and the first-order optimality condition of V, we have (for a pair-based
mtML algorithm)

dV
S
j
i

(
H(S), H(Si

j)
)

+ dVS
(
H(Si

j), H(S)
)

(8)

= LSij

(
H(S)

)
− LSij

(
H(Si

j)
)

+ LS

(
H(Si

j)
)
− LS

(
H(S)

)
≤ 1

T |C|
∑
zjk∈∪

j
i

(
`
(
H0(Sj

i ) +Hj(S
j
i ), z

j
i , z

j
k

)
− `
(
H0(S) +Hj(S), zji , z

j
k

)

+ `
(
H0(S) +Hj(S), zji

′
, zjk

)
− `
(
H0(Sj

i ) +Hj(S
j
i ), z

j
i

′
, zji

))
≤ 2σR2

Tn
||H0(S)−H0(Sj

i ) +Hj(S)−Hj(S
j
i )||F,

where Si
j is the training set S with the i-th training example of the j-th task, zji , replaced by an i.i.d. point zji

′
,

and ∪ji is the set of constraints that associated with zji . The last inequality is due to the admissibility of loss
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function ` and the Cauchy-Schwarz inequality. On the other hand, by the definition of N (H), we also have

dN
(
H(Si

j), H(S)
)

= dN
(
H(S), H(Si

j)
)

(9)

= λ0||H0(S)||2F +
1

T

T∑
t=1

λt||Ht(S)||2F −

(
λ0||H0(Si

j)||2F +
1

T

T∑
t=1

λt||Ht(S
i
j)||2F

)

−
〈
H(S)−H(Si

j),
1

T

[
2Tλ0H0(Si

j), 2λ1H1(Si
j), . . . ; 2λTHT (Si

j)
]〉

= λ0||H0(S)||2F +
1

T

T∑
t=1

λt||Ht(S)||2F +

(
λ0||H0(Si

j)||2F +
1

T

T∑
t=1

λt||Ht(S
i
j)||2F

)

−
〈
H(S),

1

T

[
2Tλ0H0(Si

j), 2λ1H1(Si
j); . . . ; 2λTHT (Si

j)
]〉

= λ0
∣∣∣∣H0(S)−H0(Si

j)
∣∣∣∣2
F

+
1

T

T∑
t=1

λt
∣∣∣∣Ht(S)−Ht(S

i
j)
∣∣∣∣2
F
.

Combining (8) with (9), and applying the non-negative and additive properties of Bregman divergence, we have,
for any task j, the following holds:

λ0
∣∣∣∣H0(S)−H0(Si

j)
∣∣∣∣2
F

+
λj
T

∣∣∣∣Hj(S)−Hj(S
i
j)
∣∣∣∣2
F

(10)

≤ λ0
∣∣∣∣H0(S)−H0(Si

j)
∣∣∣∣2
F

+
1

T

T∑
t=1

λt
∣∣∣∣Ht(S)−Ht(S

i
j)
∣∣∣∣2
F

≤ σR2

Tn

∣∣∣∣H0(S)−H0(Si
j) +Hj(S)−Hj(S

i
j)
∣∣∣∣
F
.

Applying triangle inequality to (10) yields

∣∣∣∣H0(S)−H0(Si
j) +Hj(S)−Hj(S

i
j)
∣∣∣∣
F
≤ σR2

λ0Tn
+
σR2

λjn
.

Then, by the admissibility of loss function and the Cauchy-Schwarz inequality, we have

βj ≤
σ2R4

λ0TN
+
σ2R4

λjN
.

The stability coefficient β of a triplet-based mtML algorithm can be bounded by a slight modification of the
method of proof (i.e., replace R2 with 2R2), and therefore is omitted here.

1.5 Boundedness of mtML Algorithms

The following Theorem shows that the model complexity of the mtML algorithms solving (1) can be upper
bounded by the single-task training loss and the gap between pooling-task approach and single-task approach.

Theorem 1.6. Let {Ht}Tt=0 be the optimal solution of the mtML problem (1), H∗0 be the optimal solution of the
pooling-task approach with R(H0) = λ0||H0||2F, and {H∗t }Tt=1 be the optimal solution of single-task approach with

R(Ht) = λ̃||Ht||2F, where λ̃ = λ0λ
λ0+λ

. Then, for any task j, the Frobenius norm of Mj is upper bounded by

||Mj ||F = ||H0 +Hj ||F ≤Mj ,

√
||H∗j ||2F +

G
λ̃
,

where G =
∑T

t=1 ∆LSt , ∆LSt =
[ (
LSt(H∗0 ) + λ0||H∗0 ||2F

)
− (LSt(H∗t ) + λ̃||H∗t ||2F)

]
, is the overall gap between the

pooling-task and single-task learning approaches.

Remark 4. Theorem 1.6 connects the generalization bound of mtML algorithm (1) with the single-task and
pooling-task learning approaches by upper bounding the model complexity (hence the upper bound B of loss func-
tion). It provides a new insight into when mtML algorithms can work. ||H∗j ||2F indicates the intrinsic complexity
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of the (single-taske) learning problem, and the gap can be treated as the measure of the similarities of between

the tasks –
∑T
t=1 ∆LSt can be small if the tasks are similar to each other, and vice versa. Compared to the

single-task learning approach, one can expect a good multitask learning performance when the tasks are similar
to each other.

Proof. Since {Ht}Tt=0 is the optimal solution of the mtML problem (1), we have

T∑
t=1

LSt(H0 +Ht) + λ0||H0||2F + λ||Ht||2F ≤
T∑
t=1

LSt(H∗0 ) + λ0||H∗0 ||2F. (11)

On the other hand, as {H∗t }Tt=1 is the optimal solution of the signal-task learning problem, for any task j, we
also have

LSj (H∗j ) + λ̃||H∗j ||2F ≤ LSj (H0 +Hj) + λ̃||H0 +Hj ||2F
≤ LSj (H0 +Hj) + λ0||H0||2F + λ||Hj ||2F, (12)

where the second inequality is due to the Cauchy-Schwarz inequality and the definition of λ̃. Combining (11)
and (12), we have

LSj (H0 +Hj) + λ̃||H0 +Hj ||2F
≤ LSj (H0 +Hj) + λ0||H0||2F + λ||Hj ||2F

≤

(
T∑
t=1

LSt(H∗0 ) + λ0||H∗0 ||2F

)
−

∑
t 6=j

LSt(H0 +Ht) + λ0||H0||2F + λ||Ht||2F


≤

(
T∑
t=1

LSt(H∗0 ) + λ0||H∗0 ||2F

)
−

∑
t6=j

LSt(H0 +Ht) + λ̃||H0 +Ht||2F


≤

(
T∑
t=1

LSt(H∗0 ) + λ0||H∗0 ||2F

)
−

∑
t6=j

LSt(H∗t ) + λ̃||H∗t ||2F


= LSj (H∗j ) + λ̃||H∗j ||2F +

T∑
t=1

∆LSt .

If we further assume that LSj (H∗j ) ≤ LSj (H0 +Hj), which is the usual case, then, we have

||H0 +Hj ||F ≤

√
||H∗j ||2F +

∑T
t=1 ∆LSt
λ̃

for any task j.

2 Derivation of the Dual Problem of mt-BML

The derivation of the dual problem of mt-BML mainly follows from [22]. In particular, the primal problem of
mt-BML is given by

min
w,ρ

log

 T∑
t=1

|Ct|∑
c=1

exp−ρtc

+

T∑
t=1

(λ0tr(H0) + λttr(Ht)) , (13)

s.t. ρtc = ζtc
>
w0 + ξtc

>
wt, P tm ∈ Ω1, w

t � 0,
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where Ω1 is the set of TORO matrices, and w, ρ are the sets of wt and ρtc. The Lagrange function of (13) is

L(w, ρ, µ, ν) = log

 T∑
t=1

|Ct|∑
c=1

exp−ρtc

+ Tλ0

M∑
m=1

w0
m +

T∑
t=1

λt

M∑
m=1

wtm

+

T∑
t=1

|Ct|∑
c=1

µtc

(
ρtc − ζtc

>
w0 − ξtc

>
wt
)
−

T∑
t=0

νt
>
wt,

where µ, ν � 0 are the sets of Lagrange multipliers. Then the dual function is given by

inf
w,ρ

L = inf
ρ

L1︷ ︸︸ ︷
log

 T∑
t=1

|Ct|∑
c=1

exp−ρtc

+

T∑
t=1

|Ct|∑
c=1

µtcρ
t
c (14)

+ inf
w0

L2︷ ︸︸ ︷
Tλ0

M∑
m=1

w0
m −

 T∑
t=1

|Ct|∑
c=1

µtcζ
t
c
>

+ ν0
>

w0

+ inf
{wt}Tt=1

L3︷ ︸︸ ︷
T∑
t=1

λt

M∑
m=1

wtm −

 |Ct|∑
c=1

µtcξ
t
c
>

+ νt
>

wt .

It can be observed that problem (14) can be optimized with respect to L1, L2, and L3 separately. We first set
the derivative of L1 with respect to ρ to zero, which gives

inf
ρ
L1 =

−
T∑
t=1

|Ct|∑
c=1

utc log utc, if u � 0,
T∑
t=1

|Ct|∑
c=1

utc = 1,

−∞ otherwise .

(15)

In addition, by noting that w0
m ≥ 0,∀m = 1, . . . ,M , we must have L2 = 0 to avoid a trivial solution, which leads

to

1

T

T∑
t=1

|Ct|∑
c=1

µtc,mζ
t
c,m ≤ λ0, ∀m = 1, . . . ,M (16)

By the similar derivation, we also have

|Ct|∑
c=1

µtc,mξ
t
c,m ≤ λt, ∀t = 1, . . . , T, ∀m = 1, . . . ,M. (17)

3 Derivation of the Symmetric Rank-One Update Algorithm

Suppose we have a rank-k positive semidefinite matrix M ∈ Sd,k+ , and a matrix Z = zz> ∈ Sd,1+ , z ∈ Rd. Our

objective is to design an algorithm that maps M + Z back to the embedded manifold Sd,k+ efficiently.

As introduced in our main paper, a typical procedure of such mapping consists of two consecutive steps, which
first maps Z to the tangent space1 TMSd,k+ : ZT = PM (Z) ∈ TMSd,k+ (projection), and then maps ZT ∈ TMSd,k+

onto the manifold: ZR = RM (ZT ) ∈ Sd,k+ (retraction).

1For a general manifold M, the tangent space to M at M , denoted by TMM, is the set of all tangent vectors to M
at M , and admits the structure of a vector space [1].
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3.1 Projection

As the tangent space is a linear subspace of the ambient space Rd×d, it is usually simple to compute the projection
PM (Z). Since M ∈ Sd,k+ , it can be decomposed as M = UU>, with U ∈ Rd×k.2 The following lemma gives the

parametrization of the tangent space TMSd,k+ .

Lemma 3.1. (See [23], Section 5.2) The tangent space of Sd,k+ at M = UU> is given by

TMSd,k+ =

{
[U, U⊥]

[
S N>

N 0

] [
U>

U>⊥

]
: S ∈ Sk+,N ∈ R(d−k)×k

}
, (18)

where U⊥ ∈ Rn×(n−k) is the normalized orthogonal complement of U , such that U>⊥U = 0, and U>⊥U⊥ = In−k.

Consequently, any tangent vector ZT ∈ TMSd,k+ can be decomposed into two mutually orthogonal parts ZT =
Zs
M + Zp

M . Using the orthogonal projectors onto the column span of U and U⊥, any matrix Z ∈ Rd×d can be

projected to TMSd,k+ as

PM (Z) = ZT = Zs
M + Zp

M , (19)

where Zs
M = PU

Z+Z>

2 PU , and Zp
M = PU⊥

Z+Z>

2 PU + PU
Z+Z>

2 PU⊥ , with PU = U(U>U)−1U>, and PU⊥ =
U⊥U

>
⊥ = Id − PU .

In mt-BML, since Z = zz>, Eq. 19 can be simplified as

PM (Z) = Zs
M + Zp

M = PUzz
>PU + PU⊥zz

>PU + PUzz
>PU⊥ , (20)

which is crucial for designing our symmetric rank-one update algorithm.

3.2 Retraction

A generic choice for a retraction is exponential mapping [4, 1]. However, the exact computation of the exponential
mapping is usually expensive and unnecessary. Instead, an approximate mapping could be sufficient as long as
maintains convergence properties of exponential mapping. The following definition gives the properties of the
retractions that approximate the exponential mapping to first order.

Definition 3.2 (First-order retraction). (See [1], Chapter 4.1, [23], Definition 5.4) For a general manifold
M, a first-order retraction for a given point M on M is a smooth mapping from TMM onto M, with the
following properties.

1. RM (0) = M

2. Local rigidity: For every tangent vector ZT ∈ TMM, the curve γZT : τ 7→ RM (τZT ) satisfies γ̇ZT (0) = ZT ,
where γ̇ZT is the derivative of γZT with respect to τ .

The following definition gives the properties of the retractions that approximate the exponential mapping to
second order.

Definition 3.3 (Second-order retraction). (See [1], Chapter 5.5, [23], Definition 5.5) For a general manifold
M, a second-order retraction for a given point M on M is a first-order retraction which satisfies in addition
the zero initial acceleration condition:

PM
(
d2RM (τZT )

dτ2

∣∣∣∣
τ=0

)
= 0, ∀ZT ∈ TMM

The objective of this work is to design an efficient second-order retraction, which maps M+Z,M ∈ Sd,k+ , Z ∈ Sd,1+

back to Sd,k+ , while stay as close to M+Z as possible after retraction. The following lemma defines a second-order

retraction on Sd,k+ .

2By abusing the notation a little bit without confusion, here we denote by Rd×k the space of full-rank d × k real
matrices.
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Lemma 3.4. (See [23], Proposition 5.10) For any M = UU> ∈ Sd,k+ , with M† ∈ Sd,k+ its pseudoinverse, the

mapping RM : TMSd,k+ 7→ Sd,k+ , given by

RM : ZT 7→ WM†W>, with W = M +
1

2
Zs
M + Zp

M −
1

8
Zs
MM

†Zs
M −

1

2
Zp
MM

†Zs
M , (21)

is a second-order retraction on Sd,k+ .

3.3 The Symmetric Rank-One Update Algorithm

Lemma 3.4 gives an analytical solution of a second-order retraction. However, direct computation of RM (as well
as PM ) is still expensive as we have to update M (hence recompute M†, Zs

M , and Zp
M ) at each step. With the

help of the preliminaries introduced above, we are ready to present our main result. By merging the projection
and retraction, and taking the advantage of the simple structure of Z ∈ Sd,1+ , the following theorem gives an
efficient second-order retraction for symmetric rank-one update.

Theorem 3.5. Let M = UU> ∈ Sd,k+ , and U† = (U>U)−1U>, given a matrix Z = zz> ∈ Sd,1+ , z ∈ Rd, the
operator MM (Z) = M∗ = U∗U

>
∗ , where U∗ = U + V , with

V = zz>U†
> − 1

2
PUzz

>U†
> − 1

2
zz>M†zz>U†

>
+

3

8
PUzz

>M†zz>U†
>

(22)

maps M+Z back to the manifold Sd,k+ . In addition, the retraction RM : ZT 7→ U∗U
>
∗ is a second-order retraction

on Sd,k+ for ZT = PUzz
>PU + PU⊥zz

>PU + PUzz
>PU⊥ ∈ TMSd,k+ .

Proof. First we note that M† = U(U>U)−2U> = U†
>
U†. Then the retraction defined by Eq. 21 can be

reformulated as

RM : ZT 7→ U∗U
>
∗ , with U∗ =WU†

>

In addition, we also have MU†
>

= UU>U(U>U)−1 = U , PU = UU†, PUU
†> = U(U>U)−1U>U(U>U)−1 =

U†
>

, PUM
† = M†PU = M†, PU⊥U

†> = (Id − PU )U†
>

= 0, and PU⊥M
† = (Id − PU )M† = 0. Therefore, we

have

U∗ =

(
M +

1

2
Zs
M + Zp

M −
1

8
Zs
MM

†Zs
M −

1

2
Zp
MM

†Zs
M

)
U†
>

= U +
1

2
PUzz

>U†
>

+ (Id − PU ) zz>U†
> − 1

8
PUzz

>M†zz>U†
> − 1

2
(Id − PU ) zz>M†zz>U†

>

= U + zz>U†
> − 1

2
PUzz

>U†
> − 1

2
zz>M†zz>U†

>
+

3

8
PUzz

>M†zz>U†
>
.

Together with Lemma 3.1 and Lemma 3.4, we conclude the proof of Theorem 3.5.

Remark 5. Theorem 3.5 implies that the mapping defined by MM (Z) (i.e., Eq (22)) is sufficiently accurate
(but much computationally cheaper), maintains the convergence property of exponential mapping, and enjoys the
convergence properties of second-order algorithms [1].

Remark 6. One may argue that a direct projection which select a point M∗ ∈ Md,k
+ that is closet to M + Z in

the Frobenius norm:

M + Z 7→ arg min
M∗∈Sd,k+

||M + Z −M∗||F

is also a valid second-order retraction [23, 2], and can be efficiently solved by rank-one modification of the

symmetric eigenproblem (e.g., [6, 8]), as M ∈ Sd,k+ and Z ∈ Sd,1+ . However, this approach cannot produce an
additive model (i.e., the base learner P ), which is required by mt-BML. While we can manually define a new base
learner as P = M −M∗, rank(P ) is still out of control. Consequently, it will be expensive to update the weights
µ (i.e., Eq. 12 in the main paper). On the contrary, the base learner given by Theorem 3.5 can be defined as
P = UV > + V U> + V V > with rank(P ) = 2, which makes the weights of triplets still updated efficiently after
retraction at each boosting iteration.
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4 mt-BML with SPD Matrices

SPD (e.g., covariance) matrices have been widely employed in many machine learning applications. Yet classical
learning algorithms designed in Euclidean space are inadequate since they ignore the geometric structure of the
SPD manifold to which the matrices belong, leading to some undesirable effects such as swelling [3]. One popular
approach to analyzing SPD matrices is through Riemannian structure induced by Riemannian metrics, such as
affine-invariant metric (AIM) [18], log-Euclidean metric (LEM) [3]. Provided the Riemannian structure induced
by these metrics, a direct extension of our algorithm to the SPD manifold is simply to convert the SPD matrices
to vectors, and then apply mt-BML. This approach is still problematic for high-dimensional data since the vector
dimension grows quadratically with the size of the matrix. In addition, it also distort the intrinsic geometrical
structure of the SPD matrices [10].

Inspired by recent advances in computer vision [10, 9], we extend mt-BML to the SPD manifold by directly
working on the (d× d)-dimensional matrices. Specifically, we adopt LEM to measure the distance two matrices
X,Y ∈ Sd+, defined as

δ2LE(X,Y ) = ||log(X)− log(Y )||2F ,

where log(·) is the matrix logarithm operator, and || · ||F is the Frobenius norm. Then, the objective of (triplet-
based) metric learning on the SPD is to learn a mapping W ∈ Rd×k such that, ∀(Xi, Xj , Xk) ∈ C

δ2LE(W>XiW,W
>XkW )− δ2LE(W>XiW,W

>XjW )

is as large as possible. On the other hand, it can be shown that log(W>XW ) can be approximated as
W> log(X)W in first order [9]. Then, we have

δ2LE(W>XW,W>YW ) (23)

≈
∣∣∣∣W> log(X)W −W> log(Y )W

∣∣∣∣2
F

= Tr (S (log(X)− log(Y ))S (log(X)− log(Y )))

= Tr ((log(X)− log(Y )) (log(X)− log(Y ))M) ,

where S = WW> and M = S2. Eq. (23) indicates that we can simply extend mt-BML to the SPD manifold
by defining x = log(X), and then apply mt-BML. Let M = QΛQ be the eigendecomposition of M , then the
projection matrix W can be computed by W = Q 4

√
Λ.

5 Additional Experimental Results

In this section, we present the results which are omitted in the main paper due the space limitation. We evaluate
mt-BML on six benchmark data sets of multitask learning, four in vector form, including Isolet, CoIL, Letter,
and USPS, and two in SPD matrix form, including the EEG signals data set IIIa from BCI Competition III
(III-IIIa), and data set IIa from BCI Competition IV (IV-IIa).

The Isolet data set3 consists of the 7797 examples collected from 150 speakers uttering all characters in the
English alphabet twice. The task is to classify the letter to be uttered. The speakers are grouped into 5 disjoint
subsets of 30 similar speakers according to the way they utter characters. Therefore, there are 5 tasks with
26 classes for each task. To reduce the noise of the data and speed up the computation time, the data is
preprocessed by principal component analysis (PCA) [12], and the dimensionality is reduced from 617 to 100.
The CoIL data set4 contains 9822 examples of the information of customers of an insurance company. We follow
the setting of [17], which selects 6 categorical features out of 86 variables to create 6 classification tasks, leaving
the remaining 80 features as the joint data set. The numbers of classes are respectively 40, 6, 10, 10, 4, and 2.
The Letter data set5 consists of 8 classification tasks, with each one being a binary classification of two letters:
a/g, a/o, c/e, f/t, g/y, h/n, m/n and i/j. Each example has 128 features corresponding to the pixel values of the
handwritten letter images. For each task, the number of examples varies from about 3000 to 8000. To speed up

3Available for download from https://archive.ics.uci.edu/ml/datasets/isolet
4Available for download from http://kdd.ics.uci.edu/databases/tic/tic.html
5Available for download from http://www-users.cs.umn.edu/ andre/softwares.html
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Table 1: Summary of the Data Sets used in Experiments

data set #task #ex #dim #class
Isolet 5 1560 617 (100) 26
CoIL 6 9822 80 2 ∼ 40
Letter 8 378 ∼ 2000 128 2
USPS 5 1186 ∼ 2199 256 (64) 2
III-IIIa 3 240 ∼ 360 60× 60 4
IV-IIa 9 576 22× 22 4

the computation time and balance the class distribution, we use about 2000 examples for each task. The USPS
data set6 consists of 7291 16 × 16 grayscale images of handwritten digits 0 – 9. We follow the setting of [25],
which constructs 5 tasks of classifying the digits 0/1, 2/3, 4/5, 6/7, 8/9. To speed up the computation time, the
data is preprocessed by PCA, and the dimensionality is reduced from 256 to 64.

The III-IIIa data set7[20] from BCI Competition III consists of EEG signals from three subjects who performed
left hand, right hand, foot, and tongue motor imagery. The signals were recorded using 60 channels, sampled
at 250 Hz. The EEG signals consist of a 90 trials per class for subject k3, and 60 trials per class for subjects
k6 and l1. The IV-IIa data set8[16] from BCI Competition IV consists of EEG signals from nine subjects who
performed left hand, right hand, foot, and tongue motor imagery. The signals were recorded using 22 channels,
sampled at 250 Hz. For each subject, the EEG signals consist of 144 trials per class. We follow the same data
preprocessing procedure as in [13]. For each data set, the EEG signals from 0.5 to 2.5 second after the cue
instructing the subjects to perform motor imagery are used, and the data are bandpass-filtered in 8-30 Hz, since
this time segment and frequency band include the signals involved in performing motor imagery.

Table 1 summarizes the characteristics of the data sets, including the number of tasks (#task), the number of
examples for each task (#ex), and the number of feature dimensions (#dim), and the number of classes of each
task (#class). See [17, 25, 20, 16, 13] for more details of the data sets. We run the experiments 20 times by
randomly splitting training/testing data set and the average results are reported.

5.1 Low-Rank mt-BML

Figure 1 shows the learning performances of different algorithms with the ratio of training examples being 0.1.
Compared with Figure 2 in the main paper, we have the similar observations. For example, it that mt-BML
consistently outperform other baseline algorithms, and mt-BML achieve comparable performances with the full-
rank single-task metrics with much lower model complexity (i.e., lower rank k). In addition, the algorithms gain
performance when increasing the rank of matrices, but the results are saturated for larger value of the rank k.
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Figure 1: Test error rates (%) with different values of rank.

5.2 Learning with SPD Matrices for EEG Decoding

Last, we investigate mt-BML/mt-LRBML on SPD manifolds to decode the content of information in EEG
signals, which has been actively studied in the fields such as BCI [24] and memory research [21]. Our algorithm

6Available for download from http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
7Available for download from http://bbci.de/competition/iii/
8Available for download from http://bbci.de/competition/iv/
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is evaluated on two BCI competition data sets. We use covariance matrices as the descriptors of EEG signals,
which contain the spatial information of the data, and our objective is to learn a discriminative metric on the
Riemannian manifolds to classify the SPD matrices. We compare mt-LRBML with st-LRBML, LEML [10], a
recently proposed SPD metric learning algorithm, CSP [7], a classical spatial filtering algorithm for BCI, as
well as the metrics based on LEM and the Euclidean distance. Figure 2 shows the test results of different
algorithms, from which it can be observed that the Euclidean distance is not an appropriate metric for SPD
matrices. st-LRBML, CSP and LEML can learn more discriminative metric than LEM as long as the rank of
the metric is large enough. On the other hand, mt-LRBML achieves comparable results with the baselines at
low-rank solutions, but it outperforms them as the rank of the metric increases. The reason may be that higher
rank solutions may lead to more discriminative metric but also require more examples for training. mt-LRBML
alleviates this problem by jointly learning metrics from multiple subjects.
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Figure 2: Test error rates (%) with different values of rank on the BCI Competition data sets.

Figure 3 shows the learning performances of different algorithms on the BCI Competition data sets with different
ratios of training examples. It can be observed that the Euclidean distance is not an appropriate metric for
SPD matrices, and the learning performances can be substantially improved by using the LEM metric. The
improvements of LEML and CSP are over LEM are not significant. st-BML achieves lower error rates than these
algorithms and its learning performances are further improved by the multitask learning approach, especially
when the ratio of training examples is small.
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Figure 3: Test error rates (%) of the algorithms on the BCI Competition data sets with different ratios of training
examples.
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