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7 Supplementary Material

7.1 Derivatives of a Gaussian process
7.1.1 Definitions

Following Papoulis and Pillai (2002), we define
stochastic convergence and stochastic differentiability.

Definition 2 The RV z, converges to z in the MS
sense (limit in mean) if for some x

lim E(ja, —2|) =0 (20)
n—oo

Definition 3 The stochastic process z(t) is MS dif-
ferentiable if for some x'(t)

z(t + 6t) — (¢
Jim B w —JW=0 (1)
Definition 4 A stochastic process z(t) is called a
Gaussian Process, if any finite number of samples
of its trajectory are jointly Gaussian distributed ac-
cording to a previously defined mean function u(t) and
a covariance matrix, that can be constructed using a
predefined kernel function kg(t;, t;)

7.1.2 GP and its derivative are jointly
Gaussian

Let tg, 6t € R.
Let z(t) be a Gaussian Process with constant mean
p and kernel function kg (t1,t2), assumed to be MS
differentiable.

From the definition of GP, we know that z(ty + dt)
and z(tg) are jointly Gaussian distributed.

[x(i)(fﬁ)&)] ~N (M 72) (22)

where 3; ; = ky(t;,t;) using t = [to, o + It].
Using the linear transformation

T 1[& 0

Tot -1 1 (23)

one can show that

; ]
|:z(tof5(t)0)m(to):| Nng 7TETT> (24)
3t ]

So it is clear that for all 0¢, (to) and w are
jointly Gaussian distributed. Using the assumption
that x is differentiable according to the definition in eq.
21 and the fact that convergence in expectation implies
convergence in distribution, it is clear that x(tp) and

Z(to) are jointly Gaussian.

This fact can be easily extended to any finite set of
sample times t = [tg,t1,...,tx]. One can use the exact
same procedure to show that the resulting vectors x(t)
and x(t) are jointly Gaussian as well.

7.1.3 Moments of the joint distribution

As shown in the previous section, any finite set of sam-
ples x is jointly Gaussian together with its derivatives
%. To calculate the full distribution, it thus suffices
to calculate the mean and the covariance between the
elements of the full vector

B (] e &) e

Cy is the predefined kernel matrix of the Gaussian
Process.

'Cy can be calculated by directly using the lin-
earity of the covariance operator.

'C%j = cov(&(t;), z(t;)) (26)

= cov (ddax(a) a=t,:a$(tj)>

= -cov (z(a), z(t))) 4y,

d
= %k¢(a, ti)a=t;

Obviously, Cj is just the transposed of ‘Cy, while C}/
can be calculated in exactly the same manner to obtain

d d
:Zgi,j = %%’%(07 b)a=t; b=t, (27)
7.1.4 Conditional GP for derivatives

To obtain the GP over the derivatives given the states,
the joint distribution

IR

has to be transformed. This can be done using
standard techniques as described e.g. in section 8.1.3
of Petersen et al. (2008). There, it is written:

Define

_ | Xa _ |Ha _ Yo X
el 2w
Then

p(Xb[Xa) ~ N (f1y, ) (30)
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where

Py = o + 2cTEa_l(Xa — Ma) (31)
3 =%,-2."%2,7'%, (32)

Applied to the above probability distribution, this
leads to

p(x[x) ~ N(Dx, A) (33)

using
D ='C,C, " (34)
A=C)-'Cy,Cy'CY (35)

7.2 Proof of theorem 1

Proof The proof of this statement follows directly by
combining all the previous definitions and marginaliz-
ing out all the random variables that are not part of
the end result.

First, one starts with the joint density over all vari-
ables as stated in equation (15)

p(xa ).(7Ya F17 F27 9|¢a g, 7) =
PGP (X7 5(? Y|¢? U)pODE (Fla F27 9|Xa 5(’ ,y)a
where
pepr(X,%,y|@,0) = p(x|@)p(x|x, ®)p(y|x,0)
and
pope(F1,F2,0|x,%,7) =
p(0)p(F1|60,x)p(F2|x,11)6(F1 — F2).

To simplify this formula, popg can be reduced by
marginalizing out Fy using the properties of the Dirac
delta function and the probability density defined in
equation (14). The new popg is then independent of
Fo.

pope(F1,0[x,%,7) = p(0)p(F1]0, )N (F1[x,7I).
Inserting equation (13) yields
pope(F1,8[x,%,7) = p(0)d(F1 —£(x, 0)) NV (Fy[%,71).

Again, the properties of the Dirac delta function are
used to marginalize out F;1. The new popg is now
independent of Fq,

pODE(9|X7 X, 7) = p(e)N(f(X, 0)|5(7 ’YI)

This reduced popg is now combined with pgp. Ob-
serving that the mean and the argument of a normal

density are interchangeable and inserting the definition
of the GP prior on the derivatives given by equation
(5) leads to

p(x.%,y,0|¢,0,7) =
p(0)p(x|p)N (X|Dx, A)p(y|x, o) N (x|f(x, 0),~I).

% can now be marginalized by observing that the prod-
uct of two normal densities of the same variable is
again a normal density. The formula can be found,
e.g., in Petersen et al. (2008). As a result, one obtains

p(xy,0]p,0,7) =
p(0)p(x|@)p(y|x, o) N (f(x, 0)Dx, A + 1)

It should now be clear that after inserting equations
(3) and (4) and renormalizing, we get the final result

p(x,0ly,p,7,0) x
p(O)N (x|0,Cy)N (y|x, s’ T)N (f(x, 0)|Dx, A + 1),

concluding the proof of this theorem. |

7.3 Hyperparameter and kernel selection

As discussed before, the Gaussian process model is de-
fined by a kernel function kg4(t;,t;). For both the hy-
perparameters ¢ and the functional form of k there
exist many possible choices. Even though the exact
choice might not be too important for consistency
guarantees in GP regression (Choi and Schervish,
2007), this choice directly influences the amount of ob-
servations that are needed for reasonable performance.
While there exist some interesting approaches to learn
the kernel directly from the data, e.g., Duvenaud et al.
(2013) and Gorbach et al. (2017b), these methods can
not be applied due to the very low amount of obser-
vations of the systems considered in this paper. As
in previous approaches, the kernel functional form is
thus restricted to simple kernels with few hyperparam-
eters, whose behaviors have already been investigated
by the community, e.g., in the kernel cookbook by Du-
venaud (2014). Once a reasonable kernel is chosen, it
is necessary to fit the hyperparameter and depending
on the amount of expert knowledge available, there are
different methodologies.

7.3.1 Maximizing the data likelihood

As mentioned e.g. in Rasmussen (2004), it is possible
for a Gaussian process model to analytically calculate
the marginal likelihood of the observations y given the
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evaluation times t and hyperparameters ¢ and o.

log(p(y[t, @,0)) =

1
— §yT(C¢ + UI)_l

1
—5 log |Cy + o1

- g log 27 (36)

where o is the GPs estimate for the standard devia-
tion of the observation noise and n is the amount of
observations.

This equation is completely independent of the ODE
system one would like to analyze and depends only on
the observations of the states. To fit the GP model
to the data, equation (36) can be maximized w.r.t. ¢
and o, without incorporating any prior knowledge.

7.3.2 Concurrent optimization

In AGM of Dondelinger et al. (2013), the hyperpa-
rameters are not calculated independent of the ODEs.
Instead, a prior is defined and their posterior distribu-
tion is determined simultaneously with the posterior
distribution over states and parameters by sampling
from equation (8).

This approach has several drawbacks. As we shall see
in section 5, its empirical performance is significantly
depending on the hyperpriors. Furthermore, optimiz-
ing the joint distribution given equation (8) requires
calculating the inverse of the covariance matrices Cg
and A, which has to be done again and again for each
new set of hyperparameters. Due to the computa-
tional complexity of matrix inversion, this is signifi-
cantly slowing down the optimization.

For these reasons, if strong prior knowledge about the
hyperparameters is available, it might be better to in-
corporate it into the likelihood optimization presented
in the previous section. There, it could be used as a
hyperprior to regularize the likelihood.

7.3.3 Manual tuning

In the variational inference approach Gorbach et al.
(2017a), the hyperparameters were assumed to be pro-
vided by an expert. If such expert knowledge is avail-
able, it should definitely be used since it can improve
the accuracy drastically.

7.4 Adjusting the GP model

To make VGM more comparable to AGM, the hyper-
parameters of the kernel must be learned from the

data. However, maximizing the data likelihood de-
scribed in equation (36) directly using the prior defined
in equation (4) will lead to very bad results.

7.4.1 Zero mean observations

The main reason for the poor performance without
any pretreatment of y is the fact that the zero mean
assumption in equation (36) is a very strong regular-
ization for the amount of data available. As its effect
directly depends on the distance of the true values to
zero, it will be different for different states in multidi-
mensional systems, further complicating the problem.
Thus, it is common in GP regression to manipulate
the observations such that they have zero mean.

This procedure can be directly incorporated into the
joint density given by equation (8). It should be noted
that for multidimensional systems this joint density
will factorize over each state k, whose contribution will
be given by

p(xk|yk; 07 ¢)7 7> U) X N(ik|0, C¢,k)
x N (yx|xk, o°I)
x N (fr (xx, 0)|DiXi, Ak +91)  (37)

where
ik = Xk — /.Lng].

using iy, to denote the mean of the observations of
the k-th state and 1 to denote a vector of ones with
appropriate length.

It is important to note that this transformation is
not just equivalent to exchanging xy and Xji. While
the transformation is not necessary for the observation
term, as Xy and yyx would be shifted equally, the origi-
nal xy is needed as input to the ODEs. This allows for
this transformation without the need to manually ac-
count for this in the structural form of the differential
equations.

This trick will get rid of some of the bias introduced
by the GP prior. In the simulations, this made a dif-
ference for all systems, including the most simple one
presented in section 5.1.

7.4.2 Standardized states

If the systems get more complex, the states might be
magnitudes apart from each other. If one were to use
the same hyperparameters ¢ for all states, then a devi-
ation (Fy —DyXy) = 10~* would contribute equally to
the change in probability, independent of whether the
states Xy are of magnitude 108 or 103. Thus, small
relative deviations from the mean of states with large
values will lead to stronger changes in the joint proba-
bility than large relative deviations of states with small
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values. This is not a desirable property, which can be
partially alleviated by calculating a new set of hyper-
parameters for each state. However, this problem can
be completely nullified by standardizing the data y.
For the k-th state, this would change its contribution
to the joint density to

p(Xk|yx, 0, d,7,0) x N (”ik OaCm) (38)
v,
1 2
x N | —yi|—xk,0°1
Oy,k y
1 1 .
x N (fk(xka 0)’Dkxk7Ak + W’I>
Y,k Oy.k

where
ik = Xk — uy,k]l

and oy, ), is the standard deviation of the observations
of the k-th state.

For complex systems with states on different orders of
magnitude, standardization is a must to obtain rea-
sonable performance. Even for the system presented
in section 5.2, standardization has a significantly ben-
eficial effect, although the states do not differ greatly
in magnitude.

7.5 Algorithmic details

For all experiments involving AGM, the R toolbox
deGradInfer (Macdonald and Dondelinger, 2017) pub-
lished alongside Macdonald (2017) was used. For com-
parability, no priors were used, but the toolbox needed
to be supplied with a value for the standard deviation
of the observational noise and the true standard devi-
ation of the noise was used. For all other parameters,
e.g., amount of chains or samples, the values reported
in Dondelinger et al. (2013) were used.

For MVGM and FGPGM, the hyperparameters of
the GP model were determined in a preprocessing
step identical for both algorithms. After calculating
the hyperparameters, the MVGM parameters were in-
ferred using the implementation used by Gorbach et al.
(2017a).

Both MVGM and FGPGM need to be supplied with +,
which was treated as a tuning parameter. In principle,
this parameter could be found by evaluating multiple
candidates in parallel and choosing based on data fit.

For both experiments, the amount of iterations recom-
mended by the AGM toolbox (Macdonald and Don-
delinger, 2017) have been used, namely 100’000 iter-
ations for Lotka Volterra and 300’000 iterations for
Protein Transduction. This is the same setup that has
been used to obtain the parameter estimates shown

throughout the paper. The simpler sampling setup
of FGPGM clearly leads to running time savings of
about a third compared to AGM. Thus, FGPGM is
not only significantly more accurate, but also signif-
icantly faster than AGM. Dondelinger et al. (2013)
have shown that this also implies order of magnitude
improvements if compared to the running time of ap-
proaches based on numerical integration.

All experiments were performed using the ETH clus-
ter.2. It should be noted that the algorithms were
implemented in different programming languages and
the cluster consists of cores with varying computation
power, adding some variability to the running time es-
timates.

7.6 Lotka Volterra

state 1
o
(@]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

state 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

Figure 9: Example rollout of the Lotka Volterra system
showing the state evolution over time. The dots denote
the observations while the line represents the ground
truth obtained by numerical integration.

As in the previous publications, a squared exponen-
tial kernel was used. For FGPGM and MVGM, v was
set to 0.3, while AGM was provided with the true ob-
servation noise standard deviations o. The standard

2https://scicomp.ethz.ch/wiki/Euler#Euler_I
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deviation of the proposal distribution of FGPGM was
chosen as 0.075 for state proposals and as 0.09 for pa-
rameter proposals to roughly achieve an acceptance
rate of 0.234. For all algorithms, it was decided to use
only one GP to fit both states. This effectively doubles
the amount of observations and leads to more stable
hyperparameter estimates. As the state dynamics are
very similar, this approximation is feasible.

— 45'

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

Figure 10: Example rollout of the Lotka Volterra sys-
tem showing the state evolution over time for the high
noise case. The dots denote the observations while the
line represents the ground truth obtained by numerical
integration.

7.7 Parameter Distribution

The MCMC approach of FGPGM allows to infer
the probability distribution over parameters. This is
shown for one example rollout in Figure 14. The in-
ferred distributions are close to Gaussian in shape.
This likely explains the sampling-like performance of
the variational approach MVGM, as their assumptions
of using a factorized Gaussian proxy distribution over
the parameters seems to be a good fit for the true dis-
tribution.

7.8 Protein Transduction

Figure 15 and Figure 16 show median plots for the
states obtained by numerical integration of the inferred
parameters of the Protein Transduction system.
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Figure 11: Inferred parameters for the low noise case. Ground truth (black dots), median (orange line), 50%
(boxes) and 75% (whiskers) quantiles evaluated over 100 independent noise realizations are shown.
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Figure 12: Boxplots showing the inferred parameters over 100 runs for the Lotka Volterra dynamics for the high
noise case. The black dots represent the ground truth, the orange line denotes the median of the 100 parameter
estimates while the boxes and whiskers denote 50% and 75% quantiles.
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Figure 13: Median Plots for all states of Lotka Volterra with low noise. State 1 is in the top row, state 2 is in
the bottom row. The red line is the ground truth, while the black line and the shaded area denote the median
and the 75% quantiles of the results of 100 independent noise realizations. As was already to be expected by the
parameter estimates, FGPGM and VGM are almost indistinguishable while AGM falls off a little bit.
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Figure 14: Histograms representing the MCMC samples obtained for one example run of the Lotka Volterra
system. Each histogram represents the marginal distribution of one ODE parameter.
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Figure 15: Median plots for all states of the most difficult benchmark system in the literature, Protein Trans-
duction. The red line is the ground truth, while the black line and the shaded area denote the median and the
75% quantiles of the results of 100 independent noise realizations. FGPGM (middle) is clearly able to find more
accurate parameter estimates than AGM (top).
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Figure 16: Median Plots for all states of the most difficult benchmark system in the literature, Protein Transduc-
tion, for the high noise case.The red line is the ground truth, while the black line and the shaded area denote the
median and the 75% quantiles of the results of 100 independent noise realizations. FGPGM (middle) is clearly
able to find more accurate parameter estimates than AGM (top).
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Figure 17: Median plots of the numerically integrated states after parameter inference for the FHN system with
SNR 10. Ground truth (red), median (black) and 75% quantiles (gray) over 100 independent noise realizations.



