
Credit Assignment Techniques in Stochastic Computation Graphs

Théophane Weber∗,† Nicolas Heess∗ Lars Buesing David Silver
DeepMind

Abstract

Stochastic computation graphs (SCGs) provide
a formalism to represent structured optimization
problems arising in artificial intelligence, includ-
ing supervised, unsupervised, and reinforcement
learning. Previous work has shown that an un-
biased estimator of the gradient of the expected
loss of SCGs can be derived from a single prin-
ciple. However, this estimator often has high
variance and requires a full model evaluation per
data point, making this algorithm costly in large
graphs. In this work, we address these problems
by generalizing concepts from the reinforcement
learning literature. We introduce the concepts of
value functions, baselines and critics for arbitrary
SCGs, and show how to use them to derive lower-
variance gradient estimates from partial model
evaluations, paving the way towards general and
efficient credit assignment for gradient-based op-
timization. In doing so, we demonstrate how our
results unify recent advances in the probabilistic
inference and reinforcement learning literature.

1 Introduction

The machine learning community has recently seen break-
throughs in challenging problems in classification, den-
sity modeling, and reinforcement learning (RL). To a large
extent, successful methods have relied on gradient-based
optimization (in particular on the backpropagation algo-
rithm (Rumelhart et al., 1985)) for credit assignment, i.e.
for answering the question how individual parameters (or
units) affect the value of the objective. Recently, Schul-
man et al. (2015a) have shown that such problems can
be formalized as optimization in stochastic computation
graphs (SCGs). Furthermore, they derive a general gra-
dient estimator that remains valid even in the presence of

∗: Equal contribution; †: theophane@google.com
Proceedings of the 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

stochastic or non-differentiable computational nodes. This
unified view reveals that numerous previously proposed,
domain-specific gradient estimators, such as the likelihood
ratio estimator (Glasserman, 1992), also known as ‘REIN-
FORCE’ (Williams, 1992), as well as the pathwise deriva-
tive estimator, also known as the “reparameterization trick”
(Glasserman, 1991; Kingma & Welling, 2014; Rezende
et al., 2014), can be regarded as instantiations of the gen-
eral SCG estimator. While theoretically correct and con-
ceptually satisfying, the resulting estimator often exhibits
high variance in practice, and significant effort has gone
into developing techniques to mitigate this problem (Ng
et al., 1999; Sutton et al., 2000; Schulman et al., 2015b;
Arjona-Medina et al., 2018). Moreover, like backpropaga-
tion, the general SCG estimator requires a full forward and
backward pass through the entire graph for each gradient
evaluation, making the learning dynamics global instead of
local. This can become prohibitive for models consisting
of hundreds of layers, or recurrent model trained over long
temporal horizons.

In this paper, starting from the SCG framework, we tar-
get those limitations, by introducing a collection of results
which unify and generalize a growing body of results deal-
ing with credit assignment. In combination, they lead to a
spectrum of approaches that provide estimates of model pa-
rameter gradients for very general deterministic or stochas-
tic models. Taking advantage of the model structure, they
allow to trade off bias and variance of these estimates in a
flexible manner. Furthermore, they provide mechanisms
to derive local and asynchronous gradient estimates that
relieve the need for a full model evaluation. Our results
are borrowing from and generalizing a class of methods
popular primarily in the reinforcement learning literature,
namely that of learned approximations to the surrogate loss
or its gradients, also known as value functions, baselines
and critics. As new models with increasing structure and
complexity are actively being developed by the machine
learning community, we expect these methods to contribute
powerful new training algorithms in a variety of fields such
as hierarchical RL, multi-agent RL, and probabilistic pro-
gramming.

This paper is structured as follows. We review the stochas-
tic computation graph framework and recall the core result

Credit Assignments Techniques in SCGs

of Schulman et al. (2015a) in section 2. In section 3 we dis-
cuss the notions of value functions, baselines, and critics in
arbitrary computation graphs, and discuss when and how
they can be used to obtain both lower variance and local
estimates of the model gradients, as well as local learning
rules. In section 4 we provide similar results for gradient
critics, i.e. estimates or approximations of the downstream
loss gradient. In section 5, we discuss how the techniques
and concepts introduced in the previous sections can be
combined in different ways to obtain a wide spectrum of
different gradient estimators with different strengths and
weaknesses. Many examples, as well as a discussion of
how our results can be special-cased to recent results from
the literature, are discussed in the appendix.

Notation for derivatives

We use a ‘physics style’ notation by representing a function
and its output by the same letter. For any two variables x
and y in a computation graph, we use the partial derivative
∂y
∂x to denote the direct derivative of y with respect to x,
and the dy

dx to denote the total derivative of y with respect
to x, taking into account all paths (or effects) from x on y;
we use this notation even if y is still effectively a function
of multiple variables. For any variable x, we let x̃ denote
the value of x which we treat as a constant in the gradient
formula; i.e. x̃ can be thought of a the output of a ‘function’
which behaves as the identity, but has gradient zero every-
where1. Finally, the gradient of any sampling operation is
assumed to be 0.

All proofs are omitted from the main text and can be found
in the appendix.

2 Preliminaries

An important class of problems in machine learn-
ing can be formalized as optimizing an expected loss
Ex1,...,xn∼pθ(x1,...,xn)[`(x1, x2, . . . , θ)] over parameters θ,
where both the sampling distribution pθ as well as the loss
function ` can depend on θ. As we explain in greater de-
tail in the appendix, concrete examples of this setup are re-
inforcement learning (where p is a composition of known
policy and potentially unknown system dynamics) and vari-
ational autoencoders (where p is a composition of data dis-
tribution and inference network); cf. Fig. 1. Because of the
dependency of the distribution on θ, backpropagation does
not directly apply to this problem.

Two well-known estimators, the score function estimator
and the pathwise derivative, have been proposed in the lit-
erature (for a primer on both, see appendix B). Both turn
the gradient of an expectation into an expectation of gradi-
ents and hence allow for unbiased Monte Carlo estimates
by simulation from known distributions, thus opening the

1such an operation is often called ‘stop gradient’ in the deep
learning community; (Schulman et al., 2015a) denote it x̂.

door to stochastic approximations of gradient-based algo-
rithms such as gradient descent (Robbins & Monro, 1985).
They can also be unified when seen from the lens of the
stochastic computation graph framework, which we detail
next.

2.1 Stochastic computation graphs

SCG framework. We quickly recall the main results
from Schulman et al. (2015a).

Definition 1 (Stochastic Computation Graph). A
stochastic computation graph G is a directed, acyclic
graph , with two classes of nodes (also called vari-
ables): deterministic nodes, and stochastic nodes.

1. Stochastic nodes, (represented with circles, de-
noted S), which are distributed conditionally
given their parents.

2. Deterministic nodes (represented with squares,
denoted D), which are deterministic functions of
their parents.

We further specialize deterministic nodes as follows:

• Certain deterministic nodes with no parents in
the graphs are referred to as input nodes θ ∈ Θ,
which are set externally, including the parame-
ters we differentiate with respect to.

• Certain deterministic nodes are designated as
losses or costs (represented with diamonds) and
denoted ` ∈ L . We aim to compute the gradient
of the expected sum of costs with respect to some
input node θ.

A parent v of a node w is connected to it by a directed
edge (v, w). Let L =

∑
`∈L ` be the total cost.

For a node v, we let hv denote the set of parents of v in
the graph. A path between v and w is a sequence of nodes
a0 = v, a1, . . . , aK−1, aK = w such that all (ak−1, ak) are
directed edges in the graph; if any such path exists, we say
that w descends from v and denote it v ≺ w. We say the
path is blocked by a set of variables V if any of the ai ∈ V .
By convention, v descends from itself. For a variable x and
set V , we say x can be deterministically computed from V if
there is no path from a stochastic variable to x which is not
blocked by V (cf. Fig. 2). Algorithmically, this means that
knowing the values of all variables in V allows to compute
x without sampling any other variables; mathematically, it
means that conditional on V , x is a constant. Finally, when-
ever we use the notion of conditional independence, we re-
fer to the notion of conditional independence informed by
the graph (i.e. d-separation) (Geiger et al., 1990; Koller &
Friedman, 2009).

Weber, Heess, Buesing, Silver

Gradient estimator for SCG. Consider the expected
loss J (θ) = Es∈S [L]. We present the general gradient
estimator for the gradient of the expected loss d

dθJ (θ) de-
rived in (Schulman et al., 2015a).

For any stochastic variable v, we let log p(v) denote the
conditional log-probability of v given its parents, i. e. the
value log p(v|hv), and let s(v, θ) denote the score function
d log p(v)

dθ .

Theorem 1. [Theorem 1 from (Schulman et al., 2015a)]
Under simple regularity conditions,

d

dθ
J (θ) = E

[∑
v∈S
θ≺v

s(v, θ)L+
∑
`∈L
θ≺`

d`

dθ

]

Here, the first term corresponds to the influence θ has on
the loss through the non-differentiable path mediated by
stochastic nodes. Intuitively, when using this estimator for
gradient descent, θ is changed so as to increase or ‘rein-
force’ the probability of samples of v that empirically led
to lower total cost L. The second term corresponds to the
direct influence θ has on the total cost through differen-
tiable paths. Note that differentiable paths include paths
going through reparameterized random variables.

3 Value based methods

The gradient estimator from theorem 1 is very general and
conceptually simple but it tends to have high variance (see
for instance the analysis found in Mnih & Rezende, 2016),
which affects convergence speed (see e.g. Schmidt et al.,
2011). Furthermore, it requires a full evaluation of the
graph. To address these issues, we first discuss several vari-
ations of the basic estimator in which the total cost L is
replaced by its deviation from the expected total cost, or
conditional expectations thereof, with the aim of reducing
the variance of the estimator. We then discuss how approx-
imations of these conditional expectations can be learned
locally, leading to a scheme in which gradient computa-
tions from partial model evaluations become possible.

3.1 Values

In this section, we use the simple concept of conditional
expectations to introduce a general definition of value func-
tion in a stochastic computation graph.

Definition 2 (Value function). Let X be an arbitrary sub-
set of G, x an assignment of possible values to variables
in X and S an arbitrary scalar value in the graph. The
value function for set X is the expectation of the quantity S
conditioned on X :

V : x 7→ V (x;S) = EG\X|X=x [S] .

Intuitively, a value function is an estimate of the cost which
averages out the effect of stochastic variables not in X ,
therefore the larger the set, the fewer variables are averaged
out.

The definition of the value function as conditional expecta-
tion results in the following characterization:

Lemma 1. For a given assignment x of X , V (x;S) is the
optimal mean-squared error estimator of S given input X :

V (x;S) = argminvx EG\X|X=x

[
(S − vx)2

]
.

Consider an arbitrary node v ∈ G, and let L(v) =
∑
`∈L
v≺`

`

denote the v-rooted cost-to-go, i.e. the sum of costs ‘down-
streams’ from v (similar notation is used for L(V) if V is
a set). The scalar S will often be the cost-to-go L(v) for
some fixed node v; furthermore, when clear from context,
we use X to both refer to the variables and the values they
take. For notational simplicity, we will denote the corre-
sponding value function V (X).

Fig. 3 shows multiple examples of value functions for dif-
ferent graphs. The above definition is broader than the typ-
ical one used in reinforcement learning. There, due to the
simple chain structure of the Markov Decision Processes,
the resulting Markov properties of the graph, and the par-
ticular choice of X , the expectation is only with respect to
downstream nodes. Importantly, according to Def. 2 the
value can depend on X via ancestors of X (e.g. example in
Fig. 3c). Lemma 1 remains valid nevertheless.

3.2 Baselines and critics

In this section, we will define the notions of baselines and
critics and use them to introduce a generalization of theo-
rem 1 which can be used to compute lower variance estima-
tor of the gradient of the expected cost. We will then show
how to use value functions to design baselines and critics.

Consider an arbitrary node v and input θ.

Definition 3 (Baseline). A baseline B for v is any function
of the graph such that E[s(v, θ)B] = 0. A baseline set B is
an arbitrary subset of the non-descendants of v.

Baseline sets are of interest because of the following prop-
erty:

Property 1. Let B be an arbitrary scalar function of B.
Then B is a baseline for v.

Common choices are constant baselines, i.e. B = ∅, or
baselines B(hv) only depending on the parents B = hv
of v.

Definition 4 (Critic). A critic Q of cost L(v) for v is any
function of the graph such that E[s(v, θ)(L(v)−Q)] = 0.

By linearity of expectations, linear combinations of base-
lines are baselines, and convex combinations of critics are
critics.

Credit Assignments Techniques in SCGs

The use of the terms critic and baseline is motivated by
their respective roles in the following theorem, which gen-
eralizes the policy gradient theorem (Sutton et al., 2000):

Theorem 2. Consider an arbitrary baseline Bv and critic
Qv for each stochastic node v. Then,

d

dθ
J (θ) = E

[∑
v∈S
θ≺v

Gv +
∑
`∈L
θ≺`

d

dθ
`

]
,

where Gv = s(v, θ)
(
Qv −Bv

)
.

The difference Qv − Bv between a critic and a baseline is
called an advantage function.

Theorem 2 enables the derivation of a surrogate loss. Let
Ls be defined as Ls = L +

∑
`∈L
θ≺`

log p(v)
(
Q̃− B̃

)
,

where we recall that the tilde notation indicates a constant
from the point of view of computing gradients. Then, the
gradient of the expected cost J (θ) equals the gradient of
Ls in expectation: d

dθE[L] = E
[
d
dθL

s
]
.

Before providing intuition on this theorem, we see how
value functions can be used to design baselines and critics:

Definition 5 (Baseline and critic value functions).
For any node v and baseline set B, a special case of a base-
line is to choose the value function with set B. Such a base-
line is called a baseline value function.
Let a critic set C be a set such that v ∈ C, and log p(v) and
L(v) are conditionally independent given C; a special case
is when C is such that log p(v) is deterministically com-
putable given C. Then the value function for set C is a critic
for v which we call a critic value function for v.

Figure 3 contains several examples of value functions
which take the role of baselines and critics for different
nodes. In the standard MDP setup of the RL literature, C
consists of the state s and the action a which is taken by
a stochastic policy π in state s with probability log π(a|s),
which is a deterministic function of (s, a). Definition 5 is
more general than this conventional usage of critics since it
does not require C to contain all stochastic ancestor nodes
that are required to evaluate log p(v). For instance, assume
that the action is conditionally sampled from the state s and
some source of noise ξ, for instance due to dropout, with
distribution π(a|ξ, s)2. The critic set may but does not need
to include ξ; if it does not, log π(a|ξ, s) is not a determin-
istic function of a and s. The corresponding critic remains
useful and valid.

Three related ideas guide the derivation of theorem 2. To
give intuition, let us analyze the term Gv , which replaces
the score function weighted by the total cost s(v, θ)L. First,
the conditional distribution of v only influences the costs

2in this example, it is important ξ is used only once; it cannot
be used to compute other actions.

downstream from v, hence we only have to reinforce the
probability of v with the cost-to-go L(v) instead the total
cost L. Second, the extent to which a particular sample v
contributed to cost-to-go L(v) should be compared to the
cost-to-go the graph typically produces in the first place.
This is the intuition behind subtracting the baseline B, also
known as a control variate. Third, we ideally would like to
understand the precise contribution of v to the cost-to-go,
not for a particular value of downstream random variables,
but on average. This is the idea behind the criticQ. The ad-
vantage (difference between critic and baseline) therefore
provides an estimate of ‘how much better than anticipated’
the cost was, as a function of the random choice v.

Baseline value functions are often used as baselines as
they approximate the optimal baseline (see Appendix G.1).
Critic value functions are often used as they provide an ex-
pected downstream cost given the conditioning set. Fur-
thermore, as we will see in the next section, value func-
tions can be estimated in a recursive fashion, enabling lo-
cal learning of the values, and sharing of value functions
between baselines and critics. For these reasons, in the rest
of this paper, we will only consider baseline value functions
and critic value functions.

In the remainder of this section, we consider an arbitrary
value function with conditioning set X .

3.3 Recursive estimation and Markov properties

A fundamental principle in RL is given by the Bellman
equation – which details how a value function can be de-
fined recursively in terms of the value function at the next
time step. In this section, we generalize the notion of re-
cursive computation to arbitrary graphs.

The main result, which follows immediately from the law
of iterated expectations, characterizes the value function
for one set, as an expectation of a value function (or critic /
baseline value function) of a larger set:

Lemma 2. Consider two sets X 1 ⊂ X 2, and an arbitrary
quantity S. Then we have: E[V (X 2;S)|X 1] = V (X 1;S).

This lemma is powerful, as it allows to relate value func-
tions as average of over value function. A simple example
in RL is the relation (here, in the infinite discounted case)
between the Q function Qπ(s, a) = E[R|s, a] of a pol-
icy and the corresponding value function V π(s) = E[R|s],
which is given by V π(s) =

∑
a π(a|s)Qπ(s, a). Note this

equation relates a critic value function to a value function
typically used as baseline.

To fully leverage the lemma above, we proceed with a
Markov property for graphs3, which captures the follow-
ing situation: given two conditioning sets X 1 ⊂ X 2, it
may be the case that the additional information contained

3borrowed from well known conditional independence condi-
tions in graphical models, and adapted to our purposes.

Weber, Heess, Buesing, Silver

in X 2 does not improve the accuracy of the cost prediction
compared to the information contained in the smaller set
X 1.

Definition 6. For conditioning set X , we say that X is
Markov (for L(v)) if for any w such that there exists a di-
rected path from w to L(v) not blocked by X , none of the
descendants of w are in X .
Let X ↑ be the set of all ancestors of nodes X 4.

Property 2. Let X be Markov, consider any X ′ such that
X ⊂ X ′ ⊂ X ↑. For any x′ assignment of values to the
variables in X ′, let x′|X be the restriction of x′ to the vari-
ables in X . Then, for all x′, V (X = x′|X) = V (X ′ = x′),,
which we will simply denote, with a slight abuse of nota-
tion, V (X ′) = V (X).

In other words, the information contained in X ↑ \ X is ir-
relevant in terms of cost prediction, given access to the in-
formation in X . Several examples are shown in Fig. 4. It
is worth noting that Def. 6 does not rule out changes in the
expected value of L(v) after adding additional nodes to X
(cf. Fig. 4(d,e)). Instead it rules out correlations between
X and L(v) that are mediated via ancestors of nodes in X
as in the example in Fig. 4(a,b,c)).

The notion of Markov set can be used to refine Lemma 2:

Lemma 3 (Generalized Bellman equation). Consider two
sets X 1 ⊂ X 2↑, and suppose X 2 is Markov. Then we have:
E[V (X 2)|X 1] = V (X 1).
The Markov assumption is critical in allowing to ‘push’ the
boundary at which the expectation is defined; without it,
lemma 2 only allows to relate value functions of sets which
are subset of one another. But notice here that no such
inclusion is required between X 1 and X 2 themselves. In
the context of RL, this corresponds to equations of the type
V (s) =

∑
a π(s, a) (r(s, a) +

∑
s′ P (s′|s, a)V (s′)) (see

Fig. 5), though to get the separation between the reward
and the value at the next time step, we will need a slight
refinement, which we detail in the next section.

3.4 Decomposed costs and bootstrap
In the previous sections we have considered a value func-
tion with respect to a node v which predicts an estimate of
the cost-to-go L(v) from node v (note L(v) was implicit in
most of our notation). In this section, we write the cost-to-
go at a node as a funtion of cost-to-go from other nodes or
collection of nodes, and leverage the linearity of expecta-
tion to turn these relations between costs into relation be-
tween value functions.

Definition 7 (Decomposed costs). For a node v and a col-
lection V = {V0, V1, . . . , VD} in the graph, we say that
the cost L(v) can be decomposed with set V if L(v) =∑
i L(Vi).

This implies that cost nodes can be grouped in disjoint sets
4Recall that by convention nodes are descendants of them-

selves, so X ⊂ X ↑

corresponding to the descendents of different sets Vi, with-
out double-counting. A common special case is a tree,
where each Vi is a singleton containing a single child {vi}
of v.

Theorem 3 (Bootstrap principle for SCGs). Suppose the
cost-to-go L(v) from node v can be decomposed with sets
V = {V0, . . . , VD}, and consider an arbitrary set Xv with
associated value function V (Xv, L(v)). Furthermore, for
each set Vi, consider a set XVi and associated value func-
tion: V (XVi , L(Vi)). If for each i, Xv ⊂ XVi , or if for each
i, XVi is Markov and Xv ⊂ X ↑Vi , then:

V (Xv) =
∑
i

EG\Xv|Xv [V (XVi)] .

Fig. 6 highlights potential difficulties of defining correct
bootstrap equations for various graphs.

From the bootstrap equation follows a special case, which
we call partial averaging, often used for critics:

Corollary 1 (Partial averages). Suppose that for each i,
XVi is Markov and XVi ⊂ Xv ⊂ X

↑
Vi

. Without loss of gen-
erality, define V0 as the collection of all cost nodes which
can be deterministically computed from Xv . Then,

V (Xv) =
∑
i

V (XVi) =
∑
`∈V0

`+
∑
i≥1

V (XVi).

The term ‘partial average’ indicates that the value function
is a conditional expectation (i.e. ’averaging’ variables) but
that it combines averaged cost estimates (the value terms
V (XVi)) and empirical costs (

∑
`∈V0

`v). Fig. 7 shows
some examples for generic graphs.

In the case of RL for instance, a K-step return is a form
of partial average, since the return Rt – sum of all rewards
downstream from state st – can be written as the sum of all
rewards in V0 = {rt, . . . , rt+k−1} and downstream from
V1 = {st+k}; the critic value function V (st, . . . , st+k) is
therefore equal5 to

∑t+k−1
t′=t rt′ + V (st+k). This implies

in turn that V (st) = E[V (st, . . . , st+k)] is also equal to
E[
∑t+k
t′=t rt′ + V (st+k)].

3.5 Approximate Value functions

In practice, value functions often cannot be computed ex-
actly. In such cases, one can resort to learning paramet-
ric approximations. For node v, conditioning set X , we
will consider an approximate value function V̂ φ(X) as an
approximation (with parameters φ) to the value function
V (X) = EG\Xv|Xv [L(v)].

Following corollary 1, we know that for a possi-
ble assignment x of variables X , V (x) minimizes
EG\X|X

[
(L(v)− vx)2

]
over vx. We therefore elect to op-

timize φ by considering the following weighted average,

5We assume for simplicity that the rewards are deterministic
functions of the state; the result can be trivially generalized.

Credit Assignments Techniques in SCGs

called a regression on return in reinforcement learning:

Lφ = EX
[
EG\X|X

[
(L(v)− V̂ φ(X))2

]]
= EG

[
(L(v)− V̂ φ(X))2

]
,

from which we obtain:

dLφ

dφ
= EG

[
d

dφ
V̂ φ(X)

(
V̂ φ(X)− L(v)

)]
(1)

which can easily be computed by forward sampling from
G, even if conditional sampling given X is difficult.

We now leverage the recursion methods from the previ-
ous sections in two different ways. The first is to use
the combination of approximate value functions and par-
tial averages to define other value functions. For a par-
tial average as defined in theorem 1 and family of ap-
proximate value functions V̂ φvi(Xvi), we can define an ap-
proximate value function through the bootstrap equation:∑
`∈V0

`v +
∑
i V̂

φ(Xvi). In other words, using the boot-
strap equations, approximating value functions for certain
sets automatically defines other approximate value func-
tions for other sets.

In general, we can trade bias and variance by making V0

larger (which will typically result in lower bias, higher vari-
ance) or not, i.e. by shifting the boundary at which variables
are integrated out, for instance by using K-step returns or
λ-weighted returns. An extreme case of a partial average
is not an average at all, where X = G, in which case the
value function is the empirical return L(v).

The second way to use the bootstrap equation is to pro-
vide a different, lower variance target to the value function
regression. By combining theorem 3 and equation 1, we
obtain:

dLφ
dφ

= EG

[
d

dφ
V̂ φ(X)

(
V̂ φ(X)−

∑
i

V̂ φ(Xvi)

)]

By following this gradient, the value function V̂ φ(Xv)
will tend towards the bootstrap value

∑
`∈V0

`v +∑
i≥1 V̂

φ(Xvi) instead of the return L(v). Because the
former has averaged out stochastic nodes, it is a lower vari-
ance target, and should in practice provide a stronger learn-
ing signal. Furthermore, as it can be evaluated as soon as
Xvi is evaluated, it provides a local or online learning rule
for the value at v; by this we mean the corresponding gra-
dient update can be computed as soon as all sets Xvi are
evaluated. In RL, this local learning property can be found
in actor-critic schemes: when taking action at in state st,
as soon as the immediate reward rt is computed and next
state st+1 is evaluated, the value function V (st) (which is a
baseline for at) can be regressed against low-variance tar-
get rt + V (st+1), which can also be used as critic for at
and therefore used to update the corresponding policy.

4 Gradient-based methods
In the previous section, we developed techniques
to lower the variance of the score-function terms
E
[(

d
dθ log p(v)

)(
Q(C)−B(Bv)

)]
in the gradient esti-

mate. This led to the construction of a surrogate loss Ls

which satisfies d
dθE [J (θ)] = E

[
dLs

dθ

]
.

In this section, we develop corresponding techniques to
lower the variance estimates of the gradients of surrogate
cost d

dθL
s. To this end, we will again make use of condi-

tional expectations to partially average out variability from
stochastic nodes. This leads to the idea of a gradient-
critic, the equivalent of the value critic for gradient-based
approaches.

4.1 Gradient-Critic

Definition 8 (Value-gradient). The value-gradient for v
with set C is the following function of C:

g(C) = EG\C|C
[
dLs

dv

]
.

Value-gradients are not directly useful in our derivations
but we will see later that certain value-gradients can reduce
the variance of our estimators. We call these value-gradient
gradient-critics.

Definition 9 (Gradient-critic). Consider two nodes u and
v, and a value-gradient gv for node v with set C. If dvdu and
dLs

dv are conditionally independent given C6, then we say
the value-gradient is a gradient-critic for v with respect to
u.

Corollary 2. If dvdu is deterministically computable from C,
then gv(C) is a gradient-critic for v with respect to u.

We can use gradient-critics in the backpropagation equa-
tion. First, we recall the equation for backpropagation and
stochastic backpropagation. Let u be an arbitrary node of
H, and {v1, . . . , vd} be the children of u in G. The back-
propagation equations state that: dL

s

du =
∑
i
dLs

dvi
∂vi
∂u . From

this we obtain the stochastic backpropagation equations:

EG
[
dLs

du

]
= EG

[∑
i

dLs

dvi

∂vi
∂u

]

Gradient-critics allow for replacing these stochastic esti-
mates by conditional expectations, potentially achieving
lower variance:

Theorem 4. For each child vi of v, let gvi be a gradient-
critic for vi with respect to u. We then have:

EG
[
dLs

du

]
= EG

[∑
i

gvi
∂vi
∂u

]
.

6See lemma 7 in Appendix for a characterization of condi-
tional independence between total derivatives.

Weber, Heess, Buesing, Silver

Note a similar intuition as the idea of critic defined in the
previous section. In both cases, we want to evaluate the ex-
pectation of a product of two correlated random variables,
and replace one by its expectation given a set which makes
the variables conditionally independent.

4.2 Horizon gradient-critic and gradient-critic
bootstrap

More generally, we do not have to limit ourselves to
{v1, v2, . . . , vd} being children of u. We define a separator
set for u in H to be a set {v1, v2, . . . , vd} such that every
deterministic path from u to the loss Ls is blocked by a
vi ∈ H. For simplicity, we further require the separator set
to be unordered, which means that for any i 6= j, vj cannot
be an ancestor to vi; we drop this assumption for a gener-
alized result in the appendix C. Under these assumptions,
the backpropagation rule can be rewritten (see (Naumann,
2008; Parmas, 2018)):

EG
[
dLs

du

]
= EG

[∑
i

dLs

dvi

dvi
du

]
. (2)

Theorem 5. Assume that for every i, gvi is a gradient critic
for vi with respect to u. We then have:

EG
[
dLs

du

]
= EG

[∑
i

gvi
dvi
du

]
.

This theorem allows us to ‘push’ the horizon after which
we start using gradient-critics. It constitutes the gradient
equivalent of partial averaging, since it combines stochastic
backpropagation (the terms dvi

du) and gradient critics gvi .

We now show how this theorem to derive a generic notion
of bootstrapping for gradient-critics:
Theorem 6 (Gradient-critic bootstrap). Consider a node
u, unordered separator set {v1, . . . , vd}. Consider value-
gradient gu with set Cu for node u, and (gv1 , gv2 , . . . , gvd)
with Markov sets (Cv1 , . . . , Cvd) critics for vi with respect
to u. Suppose that for all i, Cu ⊂ Cvi . Then,

gu =
∑
i

ECvi |Cu

[
gvi

dvi
du

]
. (3)

4.3 Gradient-critic and gradient of critic

The section above proposes an operational definition of a
gradient critic, in that one can replace the sampled gradient
dLs

du by the expectation of the gradient gu. A natural ques-
tion follows – is a value-gradient the gradient of a value
function? Similarly, is a gradient-critic the gradient of a
critic function?

It is in general not true that the value-gradient must be the
gradient of a value function. However, if the critic set is
Markov, the gradient-critic is the gradient of the critic.

Theorem 7. Consider a node v and critic set C, and cor-
responding critic value function Q(C) and gradient-critic
gv(C). If C is Markov for v, then we have: dQ(C)

dv = gv(C).

This characterization of the gradient-critic as gradient of a
critic plays a key role in using reparametrization techniques
when gradients are not computable. For instance, in a con-
tinuous control application of reinforcement learning, the
state of the environment can be assumed to be an unknown
but differentiable function of the previous state and of the
action. In this context, a critic can readily be learned by
predicting total costs. By the argument above, the gradient
of this critic actually corresponds to the gradient-critic of
the unknown environment dynamics. This technique is at
the heart of differentiable policy gradients (Lillicrap et al.,
2015) and stochastic value gradients (Heess et al., 2015).

4.4 Gradient-critic approximation and computation

Following the arguments regarding conditional expectation
and square minimization from section 3.1, we know that gv
satisfies the following minimization problem:

gv(C) =argmingcv EG\C|C

[(
gcv −

dLs

dv

)2
]

For a parametric approximation gφv , and using the same
weighting scheme as section 3.5, it follows that:

Lφ = EG

[(
gφv (C)− dLs

dv

)2
]

dLφ

dφ
= EG

[
d

dφ
gφv (C)

(
gφv (C)− dLs

dv

)]
(4)

Finally, if C is Markovian for v, from Theorem 7, the
gradient-critic gφv can be defined in two ways: first, as the
critic of a gradient (E[dL

s

dv |C]), and second, as the gradient
of a critic (ddvE[L|C] = d

dvQ(C)).

In this case, it makes sense to parameterize gφv as the
derivative of a function Qφ(C), where v ∈ C, i.e. define
gφv (C) = dQφ(C)

dv . The gradient-critic can therefore defined
directly by the gradient-critic loss, and indirectly by the
critic loss. It therefore makes sense to combine them:

Lφ = EG
[
α(Qφ(C)− L)

2
+ β

(
dQφ(C)
dv

− dLs

dv

)2]
(5)

where α, β are relative weights for each norm. This is
called a Sobolev norm, see also (Czarnecki et al., 2017).

5 Combination of estimators and critics
The techniques outlined above suggest a “menu” of choices
for constructing gradient estimators for stochastic compu-
tation graphs. We lay out a few of these choices, highlight-
ing how are results strictly generalize known methods from
the literature.

Credit Assignments Techniques in SCGs

Reparameterization; use of score function and pathwise
derivative estimators. Many distributions can be repa-
rameterized, including discrete random variables (Maddi-
son et al., 2016; Jang et al., 2016). This opens a choice
between SF and PD estimator. The latter allows gradients
to flow through the graph. Where exact gradients are not
available (e.g. in MDPs or in probabilistic programs and
approximate Bayes computation (Meeds & Welling, 2014;
Ong et al., 2018)) gradients of critics can under certain con-
ditions be used in combination with reparameterized distri-
butions (see e.g. (Heess et al., 2015).

Grouping of random variables. For many graphs there
is a natural grouping of random variables that suggests ob-
vious baseline and critic choices. Taking into account the
detailed Markov structure of the computation graph may
however reveal interesting alternatives. For instance, in-
dependent action dimensions allow updates in which base-
lines are conditioned on the values chosen for other action
dimensions. Such ideas have been exploited e.g. in work on
action-dependent baselines (Wu et al., 2018), and in multi-
agent domains (Foerster et al., 2017). Other applications
have been found in hierarchical RL, for instance in (Ba-
con et al., 2017), where the relation between options and
actions directly informs the computation graph structure,
in turn defining the correct value bootstrap equations and
corresponding policy gradient theorem.

Use of value critics and baselines. The discussion in 3.2
highlights there are typically many different choices for
constructing baselines and critics even beyond the choice
of a particular variable grouping (e.g. the use of K-step re-
turns or generalized advantage estimates in RL, Schulman
et al. (2015a)) even for simple graphs (such as chains).

Use of gradient-critics. For reparameterized variables
or general deterministic pathways through a computation
graph gradient critics can be used. Gradient critics for
a given node in the graph can be obtained by either di-
rectly approximating the (expected) gradient of the down-
stream loss, or by approximating the value of the future loss
terms (as for value critics) and then using the gradient of
this approximation. Gradient-critics allow to conceptualize
the links between related notions of value-gradient found
in (Fairbank & Alonso, 2012; Fairbank, 2014), stochastic
value-gradients (Heess et al., 2015), and synthetic gradi-
ents (Jaderberg et al., 2016; Czarnecki et al., 2017).

Debiasing of estimators through policy-gradient correc-
tion. The use of critics or gradient-critics results in biased
estimators. When using gradient-critic, it is often possible
to debias the use of the gradient-critic by adding a correc-
tion term corresponding to the critic error. The resulting
scheme is unbiased, but may or may not have lower vari-
ance than ‘naive’ estimators which do not use critics at all.
This is sometimes known as ’action-conditional’ baselines
in the literature (Tucker et al., 2018), and is also strongly

related to Stein variational gradient (Liu & Wang, 2016).
See App. G.3 for more details.

Bootstrapping. Targets for baselines and critics can be
obtained in a variety of ways: For instance, they can be re-
gressed directly onto empirical sums of downstream losses
(“Monte Carlo” returns in reinforcement learning). But tar-
gets can also constructed from other, downstream value
or gradient approximations (e.g. “K-step returns” or “λ-
weighted returns” in reinforcement learning), an idea dis-
cussed above under the name bootstrapping (sections 3.3
and 4.2). The appropriate choice here will again be highly
application specific.

Decoupled updates. In its original form Theorem 1 re-
quires a full and backward pass through the entire compu-
tation graph to compute a single sample approximation to
its gradient. Through appropriate combination of surrogate
signals and bootstrapping, however, updates for different
parts of the graph can be decoupled to different extents. For
instance, in reinforcement learning actor-critic algorithms
compute updates to the policy parameters from single tran-
sitions st, at, rt, st+1. The same ideas can be applied to
general computation graphs where additional freedom can
allow even more flexible schemes (e.g. individual parts of
the graph can be updated more frequently than others).

6 Conclusion
In this paper, we have provided a detailed discussion and
mathematical analysis of credit assignment techniques for
stochastic computation graphs. Our discussion explains
and unifies existing algorithms, practices, and results ob-
tained in a number of particular models and different fields
of the ML literature. They also provide insights about the
particular form of algorithms, highlighting how they natu-
rally result from the constraints imposed by the computa-
tion graph structure, instead of ad-hoc solutions to particu-
lar problems.

The conceptual understanding and tools developed in this
work do not just allow the derivation of existing solutions
as special cases. Instead, they also highlight the fact that for
any given model there typically is a menu of choices, each
of which gives rise to a different gradient estimator with
different advantages and disadvantages. For new models,
these tools provide methodological guidance for the devel-
opment of appropriate algorithms. In that sense our work
emphasizes a similar separation of model and algorithm
that has been proven fruitful in other domains, for instance
in the probabilistic modeling and inference literature.

We believe that this separation as well as a good under-
standing of the underlying principles will become increas-
ingly important as both models and training schemes be-
come more complex and the distinction between different
model classes blurs.

Weber, Heess, Buesing, Silver

Acknowledgments

Wed like to thank the many people for useful discussions
and feedback on the research and the manuscript, including
Ziyu Wang, Sébastien Racanière, Yori Zwols, Chris Mad-
dison, Arthur Guez and Andriy Mnih.

References

Archer, Evan, Park, Il Memming, Buesing, Lars, Cun-
ningham, John, and Paninski, Liam. Black box varia-
tional inference for state space models. arXiv preprint
arXiv:1511.07367, 2015.

Arjona-Medina, Jose A, Gillhofer, Michael, Widrich,
Michael, Unterthiner, Thomas, and Hochreiter, Sepp.
Rudder: Return decomposition for delayed rewards.
arXiv preprint arXiv:1806.07857, 2018.

Bacon, Pierre-Luc, Harb, Jean, and Precup, Doina. The
option-critic architecture. In AAAI, pp. 1726–1734,
2017.

Bayer, Justin and Osendorfer, Christian. Learning stochas-
tic recurrent networks. arXiv preprint arXiv:1411.7610,
2014.

Bengio, Yoshua, Léonard, Nicholas, and Courville, Aaron.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray,
and Wierstra, Daan. Weight uncertainty in neural net-
works. arXiv preprint arXiv:1505.05424, 2015.

Buesing, Lars, Weber, Theophane, Racaniere, Sebastien,
Eslami, SM, Rezende, Danilo, Reichert, David P, Vi-
ola, Fabio, Besse, Frederic, Gregor, Karol, Hassabis,
Demis, et al. Learning and querying fast genera-
tive models for reinforcement learning. arXiv preprint
arXiv:1802.03006, 2018.

Chung, Junyoung, Kastner, Kyle, Dinh, Laurent, Goel,
Kratarth, Courville, Aaron C, and Bengio, Yoshua. A
recurrent latent variable model for sequential data. In
Advances in neural information processing systems, pp.
2980–2988, 2015.

Czarnecki, Wojciech M, Osindero, Simon, Jaderberg, Max,
Swirszcz, Grzegorz, and Pascanu, Razvan. Sobolev
training for neural networks. In Advances in Neural In-
formation Processing Systems, pp. 4278–4287, 2017.

Eslami, SM Ali, Heess, Nicolas, Weber, Theophane, Tassa,
Yuval, Szepesvari, David, Hinton, Geoffrey E, et al. At-
tend, infer, repeat: Fast scene understanding with gener-
ative models. In Advances in Neural Information Pro-
cessing Systems, pp. 3225–3233, 2016.

Fairbank, Michael. Value-gradient learning. PhD thesis,
City University London, 2014.

Fairbank, Michael and Alonso, Eduardo. Value-gradient
learning. In Neural Networks (IJCNN), The 2012 Inter-
national Joint Conference on, pp. 1–8. IEEE, 2012.

Figurnov, Michael, Mohamed, Shakir, and Mnih, Andriy.
Implicit reparameterization gradients. arXiv preprint
arXiv:1805.08498, 2018.

Foerster, Jakob N., Farquhar, Gregory, Afouras, Tri-
antafyllos, Nardelli, Nantas, and Whiteson, Shimon.
Counterfactual multi-agent policy gradients. CoRR,
abs/1705.08926, 2017.

Fortunato, Meire, Azar, Mohammad Gheshlaghi, Piot, Bi-
lal, Menick, Jacob, Osband, Ian, Graves, Alex, Mnih,
Vlad, Munos, Remi, Hassabis, Demis, Pietquin, Olivier,
et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

Fraccaro, Marco, Sønderby, Søren Kaae, Paquet, Ul-
rich, and Winther, Ole. Sequential neural models with
stochastic layers. In Advances in neural information pro-
cessing systems, pp. 2199–2207, 2016.

Gan, Zhe, Li, Chunyuan, Henao, Ricardo, Carlson,
David E, and Carin, Lawrence. Deep temporal sigmoid
belief networks for sequence modeling. In Advances in
Neural Information Processing Systems, pp. 2467–2475,
2015.

Geiger, Dan, Verma, Thomas, and Pearl, Judea. Identifying
independence in bayesian networks. Networks, 20(5):
507–534, 1990.

Gershman, Samuel and Goodman, Noah. Amortized infer-
ence in probabilistic reasoning. In Proceedings of the
Annual Meeting of the Cognitive Science Society, vol-
ume 36, 2014.

Glasserman, Paul. Gradient estimation via perturbation
analysis. Springer Science & Business Media, 1991.

Glasserman, Paul. Smoothing complements and random-
ized score functions. Annals of Operations Research, 39
(1):41–67, 1992.

Grathwohl, Will, Choi, Dami, Wu, Yuhuai, Roeder, Ge-
off, and Duvenaud, David. Backpropagation through the
void: Optimizing control variates for black-box gradient
estimation. arXiv preprint arXiv:1711.00123, 2017.

Greensmith, Evan, Bartlett, Peter L, and Baxter, Jonathan.
Variance reduction techniques for gradient estimates in
reinforcement learning. The Journal of Machine Learn-
ing Research, 5:1471–1530, 2004.

Gregor, Karol, Papamakarios, George, Besse, Frederic,
Buesing, Lars, and Weber, Theophane. Temporal
difference variational auto-encoder. arXiv preprint
arXiv:1806.03107, 2018.

Gu, Shixiang, Levine, Sergey, Sutskever, Ilya, and Mnih,
Andriy. Muprop: Unbiased backpropagation for stochas-
tic neural networks. arXiv preprint arXiv:1511.05176,
2015.

Credit Assignments Techniques in SCGs

Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, and
Levine, Sergey. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018.

Heess, Nicolas, Wayne, Gregory, Silver, David, Lillicrap,
Tim, Erez, Tom, and Tassa, Yuval. Learning continu-
ous control policies by stochastic value gradients. In Ad-
vances in Neural Information Processing Systems, pp.
2944–2952, 2015.

Heess, Nicolas, Wayne, Greg, Tassa, Yuval, Lillicrap, Tim-
othy, Riedmiller, Martin, and Silver, David. Learning
and transfer of modulated locomotor controllers. arXiv
preprint arXiv:1610.05182, 2016.

Heng, Jeremy, Bishop, Adrian N, Deligiannidis, George,
and Doucet, Arnaud. Controlled sequential monte carlo.
arXiv preprint arXiv:1708.08396, 2017.

Igl, Maximilian, Zintgraf, Luisa, Le, Tuan Anh, Wood,
Frank, and Whiteson, Shimon. Deep variational re-
inforcement learning for POMDPs. arXiv preprint
arXiv:1806.02426, 2018.

Jaderberg, Max, Czarnecki, Wojciech Marian, Osindero,
Simon, Vinyals, Oriol, Graves, Alex, Silver, David, and
Kavukcuoglu, Koray. Decoupled neural interfaces using
synthetic gradients. arXiv preprint arXiv:1608.05343,
2016.

Jang, Eric, Gu, Shixiang, and Poole, Ben. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational Bayes. arXiv:1312.6114, 2013.

Kingma, Diederik P and Welling, Max. Efficient gradient-
based inference through transformations between bayes
nets and neural nets. arXiv preprint arXiv:1402.0480,
2014.

Koller, Daphne and Friedman, Nir. Probabilistic graphical
models: principles and techniques. MIT press, 2009.

Kosiorek, Adam R, Kim, Hyunjik, Posner, Ingmar, and
Teh, Yee Whye. Sequential attend, infer, repeat: Gen-
erative modelling of moving objects. arXiv preprint
arXiv:1806.01794, 2018.

Krishnan, Rahul G, Shalit, Uri, and Sontag, David. Deep
Kalman filters. arXiv preprint arXiv:1511.05121, 2015.

Levine, Sergey. Reinforcement learning and control as
probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep re-
inforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Liu, Hao, He, Lirong, Bai, Haoli, and Xu, Zenglin. Effi-
cient structured inference for stochastic recurrent neural
networks. 2017.

Liu, Qiang and Wang, Dilin. Stein variational gradient de-
scent: A general purpose bayesian inference algorithm.
In Advances In Neural Information Processing Systems,
pp. 2378–2386, 2016.

Lowe, Ryan, Wu, Yi, Tamar, Aviv, Harb, Jean, Abbeel,
Pieter, and Mordatch, Igor. Multi-agent actor-critic for
mixed cooperative-competitive environments. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pp. 6382–6393, 2017.

Maddison, Chris J, Mnih, Andriy, and Teh, Yee Whye.
The concrete distribution: A continuous relax-
ation of discrete random variables. arXiv preprint
arXiv:1611.00712, 2016.

Meeds, Edward and Welling, Max. Gps-abc: Gaussian pro-
cess surrogate approximate bayesian computation. arXiv
preprint arXiv:1401.2838, 2014.

Mnih, Andriy and Gregor, Karol. Neural variational infer-
ence and learning in belief networks. arXiv:1402.0030,
2014.

Mnih, Andriy and Rezende, Danilo J. Variational in-
ference for monte carlo objectives. arXiv preprint
arXiv:1602.06725, 2016.

Moreno, Pol, Humplik, Jan, Papamakarios, George,
Avila Pires, Bernardo, Buesing, Lars, Heess, Nicolas,
and Weber, Theophane. Neural belief states for partially
observed domains. NeurIPS 2018 workshop on Rein-
forcement Learning under Partial Observability, 2018.

Naumann, Uwe. Optimal jacobian accumulation is np-
complete. Mathematical Programming, 112(2):427–
441, 2008.

Ng, Andrew Y, Harada, Daishi, and Russell, Stuart. Pol-
icy invariance under reward transformations: Theory and
application to reward shaping. In ICML, volume 99, pp.
278–287, 1999.

Ong, Victor MH, Nott, David J, Tran, Minh-Ngoc, Sisson,
Scott A, and Drovandi, Christopher C. Variational bayes
with synthetic likelihood. Statistics and Computing, 28
(4):971–988, 2018.

Paisley, John, Blei, David, and Jordan, Michael. Variational
bayesian inference with stochastic search. arXiv preprint
arXiv:1206.6430, 2012.

Parmas, Paavo. Total stochastic gradient algorithms and ap-
plications in reinforcement learning. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31, pp. 10224–10234. 2018.

Weber, Heess, Buesing, Silver

Peng, Xue Bin, Andrychowicz, Marcin, Zaremba, Woj-
ciech, and Abbeel, Pieter. Sim-to-real transfer of robotic
control with dynamics randomization. arXiv preprint
arXiv:1710.06537, 2017.

Piché, Alexandre, Thomas, Valentin, Ibrahim, Cyril, Ben-
gio, Yoshua, and Pal, Chris. Probabilistic plan-
ning with sequential monte carlo methods. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=ByetGn0cYX.

Plappert, Matthias, Houthooft, Rein, Dhariwal, Prafulla,
Sidor, Szymon, Chen, Richard Y, Chen, Xi, Asfour,
Tamim, Abbeel, Pieter, and Andrychowicz, Marcin. Pa-
rameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017.

Ranganath, Rajesh, Gerrish, Sean, and Blei, David M.
Black box variational inference. arXiv preprint
arXiv:1401.0118, 2013.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra,
Daan. Stochastic backpropagation and approximate in-
ference in deep generative models. arXiv:1401.4082,
2014.

Robbins, Herbert and Monro, Sutton. A stochastic approxi-
mation method. In Herbert Robbins Selected Papers, pp.
102–109. Springer, 1985.

Rumelhart, David E, Hinton, Geoffrey E, and Williams,
Ronald J. Learning internal representations by error
propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

Schmidt, Mark, Roux, Nicolas L, and Bach, Francis R.
Convergence rates of inexact proximal-gradient methods
for convex optimization. In Advances in neural informa-
tion processing systems, pp. 1458–1466, 2011.

Schulman, John, Heess, Nicolas, Weber, Theophane, and
Abbeel, Pieter. Gradient estimation using stochastic
computation graphs. In Advances in Neural Information
Processing Systems, pp. 3528–3536, 2015a.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael, and Abbeel, Pieter. High-dimensional con-
tinuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438, 2015b.

Silver, David, Lever, Guy, Heess, Nicolas, Degris, Thomas,
Wierstra, Daan, and Riedmiller, Martin. Deterministic
policy gradient algorithms. In ICML, 2014.

Sutton, Richard S, McAllester, David A, Singh, Satinder P,
and Mansour, Yishay. Policy gradient methods for re-
inforcement learning with function approximation. In
Advances in neural information processing systems, pp.
1057–1063, 2000.

Tucker, George, Mnih, Andriy, Maddison, Chris J, Lawson,
John, and Sohl-Dickstein, Jascha. Rebar: Low-variance,
unbiased gradient estimates for discrete latent variable

models. In Advances in Neural Information Processing
Systems, pp. 2627–2636, 2017.

Tucker, George, Bhupatiraju, Surya, Gu, Shixiang, Turner,
Richard E, Ghahramani, Zoubin, and Levine, Sergey.
The mirage of action-dependent baselines in reinforce-
ment learning. arXiv preprint arXiv:1802.10031, 2018.

Weber, Theophane, Heess, Nicolas, Eslami, Ali, Schulman,
John, Wingate, David, and Silver, David. Reinforced
variational inference. In Advances in Neural Information
Processing Systems (NIPS) Workshops, 2015.

Werbos, Paul J. Applications of advances in nonlinear sen-
sitivity analysis. In System modeling and optimization,
pp. 762–770. Springer, 1982.

Wierstra, Daan and Schmidhuber, Jürgen. Policy gradient
critics. In European Conference on Machine Learning,
pp. 466–477. Springer, 2007.

Williams, Ronald J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

Wingate, David and Weber, Theophane. Automated vari-
ational inference in probabilistic programming. arXiv
preprint arXiv:1301.1299, 2013.

Wu, Cathy, Rajeswaran, Aravind, Duan, Yan, Kumar,
Vikash, Bayen, Alexandre M., Kakade, Sham, Mor-
datch, Igor, and Abbeel, Pieter. Variance reduction for
policy gradient with action-dependent factorized base-
lines. CoRR, abs/1803.07246, 2018. URL http:
//arxiv.org/abs/1803.07246.

https://openreview.net/forum?id=ByetGn0cYX
https://openreview.net/forum?id=ByetGn0cYX
http://arxiv.org/abs/1803.07246
http://arxiv.org/abs/1803.07246

