
Lifelong Optimization with Low Regret

A Proofs in Section 3

A.1 Proof of Theorem 3.1

Note that the expected loss of our algorithm equals∑
k,s Eg∼Gk,s

[
ˆ̀
k,s(g)

]
, and the regret of our algorithm

can be divided into two parts:∑
k,s

(
E

g∼Gk,s

[
ˆ̀
k,s(g)

]
− ˆ̀

k,s(g
∗)

)
(1)

+
∑
k,s

(
ˆ̀
k,s(g

∗)− `k,s(g∗, h∗k)
)
, (2)

where h∗k denotes the optimal predictor for g∗ in task
k. The sum in Eq.(1) is about learning g, which can
be upper-bounded by regG(T). This is because we

use the loss function ˆ̀
k,s(·) for algG to update the

distribution Gk,s. The sum in Eq.(2) is about learning
h and is equal to

∑
k

∑
s

 E
h∼H(g∗)

k,s

[`k,s(g
∗, h)]− `k,s(g∗, h∗k)


which is at most ∑

k

regH(Tk)

because for any task k, we use the loss function

`k,s(g
∗, ·) for alg

(g∗)
H to update the distribution H(g∗)

k,s .
Theorem 3.1 then follows by combining these two
bounds together.

A.2 Proof of Corollary 3.2

For the case with finite G and H and arbitrary loss
functions, we can take the multiplicative update (MU)
algorithm of Littlestone and Warmuth (1994); Freund
and Schapire (1997) for the experts problem and use
it for both algG and algH , but with different learning
rates.1 From the regret bound of the MU algorithm,
we have regG(T) ≤ O(

√
T logG) and

K∑
k=1

regH(Tk) ≤
K∑
k=1

O
(√

Tk logH
)

1If we know the time horizon T and the tasks lengths
T1, . . . , Tk in advance, we can set the learning rates appro-
priately before hand. Otherwise, we can use the standard
doubling tricks to set them adaptively.

≤ O


√√√√K

K∑
k=1

Tk logH


≤ O

(√
KT logH

)

via Cauchy-Schwarz inequality. This proves the corol-
lary.

A.3 Proof of Corollary 3.3

Since G is finite, we can again use the MU algorithm
as algG and have the corresponding part of regret
bounded by O

(√
T logG

)
. For learning predictors,

under the assumption of the theorem, we can use the
online gradient-descent (OGD) algorithm of Zinkevich
(2003) as algH . According to the regret bound of
OGD, the part of our regret corresponding to learning
predictors is at most

K∑
k=1

O
(
DR

√
Tk

)
≤ O

(
DR
√
KT

)
.

Substituting these two bounds into Theorem 3.1, the
corollary follows immediately.

A.4 Proof of Theorem 3.4

The lower bound is obtained by considering the follow-
ing two special cases. First, for the case with K = 1,
the problem reduces to the traditional experts prob-
lem with GH experts, which is known to have an
Ω(
√
T log(GH)) regret lower bound (see e.g. Section

3.7 in (Cesa-Bianchi and Lugosi, 2006)). Next, for the
case with G = 1, let us consider the scenario with each
task lasting for T/K steps. Note that each task again
reduces to the traditional experts problem with H ex-
perts, and each task can be considered separately as
each is compared against a different predictor. There-
fore, in this scenario, we can establish a regret lower
bound of K · Ω(

√
(T/K) logH) = Ω(

√
KT logH).

Finally, as the problem has these two special
cases, we can conclude that it has a regret lower
bound of max{Ω(

√
T log(GH)),Ω(

√
KT logH)} ≥

Ω(
√
T logG+

√
KT logH).

Lifelong Optimization with Low Regret

A.5 Proof of Theorem 3.5

As we now have an infinite number of representations,
we can no longer run the MU algorithm to learn them.
Instead, we will run the MU algorithm to learn predic-
tors, but using the set A = HK of all possible sequences
of K predictors as its action set. The idea is that the
objective function of the offline algorithm which we
aim to compete to is

min
g

min
h1,...,hK

∑
k,s

`k,s(g, hk) = min
h1,...,hK

min
g

∑
k,s

`k,s(g, hk),

and while we considered the former in the case with a
finite G, we can instead consider the latter now with a
finite H. More precisely, for learning predictors, here
we use a single copy of the MU algorithm on the action
set A = HK . For learning representations, we use the
OGD algorithm as expected, but for each ~h ∈ A, we

have a separate copy, denoted as OGD(~h). We will run
the MU algorithm for learning predictors continuously
across different tasks, instead of resetting it for each
task.

Algorithm. Formally, at step s of task k, we first
sample a vector ~h = (h1, . . . , hK) of predictors from
A according to some distribution Hk,s of the MU al-
gorithm, and then we obtain a representation gk,s by

running the copy OGD(~h) on loss functions `i,j(·, hi)’s,
for all previous loss functions `i,j ’s. The joint action we
play is (gk,s, hk), and the loss we suffer is `k,s(gk,s, hk).
After that, we update the distribution of the MU algo-
rithm using the loss function

ˆ̀
k,s(~h) = `k,s

(
OGD

(~h)
k,s , hk

)
,

where OGD
(~h)
k,s denotes the representation the algorithm

OGD(~h) outputs at step s of task k.

Regret. Note that the expected loss of our algorithm is∑
k,s E~h∼Hk,s

[
ˆ̀
k,s(~h)

]
, and the regret of our algorithm

can be divided into two parts:∑
k,s

(
E

~h∼Hk,s

[
ˆ̀
k,s(~h)

]
− ˆ̀

k,s(~h
∗)

)
(3)

+
∑
k,s

(
ˆ̀
k,s(~h

∗)− `k,s(g∗, h∗k)
)
, (4)

where h∗k denotes the optimal predictor for g∗ in task

k and ~h∗ = (h∗1, . . . , h
∗
K). The sum in Eq.(3) is

about learning ~h, which can be upper-bounded by
O(
√
T log |A|) = O(

√
TK logH) according to the re-

gret bound of the MU algorithm. The sum in Eq.(4)
is about learning g and is equal to∑
k,s

(
`k,s

(
OGD

(~h∗)
k,s , h

∗
k

)
− `k,s(g∗, h∗k)

)
≤ O(DR

√
T).

This is because we update the algorithm OGD(~h∗) using
the loss functions `k,s(·, h∗k)’s, which are indeed convex
functions of g as their second arguments are fixed. By
combining these two bounds, Theorem 3.5 then follows.

A.6 Proof of Theorem 3.6

Our approach is to reduce the infinite setting to a
finite one, and apply our result in the finite setting.
Formally, we discretize G and H into finite sets G′ ⊆ G
and H′ ⊆ H, respectively, so that for any g ∈ G and
h ∈ H, there exist g′ ∈ G′ and h′ ∈ H′, such that
‖g − g′‖2 ≤ 1/(C1T) and ‖h − h′‖2 ≤ 1/(C2T), and
hence

|`k,s(g, h)− `k,s(g′, h′)|
≤ |`k,s(g, h)− `k,s(g′, h)|+ |`k,s(g′, h)− `k,s(g′, h′)|
≤ 2/T. (5)

It is not hard to see that we can have |G′| ≤ TO(n)

and |H′| ≤ TO(d), assuming that T is sufficiently large
so that the constants R1, R2, C1, C2 are all at most T
(just to make our regret bound cleaner).

Then by running our algorithm for the finite set-
ting, having the set G′ of representations and the
set H′ of predictors, we can achieve a regret bound
of O

(√
nT log T +

√
dKT log T

)
, from Theorem 3.2.

This regret is actually measured against an offline algo-
rithm with representation set G′ and predictor set H′.
Nevertheless, the total loss achieved by such an offline
algorithm and that using G and H differ by at most
T · 2/T = 2 according to Eq.(5). As a result, we have
the theorem.

B Proof of Theorem 4.1

Our algorithm is summarized in Algorithm 1. To show
why the algorithm works, there are two important keys.
First, we have to show that the representation ĝ we
identify is the optimal g∗ with high probability. This
will be shown in Corollary B.2. Second, it is important
to have a small T̂ , since the longer the exploration phase
lasts, the higher the regret we will suffer. Afterwards,
we can focus on ĝ in the exploitation phase, and the
problem reduces to an easier one and the regret after
iteration T̂ can be guaranteed by Lemma B.3.

The first key relies on the following lemma, which
shows that the average empirical loss L̄t(g) of any
representation g in iteration t is likely to be close to
the average mean loss µ̄t(g) defined as

1

t− 1

k∑
i=1

min
hi

∑
j∈Ii

µi(g, hi) =
1

t− 1

k∑
i=1

∑
j∈Ii

µi(g).

Algorithm 1 Full-Information Stochastic Al-
gorithm

Parameters: G,H, T,K, Tk for k ∈ [K].
Exploration phase: In each time iteration t,
choose (gt, ht) by our adversarial algorithm for the
case of finite G and finite H with arbitrary loss. Go
to the next phase when there is some ĝ with

L̄t(ĝ) < L̄t(g)− 2σt, ∀g 6= ĝ,

where

σt =
√

(c/t) log(t2GHK/δ), (6)

for some large enough constant c (which can be
determined in the proof of Lemma B.1).
Exploitation phase: For any task k and any step
s in it, we always choose gk,s = ĝ, and accompany
with it the predictor

hk,s = arg min
h

∑
j<s

`k,j(ĝ, h) (7)

which is the best predictor empirically so far in the
task.

Lemma B.1. For the choice of σt in Eq.(6), we have
Pr
[
∀t∀g :

∣∣L̄t(g)− µ̄t(g)
∣∣ ≤ σt] ≥ 1− δ/2.

We will prove the lemma in Subsection B.1. Note that
as both L̄t(g) and µ̄t(g) depend on choosing different
predictors in different tasks, we need a lager confidence
interval (larger σt), compared to the traditional case
with only one task. With this lemma, we immediately
have the following corollary, which establishes the first
key for our algorithm.

Corollary B.2. If there is any ĝ such that L̄t(ĝ) <
L̄t(g)− 2σt for every g 6= ĝ, with σt defined in Eq.(6),
then we have ĝ = g∗ with probability at least 1− δ/2.

Proof. As we assume that every g has µk(g) ≥ µk(g∗)
for any k and thus µ̄t(g) ≥ µ̄t(g∗) for any t, Lemma B.1
implies that with probability at least 1− δ/2,

L̄t(g
∗) ≤ µ̄t(g∗) + σt ≤ µ̄t(g) + σt ≤ L̄t(g) + 2σt

for any t and g. Thus with this probability, we have
ĝ = g∗ as no other g can dominate g∗, given that
L̄t(g) ≥ L̄t(g∗)− 2σt.

The next key is to show that T̂ is actually small. Simi-
larly to previous works in the stochastic setting, our
bound depends on some notion of gaps between arms.
Recall from Eq. (2) in the main text that

∆ = min
k

min
g 6=g∗

(µk(g)− µk(g∗)) ,

which is the smallest gap between the mean loss of g∗

and those of others over tasks. This determines how
hard it is to distinguish the optimal representation g∗

from suboptimal ones. As µ̄t(g)− µ̄t(g∗) ≥ ∆ for any
t, we know from Lemma B.1 that with probability at
least 1− δ/2,

L̄t(g)− L̄t(g∗) ≥ µ̄t(g)− µ̄t(g∗)− 2σt ≥ ∆− 2σt

for any g 6= g∗ and any t. Note that we can have
σt < ∆/4 so that L̄t(g)− L̄t(g∗) > 2σt for any g 6= g∗,
whenever t ≥ T̄ for some

T̄ ≤ O((1/∆2) log(GHK/(∆δ))).

Therefore, with probability at least 1 − δ/2, g∗ can
dominate others when t ≥ T̄ , which implies that T̂ ≤ T̄ .
Let us remark that as different tasks require different
predictors, it now takes longer to find the optimal g∗,
compared to the traditional case with only one task.

We are now ready to analyze the pseudo-regret of our
algorithm. Recall that before iteration T̂ , we runs the
adversarial algorithm of Theorem 3.2, which has regret
(and hence pseudo-regret) at most

O
(√

T̂ logG+

√
KT̂ logH

)
≤ O

(√
T̂ log(GHK)

)
≤ O

(
(1/∆) log(GHK/(∆δ))

)
with probability at least 1 − δ/2. The pseudo-regret
after iteration T̂ can be bounded using standard anal-
ysis as the representation is fixed to g∗. Here we need
another notion of gaps to capture how hard it is to
learn the predictors for g∗. Recall from Eq. (3) in the
main text that

M∗= min
k

min
h6=h∗k

(µk(g∗, h)− µk(g∗)) ,

which is the smallest gap of mean losses from g∗’s
suboptimal predictors over tasks. Then we have the
following lemma, which we prove in Subsection B.2.

Lemma B.3. With probability at least 1 − δ, the
pseudo-regret after iteration T̂ is at most

O((K/ M∗) log(TH/δ)).

Finally, by combining the regret bounds before and
after T̂ , Theorem 4.1 follows.

B.1 Proof of Lemma B.1

Consider any iteration t, any representation g, and any
sequence ~h = (h1, . . . , ht−1) of predictors such that

Lifelong Optimization with Low Regret

those in the same task are the same. Let Xt(g,~h)

denote the random variable 1
t−1

∑t−1
τ=1 `τ (g, hτ) and

νt(g,~h) its mean. Then by Hoeffding bound, we have

Pr
[∣∣∣Xt(g,~h)− νt(g,~h)

∣∣∣ > σt

]
≤ e−Ω(σ2

t t) ≤ δ

4t2GHK
,

for the choice of σt given in Eq.(6). As the number

of such ~h is at most HK and the number of g is G,
a union bound shows that with probability at least
1−

∑
t δ/(4t

2) ≥ 1− δ/2, we have:∣∣∣Xt(g,~h)− νt(g,~h)
∣∣∣ ≤ σt for any g, t, and such ~h.

As L̄t(g) = min~hXt(g,~h) and µ̄t(g) = min~h νt(g,
~h),

we have with probability at least 1− δ/2 that for any
g and t, L̄t(g) ≤ min~h

(
νt(g,~h) + σt

)
= µ̄t(g) + σt,

L̄t(g) ≥ min~h

(
νt(g,~h)− σt

)
= µ̄t(g)− σt,

and hence |L̄t(g)− µ̄t(g)| ≤ σt.

B.2 Proof of Lemma B.3

For any task k and its step s ≥ 2, consider the random
variable

Yk,s(g, h) =
1

s− 1

s−1∑
r=1

`k,r(g, h)

which has mean µk(g, h), for any g and h. By Hoeffding
bound, we know that for any k, any s ≥ 2, and any h,

Pr [|Yk,s(g∗, h)− µk(g∗, h)| > εs] ≤ e−Ω(ε2ss) ≤ δ

2TH
,

for some εs ≤ O(
√

(1/s) log(TH/δ)). Then by a union
bound, we know that with probability at least 1− δ/2,
the following event happens

|Yk,s(g∗, h)− µk(g∗, h)| ≤ εs

for any k, any s ≥ 2, and any h. Suppose the event hap-
pens. Then there is some Ŝ ≤ O((1/ M2

∗) log(TH/δ))
such that εs <M∗ /2 for any s ≥ Ŝ and hence for any
k, any s ≥ Ŝ, and any h 6= h∗k,

Yk,s(g
∗, h∗k)− Yk,s(g∗, h)

≤ µk(g∗, h∗k)− µk(g∗, h) + 2εs

≤ − M∗ +2εs

< 0.

This implies that we will choose h∗k =
arg minh Yk,s(g

∗, h) as the predictor hk,s, accord-
ing to Eq.(7). By Corollary B.2, we have with

probability at least 1− δ/2 that ĝ = g∗ after iteration
T̂ . Therefore, we have with overall probability at least
1− δ, the pseudo-regret after iteration T̂ is at most

K∑
k=1

Ŝ∑
s=1

(µk(g∗, hk,s)− µk(g∗, h∗k))

≤
K∑
k=1

Ŝ∑
s=1

(Yk,s(g
∗, hk,s)− Yk,s(g∗, h∗k) + 2εs)

≤
K∑
k=1

Ŝ∑
s=1

2εs

according to the choice of hk,s from Eq.(7). Using the
upper bound of εs, the last sum above is at most

K∑
k=1

O
(√

Ŝ log(TH/δ)

)
≤ O ((K/ M∗) log(TH/δ)) ,

which proves the lemma.

C Proofs in Section 5

C.1 Proof of Lemma 5.1

Let Qk,s denote the distribution over the GHK experts
played by the EXP3 algorithm at step s of task k, and
let Q̄k,s denote the corresponding distribution over the
actions, with

Q̄k,s(g, h) =
∑

~h:hk=h

Qk,s(g,~h),

where we use hk to denote the k-th component of the
vector ~h.

We prove the lemma by induction. Initially, EXP3
plays any expert (q,~h) with probability 1/(GHK), so
that we have

Q̄1,1(g, h) =
∑

~h:h1=h

Q1,1(g,~h) =
1

GH
= P1,1(g, h).

Next, assume that at step s of task k, we have
Q̄k,s(g, h) = Pk,s(g, h) for every (g, h). Our goal is
to show that the two distributions still match at the
next step. For this, we consider the following two cases.

First, when task k does not ends at step s, we have

Q̄k,s+1(g, h) =
∑

~h:hk=h

Qk,s+1(g,~h)

=
∑

~h:hk=h

Qk,s(g,~h)
e−η

¯̀
k,s(g,h)

Zk,s
,

for some normalization factor Zk,s, according to the
update rule of EXP3 based on the loss estimator ¯̀

k,s.
By definition, the last line above equals

Q̄k,s(g, h)
e−η

¯̀
k,s(g,h)

Zk,s
= Pk,s(g, h)

e−η
¯̀
k,s(g,h)

Zk,s

= Pk,s+1(g, h).

where the first equality follows from the inductive hy-
pothesis.

In the second case when task k ends at step s, we have

Q̄k+1,1(g, h) =
∑

~h:hk+1=h

Qk+1,1(g,~h)

=
∑

~h:hk+1=h

Qk,s(g,~h)
e−η

¯̀
k,s(g,hk)

Zk,s
,

according to the update rule of EXP3. Note that
for any ~h and ~h′ with hi = h′i for i ≤ k, we have

Qk,s(g,~h) = Qk,s(g, ~h′), which implies that the last
line above equals∑

~h

1

H
Qk,s(g,~h)

e−η
¯̀
k,s(g,hk)

Zk,s

=
∑
hk

1

H
Q̄k,s(g, hk)

e−η
¯̀
k,s(g,hk)

Zk,s

=
∑
hk

1

H
Pk,s(g, hk)

e−η
¯̀
k,s(g,hk)

Zk,s

by inductive hypothesis. The last line above equals∑
h′

Pk,s(g, h′)
e−η

¯̀
k,s(g,h′)

Z̄k,s
= Pk+1,1(g, h),

with the normalization factor Z̄k,s = HZk,s.

Combining these two cases, we have the lemma by
induction.

C.2 Proof of Theorem 5.2

Our algorithm is summarized in Algorithm 2.

To analyze its regret, first note that the expectation of
¯̀
k,s(·) conditioned on all previous randomness equals

exactly `k,s(·), for any k and s. Moreover, Lemma 5.1
shows that our algorithm plays the same distributions
of actions as the EXP3 algorithm based on the loss
estimators ¯̀

k,s(·)’s. Therefore, we can follow the stan-
dard analysis of the EXP3 algorithm (see e.g. Theorem
2.22 and Theorem 4.1 of Shalev-Shwartz (2011)) and
upper-bound the total regret of our algorithm by

ln(GHK)

η
+ η

∑
k,s

E

∑
g,~h

Qk,s(g,~h)
(
¯̀
k,s(g, hk)

)2 ,

Algorithm 2 Adversarial Bandit Algorithm

parameters: η ∈ (0, 1)
Initialization: P1,1(g, h) = 1

GH for (g, h) ∈ G ×H.
for task k = 1, 2, · · · do
for step s = 1, 2, · · · , Tk do

Sample (gk,s, hk,s) from the distribution Pk,s.
Receive the loss `k,s(gk,s, hk,s).
Construct the estimator: for (g, h) ∈ G ×H,

¯̀
k,s(g, h) =

`k,s(g, h)

Pk,s(g, h)
1g=gk,s,h=hk,s

.

Update the distribution: for (g, h) ∈ G ×H, let

Pk,s+1(g, h) = Pk,s(g, h) · e
−η ¯̀

k,s(g,h)

Zk,s

if s < Tk; otherwise, let

Pk+1,1(g, h) =
∑
h′

Pk,s(g, h′) ·
e−η

¯̀
k,s(g,h′)

Z̄k,s
,

where Zk,s and Z̄k,s are normalization factors.
end for

end for

where the expectation is over the randomness of gk,s’s
and hk,s’s which determines ¯̀

k,s’s. For any k and s,
the expectation above according to Lemma 5.1 equals

E

∑
g,h

Pk,s(g, h)
(
¯̀
k,s(g, h)

)2
= E

∑
g,h

Pk,s(g, h)

(
`k,s(g, h)

Pk,s(g, h)
1g=gk,s,h=hk,s

)2
 ,

by the definition of ¯̀
k,s. As we assume that `k,s(g, h) ∈

[0, 1], the expectation above is at most

E
[

1

Pk,s(gk,s, hk,s)

]
=

∑
g,h

Pk,s(g, h) · 1

Pk,s(g, h)

= GH.

Therefore, the regret of our algorithm can be upper-
bounded by

ln(GHK)

η
+O (ηTGH) ≤ O

(√
TGH ln(GHK)

)
with the choice of

η =

√
ln(GHK)

TGH
.

Lifelong Optimization with Low Regret

C.3 Proof of Theorem 5.3

The proof is similar to that for Theorem 3.4 in the full-
information setting, by considering two special cases.
First, for the case with K = 1, the problem reduces
to the traditional experts problem with GH experts,
which is known to have an Ω(

√
TGH) regret lower

bound in the bandit setting (Auer et al., 2002). Next,
for the case with G = 1, let us consider the scenario
with each task lasting for T/K steps. Note that each
task again reduces to the traditional experts problem
with H experts, and each task can be considered sepa-
rately as each is compared against a different predictor.
Therefore, in this scenario, we can establish a regret
lower bound of K · Ω(

√
(T/K)H) = Ω(

√
KTH).

As the problem has these two special cases, we
can conclude that it has a regret lower bound of
max{Ω(

√
TGH),Ω(

√
KTH)} = Ω(

√
TGH+

√
KTH).

C.4 Proof of Theorem 5.4

Algorithm 3 Stochastic Bandit Algorithm

Parameters: G,H, T,K, Tk for k ∈ [K], and ∆.
Exploration phase: In each iteration t, choose
(gt, ht) according to Algorithm 2. Go to the next
phase when

t ≥ T̃ = c

(
GH ln(GHK)

∆2

)
for a large enough constant c.
Exploitation phase: Let ĝ be the representation
that was played more than T̃ /2 iterations in the
previous phase. Then for each remaining task, we
always choose ĝ, and we rerun the UCB algorithm
to select the accompanying predictors.

Our algorithm is summarized in Algorithm 3.

In the first phase, since we choose actions based
on our adversarial bandit algorithm, the regret (and
hence pseudo-regret) in this phase by Theorem 5.2
is at most O(

√
tGH ln(GHK)). This implies by

Markov’s inequality that with high probability2, we
have the nice event that the pseudo-regret is at most
c0
√
tGH ln(GHK), for some constant c0. Let us as-

sume in the following that we indeed have the nice
event. Now observe that whenever we fail to play the
optimal representation g∗ in an iteration, we suffer at
least ∆ in the pseudo-regret. Therefore, during the
first t iterations, the number of iterations that we fail
to play g∗ is at most

1

∆
· c0
√
tGH ln(GHK) ≤ t

2
, (8)

2with probability 1− α, where α can be any constant

whenever

t ≥ T̃ = c

(
GH ln(GHK)

∆2

)
for the constant c = c20. That is, during the first T̃
iterations, we choose the optimal representation g∗ for
the majority of iterations, which implies that we have
ĝ = g∗. The pseudo-regret in the first phase is then
bounded by

c0

√
T̃GH ln(GHK) ≤ ∆T̃

2

≤ O
(
GH ln(GHK)

∆

)
,

where the first inequality is because T̃ satisfies the
inequality in Eq.(8).

In the second phase, the representation has been fixed
to ĝ = g∗. Therefore, we can simply apply the re-
gret bound of the UCB algorithm to upper-bound the
pseudo-regret in this phase by

O

 K∑
k=1

∑
h6=h∗k

lnT

µk(g∗, h)− µk(g∗)

 ≤ O(KH lnT

M∗

)
.

Then Theorem 5.4 follows by combining the two bounds
for the two phases together.

References

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire,
R. E. (2002). The nonstochastic multiarmed bandit
problem. SIAM journal on computing, 32(1):48–77.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction,
Learning, and Games. Cambridge University Press,
New York, NY, USA.

Freund, Y. and Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of computer and
system sciences, 55(1):119–139.

Littlestone, N. and Warmuth, M. K. (1994). The
weighted majority algorithm. Information and com-
putation, 108(2):212–261.

Shalev-Shwartz, S. (2011). Online learning and online
convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194.

Zinkevich, M. (2003). Online convex programming
and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pages 928–936.

