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Abstract

In this work, we study a problem arising from
two lines of works: online optimization and
lifelong learning. In the problem, there is a
sequence of tasks arriving sequentially, and
within each task, we have to make decisions
one after one and then suffer corresponding
losses. The tasks are related as they share
some common representation, but they are
different as each requires a different predic-
tor on top of the representation. As learning
a representation is usually costly in lifelong
learning scenarios, the goal is to learn it con-
tinuously through time across different tasks,
making the learning of later tasks easier than
previous ones. We provide such learning algo-
rithms with good regret bounds which can be
seen as natural generalization of prior works
on online optimization.

1 Introduction

State-of-the-art machine learning algorithms can now
solve many problems even better than humans. How-
ever, machines are still far from being intelligent, and
they typically require a large amount of training data
in order to do well for a task. On the other hand, hu-
mans are able to learn a new task very efficiently with
little training, perhaps by utilizing knowledge accumu-
lated from previously learned tasks. This motivates the
study called lifelong learning (Thrun and Pratt, 1998),
which aims to perform better over time by transferring
information learned from previously tasks to later ones,
under the belief that there are some commonalities
across tasks.

In order to benefit from the learning of previous tasks,
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the new task must have something in common with
previous ones. To model such commonalities among
tasks, Baxter et al. (2000) considered a task environ-
ment, from which all the tasks are generated accord-
ing to a common probability distribution. This was
followed by several subsequent works such as those
of Maurer (2005, 2009); Pentina and Lampert (2014,
2015). A different model which is natural for classifica-
tion/regression problems, studied by e.g. Ruvolo and
Eaton (2013); Pentina and Ben-David (2015); Alquier
et al. (2017), is that different tasks share some common
feature representation. The tasks are different in the
sense that they need different predictors built on top
the representation in order to make the predictions. As
a concrete example, one typical way to classify a raw
data x is to first extract a feature representation g(z)
and then build a predictor h on top of it to make the
prediction h(g(z)). The feature extractor g is usually
large and complex, but with such a useful feature repre-
sentation, the predictor can be very simple. Following
previous works, we will use the terms “representation”
and “predictor”, although there are other forms of
commonality/difference among tasks. Let us remark
that while most prior works focused on learning with
fixed architectures, there were also empirical studies
(Rusu et al., 2016; Lee et al., 2017) on the possibility
of evolving the network structures over different tasks.

Several settings have been considered in the general
theme of lifelong learning which differ in how samples
are given. The first one, often referred to as learning-to-
learn, is a batch setting in which the training samples
of all the tasks are available at the beginning (Baxter
et al., 2000; Maurer, 2005, 2009; Maurer et al., 2013).
The second is a batch-within-online setting in which
tasks arrive sequentially but at the start of each task,
all its training samples are available (Balcan et al., 2015;
Pentina and Ben-David, 2015; Pentina and Urner, 2016;
Alquier et al., 2017). The third is known as online multi-
task learning (Agarwal et al., 2008; Abernethy et al.,
2007; Dekel et al., 2007; Cavallanti et al., 2010; Saha
et al., 2011; Lugosi et al., 2009; Murugesan et al., 2016).
In this setting, learning also proceeds sequentially in
rounds, but in each round, all the tasks are present and
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there is a new sample for each task. The last setting
is a fully online one, in which both the tasks and
their samples arrive sequentially so that in each round,
we only see a sample from one single task (Alquier
et al., 2017). To measure the performance of a learning
algorithm, different settings have their own natural
choices. For the first two settings, in which each task
has all its training examples at the beginning, a natural
choice is to measure the number of samples or tasks
needed to guarantee some notion of generalization error.
For the last two settings, in which the samples of each
task arrive one after one, an often adopted measure is
the regret.

A different line of works which is related to (especially
the last setting of) lifelong learning is on the topic
known as online optimization (see e.g. Cesa-Bianchi
and Lugosi (2006)). While most prior works on life-
long learning focussed on classification /regression prob-
lems, works on online optimization have touched upon
a broader range of optimization problems, including
making discrete decisions and optimizing general con-
vex functions. In the problem of online optimization,
we have to make repeated decisions and then suffer
corresponding losses, according to some loss functions,
for a number of iterations. A standard goal is to min-
imize the regret, which is the difference between the
total loss we suffer and that of an offline algorithm
using a fixed decision. Thus, one can see such an online
optimization problem as a special case of the lifelong
learning problem with only one task. Some works on
online optimization, such as Herbster and Warmuth
(1998); Zinkevich (2003), have also considered the gen-
eralization of measuring regret against an offline algo-
rithm which can change decisions for a number of times.
This generalization is used to model concept shifts in
learning, but these works do not assume any relation-
ship among these different concepts (offline decisions).
Again, one can see this variant as a special case of the
lifelong learning problem, which does have more than
one task but these tasks have nothing in common.

In this work, we would like to put the study of online
optimization and lifelong learning in the same frame-
work. To avoid confusion with different settings of
lifelong learning, we call ours the lifelong optimization
problem. In this problem, we have a sequence of tasks
arriving sequentially and for each task, we need to
make a sequence of decisions one after one. After mak-
ing each decision, a loss function is revealed and we
suffer a corresponding loss. Each decision is made by
combining a representation with a predictor. The rela-
tionship among tasks comes from sharing a common
representation, while the difference among tasks comes
from needing different predictors. To capture this, we
measure the regret by comparing against an offline

algorithm which must use a fixed representation for
all the tasks but is allowed to use different predictors
for different tasks. Note that Alquier et al. (2017) con-
sidered a similar setting as ours, but using a different
regret measure. More precisely, our regret treats each
decision as equally important, just as is usually consid-
ered in online optimization, while the regret measure of
Alquier et al. (2017) treats each task equally important.
Although their regret definition may be useful in some
settings, such as that of learning-to-learn considered
in (Maurer et al., 2016), a large number of tasks and
a large number of steps in each task are necessary for
making their regret bounds small.

We believe that in natural scenarios of lifelong learning,
we usually have no control over the number of tasks we
will see and how long each task is. Therefore, we would
like to understand if it is possible to achieve good regret
bounds in general without relying on such assumptions.
Moreover, as learning the representations is typically
much more costly than learning predictors in lifelong
learning, we would like to understand if it is possible to
learn them continuously through time across different
tasks, instead of relearning them in different tasks. If
so, this would allow one to learn new tasks faster, by
saving the time for learning the representation. We
answer these questions affirmatively.

We first consider the full-information setting in which
we get to know the whole loss function after our decision
at each step. In Section 3, we focus on the adversarial
setting, and we start from the case that the representa-
tions and predictors are finite, with size G and H respec-
tively, but the loss functions can be arbitrary. For this,
we provide an efficient algorithm achieving a regret of
O (VTlogG + /KTlog H), where T is the total num-
ber of steps and K is the number of tasks. Compared to
relearning the representation for each task, which has
a regret of O (vKTlogG + /KT logH), our bound
prevents the number of tasks from affecting the learning
of representations. This makes our algorithm appealing
when G > H which is natural in scenarios of lifelong
learning. In addition, we also consider cases with either
infinite representations or infinite predictors, and we
show that good regret bounds can still be achieved un-
der natural assumptions, although with some achieved
via inefficient algorithms. Then in Section 4, we con-
sider the stochastic setting in which the loss functions
in each task are drawn i.i.d. from some unknown but
fixed distribution, although different tasks can have
different distributions. We focus on the case with finite
G and H, as regret bounds in other cases usually do
not get better than those in the adversarial setting. We
show that when the optimal representation and their
accompanying predictors are considerably better than
suboptimal ones, a regret in the order of logT can be
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achieved.

In Section 5, we consider the bandit setting in which
the feedback we receive at each step is only the loss
value instead of the whole loss function. Such a re-
striction causes a more serious problem in our lifelong
optimization scenario. Now, in addition to worrying
about exploration of predictors, we also have to worry
about the exploration of representations. In partic-
ular, more aggressive exploration of representations
seems needed, because otherwise we would not receive
enough feedbacks to learn their predictors well, and
without learning the predictors well, we cannot choose
the representations appropriately as we do not know
how good they are. On the other hand, do more explo-
ration and less exploitation would likely lead to larger
regret bounds. Our results in the bandit setting are
in fact weaker than those in the full-information one.
We show that in the adversarial setting, a regret of
O(\/TGH log(GHK)) can be achieved. On the other
hand, we show that in the stochastic setting, a regret
in the order of log T is still possible, but with slightly
worse dependency on other parameters.

Our results show that indeed one can learn the repre-
sentation continuously which helps make the learning
of new tasks more efficiently. Finally, let us remark
that some of our results can be seen as natural general-
ization of previous results on online optimization. Take
our result for finite G and H as an example. When
there is only one task (K = 1), our bound recovers the
known regret bound of O(y/TlogG) for the experts
problem. When there are K tasks but they share no
commonality (G = 1), our bound recovers the known
regret bound of O(y/KT log H) when measured against
an offline algorithm which can change actions K times.
We hope that more works on online optimization can
also be generalized to our setting of lifelong optimiza-
tion, and we see our work as providing initial steps
towards this direction.

2 Preliminaries

To motivate the abstract problem we will formulate
next, let us first consider the online classification prob-
lem as a concrete example. In the problem, there is
a sequence of data arriving one at a time for us to
make classification. For the data z; in iteration ¢, we
choose a feature representation g; and a predictor h; to
make the classification h;(g¢(z¢)). Then we suffer some
corresponding loss ¢;(g:, hy), where ¢; depends on x;
and its true label. This problem belongs to the more
general problem of online optimization, and the prob-
lem of lifelong optimization we consider is a natural
generalization of online optimization. In our problem,
we also have to make repeated decisions and then suffer

corresponding losses for a number of iterations, but
these iterations are now divided into tasks which are
related in a certain way, so that we need a more general
regret notion.

Formally, suppose there are K tasks which arrive one
after one, with the k-th task lasting for T} steps, for
a total of T steps. To avoid possible confusion, we
will refer to these T steps as T iterations, with each
iteration corresponding to some step s in some task
k. For each task k and each step s in it, we need
to choose a representation g s and an accompanying
predictor hj s from some sets G and H, respectively,
which jointly provide a decision for us. After making
this decision, we suffer some loss ¢y, s (gx,s, i s) accord-
ing to some loss function /s, receive some feedback
information, and then proceed to the next iteration.
In the full-information setting, the feedback informa-
tion we receive is the whole loss function ¢}, 5, while
in the bandit setting, we only receive the loss value
lk.s (9k,s, hi,s). For simplicity of presentation, we as-
sume that each loss value falls in the interval [0, 1]; the
generalization is straightforward. In addition, we will
assume that we know exactly when each task starts, as
were usually assumed in prior works in lifelong learn-
ing, although most of our results can be extended to
the general case without this assumption. Moreover,
in the scenario of lifelong learning, one usually has in
mind that learning representations is much harder than
learning individual predictors. Thus, we will assume
that either the size of G, denoted as G, is much larger
than that of H, denoted as H, when both are finite, or
the dimensionality of G is much larger than that of H
when both are infinite, or the loss functions on H have
special structures.

Similarly to the traditional online optimization prob-
lem, our goal here is also to minimize some notion
of regret. To model that different tasks are related,
we follow previous works and assume the existence of
some good representation which is shared by all tasks,
although different tasks still have their own predictors.
This motivates us to consider the following version of
(expected) regret:

E | lks(ghs his) — min > les(g b)) | (1)
k,s K

gshi,e- s ks

where the expectation is taken over the algorithm’s
own randomness. The first sum in the expectation cor-
responds to the total loss of our online algorithm while
the second sum corresponds to that of the best offline
algorithm we compare to. We will use ¢* to denote the
optimal representation and hj, the corresponding opti-
mal predictors in task k of the best offline algorithm.
Note that in the definition above, each step contributes
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equally, just as in the standard regret notion, so that
longer tasks matter more, which differs from the notion
of regret adopted by Alquier et al. (2017).

One naive attempt to solve the problem is to treat
each pair (g,h) as a joint action and apply existing
online algorithms. However, the regret guarantee given
in this way is weaker than what we want, as it is
compared against a single pair (¢g*, h*) fixed through
all the tasks, instead of allowing a different A} for a
different task k. To deal with this issue, a simple way
around is to redo the learning for each task, but this
unfortunately leads to weaker results as discussed in
the introduction, where the dominating term has the
number K of tasks interacting with the number G of
representations. To avoid this, we would like to have
learning algorithms which can learn the representations
continuously through time, using all the data across
different tasks.

Due to the page limit, we will move all our proofs to
the appendix in the supplementary material.

3 Full-Information Adversarial Setting

In this section, we consider the adversarial setting in
which the whole loss fuction at each step is revealed
after our decision and the loss functions have no pattern,
possibly chosen by an adversary.

Recall that we hope to learn the representations contin-
uously through time using all the data across different
tasks, while we still have to relearn predictors for dif-
ferent tasks. To do that, we would like to decouple the
learning of representations from that of predictors, for
them to have different learning algorithms as well as
different learning schedules. However, it is not clear
how to learn the representations, and a technical chal-
lenge is to construct appropriate loss functions to guide
their learning. Recall that the actual loss functions
depend on both the representation and the predictor,
so how good a representation is actually depends on the
predictor we choose to accompany it. This means that
a good representation may look bad if we choose a bad
predictor to go with it. Then which predictor should
we use? A sensible choice seems to be its best predictor
in a task, as it is what we measure regret against to,
but we do not know what it is as the predictor which
looks best so far may turn out to be bad in the end
in the adversarial setting. This is perhaps one reason
why Alquier et al. (2017) considered a weaker regret
notion and chose to update their representations only
at the end of each task, but consequently requiring a
large number of tasks in order to have a good regret
bound.

In Subsection 3.1, we will consider the case with finite

G for which we have efficient algorithms achieving good
regret bounds. We will consider the cases with infinite
G and finite H in Subsection 3.2, and then infinite G
and infinite H in Subsection 3.3, for which we have
good regret bounds but via inefficient algorithms.

3.1 Finite representations

In this subsection, we consider the case in which G is
finite. First, we describe our solution via a generic algo-
rithm, which can use any algorithm alg. for learning
representations and any algorithm alg, for learning
predictors, with the resulting regret bound guaranteed
by those of these two algorithms. After that, we will
consider two applications in which there are efficient al-
gorithms for alg, and alg; with good regret bounds.

Algorithm. For learning the representation, we take
a single copy of alg, and have it update continuously
through time, across different tasks. For each possible

representation g, we have a separate copy of algy,

denoted as alggg), for learning the accompanying pre-

dictors. When starting a new task k, we reset each
copy algg) and redo its learning, while we update the
algorithm alg,, continuously for the whole T' iterations.
At step s in task k, we sample a representation gy s
according to some distribution Gj s of alg, followed

by sampling a predictor hy s according to some distri-

bution 7—[,(:?:‘3) of algg’“‘“) (each distribution can focus
all the measure on one element if the algorithm is deter-
ministic). The joint action we play is (gk.s, hk,s), and
the loss we suffer is ¢k s(gk s, hk,s). Then we update
the distribution of alg., using the loss function on g
defined as

gk,S(g) = E

(o) [gk,s(ga h)] 5
hNHljs

and update the distribution of each copy algg) using

Ui 5(g,-) as the loss function on predictors.

The regret of our algorithm is guaranteed by the fol-
lowing, which we prove in Appendix A.1.

Theorem 3.1. Suppose the t-step regret bounds of
alg, and algy are regq(t) and regy(t), respectively.
Then the T-step regret bound of our algorithm is at
most regq(T) + 22{:1 reg (Tk), where Ty, denotes the
number of steps in task k.

Next, we instantiate the theorem in two scenarios, with
the following two results, based on the multiplicative
update (MU) algorithm of Littlestone and Warmuth
(1994); Freund and Schapire (1997), and the online
gradient-descent (OGD) algorithm of Zinkevich (2003),
which we will prove in Appendix A.2 and A.3 respec-
tively.
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Corollary 3.2. Suppose both G and H are finite
and the loss functions are arbitrary. Then there
is an efficient algorithm which achieves a regret of
O(vTlogG+ KTIlogH).

Corollary 3.3. Suppose G is finite, H is infinite, each
U s(g,-) is convex gwen any g, and there exist R, D > 0
such that ||h — D'||2 < R and |0l s(g,h)/OR|, < D
for any h,h' € H, g € G, task k and step s. Then
there is an efficient algorithm achieving a regret of

O(VTlogG + DRVKT).

Remark. Let us remark that although our results work
under the assumption that we know when each task
starts, they can be easily extended to the general case
without this assumption, by choosing an appropriate
algorithm for alg,, and running it continuously across
tasks (instead of rerunning it for each task). In fact,
Corollary 3.3 still holds as the OGD algorithm used
there can work in this way. To replace Corollary 3.2, we
can use e.g. the fixed-share algorithm of Herbster and
Warmuth (1998) for alg, and have a slightly larger
regret bound of O(/T'log G + /KT log(TH)).

Note that the regret bounds in both Corollaries 3.2 &
3.3 have a term which is related to learning predictors
and increases with the number of tasks K. This seems
unavoidable as each task requires us to relearn a new
predictor. On the other hand, the term involving G in
each theorem, which is related to learning representa-
tions, does not depend on K. Our algorithms make this
possible by managing to learn representations continu-
ously through time across different tasks. Compared to
relearning the representation for each task, we save a
factor of VK from the term involving GG, which makes
our algorithms appealing when having a large number
of representations with many tasks. In fact, one can
show that our regret upper bounds are tight, based on
existing lower bounds in the traditional settings. As
an example, the following theorem shows a matching
lower bound for the case of finite G and H, which we
prove in A .4.

Theorem 3.4. The problem with finite G and H and
arbitrary loss functions in the full-information setting
has a regret lower bound of Q(/TlogG + KT log H).

3.2 Infinite representations and finite
predictors

Next, let us consider the case in which G is infinite
but H is finite. Let us make a similar assumption
that each ¢ 4(-, h) is convex given any h, and there
exist positive R and D such that ||g — ¢’ < R and
|041.,s(g,h)/dgll, < D for any g,9' € G, any h € H,
any task k and any step s. Although one may also
hope to apply the OGD algorithm for learning the
representations, it is not clear how to construct appro-

priate loss functions for them. This is because each loss
function ¢4 s(g, h) is convex in g if h is fixed. On the
other hand, if we consider a natural choice by taking
minimization over h, the resulting function would no
longer be guaranteed to be convex in g.

Our result is the following which we prove in Ap-
pendix A.5. Let us remark that our algorithm is not
efficient as it runs in time proportional to H¥, so our
contribution here is to understand how small a regret
bound can be achieved in this setting.

Theorem 3.5. Under the assumption stated above,
there is an algorithm which achieves a regret of

O(VTKIlogH + DRVT).

3.3 Infinite representations and infinite
predictors with Lipschitz loss functions

Finally, we consider the case with both G and H being
infinite. More precisely, suppose that G C R™ and H C
R? are both closed and bounded, with diameters R; and
Rs, respectively, so that ||g—¢'||2 < Ry forany g,¢9' € G
and ||h — B'|| < Ry for any h,h' € H. To reflect
that learning representations is harder than learning
predictors, we assume that n > d. Moreover, in order
to make small regret possible, some assumption must
be made on the loss functions. Here we assume that
they are Lipschitz continuous, in the sense that there
exist constants C; and Cs such that for any k, s, any
gvgl € g7 and any ha S H? |€k,s(ga h) - ‘ek,s(g/a h)‘ <
Cillg—g'll2, and |€k,s(g, h) = €i,s(g, h')| < Ca|[h =D/
With only such a weak assumption on loss functions,
one cannot hope to have an efficient algorithm, so our
goal here again is to understand how small a regret
bound one can achieve.

Our result is summarized in the following theorem,
which we prove in Appendix A.6.

Theorem 3.6. Under the assumptions stated above,
there is an algorithm which achieves a regret of
O(v/nTlogT + +/dKTlogT).

4 Finite Full-Information Stochastic
Setting

In this section, we consider the full-information stochas-
tic setting with both G and H being finite, aiming for
a better regret bound. Formally, for each task k, there
is some fixed but unknown distribution such that at
any step s in the task, the loss function ¢, s is sampled
iid. from it, with mean E [¢ s(g,h)] = ux(g,h) for
any (g,h). Let pg(g) = ming, pk(g, h), which measures
how good a representation g is in task k. We assume
that the best representation in every task is the same,
denoted as g*, so that ux(g9*) < ux(g) for any k and
g # g*. This is what makes the tasks related. On
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the other hand, for any representation g, its optimal
predictors may differ in different tasks, so that further
learning is still needed when going into a new task,
even if g* has been learned.

As common in prior works, we consider in this section
the so-called pseudo-regret, defined as

Zek,s(gk,s,hk,s) _hmlrfll E ngs g hk) )
k,s

which is at most the regret defined in Eq.(1) and equals

Z Lk (Gk,so hie,s) | — Z i (97)
k,s k,s

where the expectation above is over the sampling of
gk,s and hy, , if the algorithm is randomized.

Following previous works for the stochastic setting,
we hope that the optimal representation g* can be
determined within a small number of iterations. In the
traditional setting with only one task, we can simply
follow the leader by choosing the arm which looks best
empirically so far, since the empirical mean is likely to
be close to the true mean with an error proportional to
1/+/t after seeing its ¢ previous loss values. On the other
hand, in our lifelong optimization setting, the mean loss
of a representation g may keep changing when going
into new tasks. Consequently, its average mean loss so
far may be considerably different from its mean loss of
the next iteration, so that a representation which looks
good on average so far may turn out much worse than
we expect. Moreover, even when we somehow choose
the optimal representation ¢g*, it may not appear good
if we do not choose a good predictor to accompany it,
which makes the job of identifying the optimal g* even
harder.

Nevertheless, we will show that when g* is considerably
better than others with some gap, it can still be iden-
tified within a reasonable number of iterations. After
identifying ¢g*, the problem becomes much easier as we
can then focus on learning the predictors of g* only.
Before that, we still need to search through a large
space of representations, which may result in a large
regret if not done properly. Fortunately, we will show
that our adversarial algorithm in the previous section
can actually provide a good enough regret bound.

Algorithm. Now we describe our algorithm, which
works in two phases. In the first phase, which we call
exploration phase, we run our adversarial algorithm
in Theorem 3.2, but in addition, we also maintain
some statistics and look for the optimal representation.
More precisely, in iteration ¢ corresponding to step s in
task k, we compute the average empirical loss of each

representation g as

L t_lzmmz&jg,

hi Jjel;
where I; denotes the collection of steps so far in task .
We stop the adversarial algorithm in some iteration ¢ =
T when there is some representation g which dominates
others: with

Li(g) < I/t(g) — 20y for any g # g,

where

o1 = \/(c/t) log(2GH /),

for a large enough constant ¢ (which can be determined
in the proof of Theorem 4.1). Then we enter the second
phase, which we call the exploitation phase. In this
phase, for any remaining task k and any step s in it,
we always choose gi s = §, and accompany with it the
predictor hy s = arg miny, ZKS li.5(g, h), which is the
best predictor empirically so far in the task.

Similarly to previous works in the stochastic setting, our
regret bound depends on some notion of gaps between
arms. Here, we consider the following two:

—pk(g™)) and  (2)

min 51;1}% (x(g™ h) —(g™)) - (3)

A = mlnrmn
iin min (1x(g)

Ay =

Note that A is the smallest gap between the mean loss
of g* and those of others over tasks, which determines
how hard it is to distinguish the optimal g* from sub-
optimal ones. On the other hand, A, is the smallest
gap of mean losses from ¢*’s suboptimal predictors over
tasks, which determines how hard it is to distinguish
the optimal predictors of g* from suboptimal ones. The
regret of our algorithm is guaranteed by the following
theorem.

Theorem 4.1. For any 6 > 0, with probability at least
1— %5, the pseudo-regret of our algorithm is at most

1 G TH
— 1 KlogH K 1 .
O(AOgA5+A og + og6>
In Appendix B, we provide the proof of the theorem
and summarize our algorithm as Algorithm 1.

5 Bandit Setting

In this section, we consider the bandit setting, in which
the feedback information we receive at each step is
the loss value ¢ s(gg,s, hi,s) of our action (g s, hk.s),
instead of the whole loss function ¢y s(-). Thus, unlike
in the full information setting, now we do not have
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the whole loss function in each step to update our dis-
tribution. Following previous works, our approach is
to construct appropriate estimators of the true loss
functions and feed these estimators to update appropri-
ate full-information algorithms. Next, we focus on the
case with finite G and H, and consider the adversarial
setting as well as the stochastic setting.

5.1 Finite Adversarial bandit setting

First, we consider the adversarial case. To design a
bandit algorithm in this case, a natural attempt is
to replace the full-information MU algorithms used
in Theorem 3.2 by the EXP3 bandit algorithms of
Auer et al. (2002b). However, this would result in a
large regret bound by following the regret analysis in
the proof. This is because the analysis there relies on
being able to learn the predictors of each representation
well, which is possible in the full-information setting.
However, in the bandit setting, if we do not play a
representation often enough, we can not receive enough
feedback information to learn its predictors well, but
making more aggressive exploration leads to worse
regret bound.

Instead, we take a different approach, by reducing
our problem to the following “experts over actions”
problem. In this new problem, there is a set G x H%

=

of experts. Each expert is indexed by some (g, h), with
geGand h = (h1,ha, - ,hg) € HE, who in every
step s of task k plays the action (g, hy), which has the
loss value £k (g, hi). Now what an online algorithm
can do at each step is to choose an expert and play
his/her action, and the regret is measured against the
total loss of the best expert, which in fact is the same
as the regret defined in Eq.(1). Therefore, we can use
any online algorithm for this new problem to solve our
initial problem. In particular, we would like to run the
EXP3 algorithm on the experts and apply its regret
analysis.

However, there is an apparent efficiency issue as the
number of experts is GHY, and we would like to avoid
maintaining such a large number of probability values
as needed by EXP3 when implemented naively. The
idea is that it suffices to be able to sample from the
distribution of actions played by the experts at each
step. Since there are only GH possible actions at each
step, the distribution at each step can actually be
specified by only GH values. Therefore, our algorithm
at each step s of task will maintain such a distribution
Pr,s(+,-) over the actions in G x H, and update it in
the following way.

Algorithm. Initially, we have Py 1(g9,h) = 1/(GH)
for every (g,h) € G x H. Then, after step s of task k,
we make the following update according to two cases.

If step s is not the last step of task k, we update the
next distribution as

Prsr1(9,h) = Prs(g, h) - e w01 7,

where 7 is some learning rate, Zk,s is some estimator
for the true loss function /i s, to be specified later, and
Zy,s is some normalization factor for making Py 41 a
probability distribution. Otherwise, if task k ends at
step s, we update the next distribution as

Prria(gh) =Y Prslg, i) - e 0sl0M)) 7,
h/

where Zj, 5 is again some normalization factor for mak-
ing Pr41,1 a probability distribution. Note that when
we start at task k+ 1, we relearn the predictors for each
representation g, as the probability Py11,1(g, k) defined
above does not depend on h so that all the predictors
of g start with the same conditional probability.

Our estimator for ¢y s(g, h) is defined as the following:

= lk,s(g,h
gk,s(.%h)_ ", <g )

= mﬂg:gk,s,h:hk,s- (4)

Note that conditioned on all previous randomness be-
fore step s of task k, the expected value of ¢ 5(g, h),
over the sampling of gi s and hy s, is exactly U s(g, h),

for any g and h. This means that ¢ s(-) is indeed an
unbiased estimator for the true loss function ¢ 4(-).

The following shows that our distributions indeed
match EXP3’s, which we prove in Appendix C.1,

Lemma 5.1. For any step s of task k, the distribution
of actions played by the EXP3 algorithm based on the
loss estimator £y, s is the same as our distribution Py s.

Using the learning rate n = /(log(GHK))/(TGH),
the regret achieved by our algorithm is guaranteed by
the following theorem.

Theorem 5.2. For the problem with finite G and
H and arbitrary loss functions, our bandit algorithm
achieves a regret of O(y/TGH log(GHX)).

In Appendix C.2, we provide the proof of the theorem
and summarize our algorithm in Algorithm 2.

The following theorem provides a lower bound for the
problem, which we prove in Appendix C.3.

Theorem 5.3. The problem with finite G and H and
arbitrary loss functions in the bandit setting has a regret

lower bound of ) (\/TGH + \/TKH).

5.2 Finite stochastic bandit setting

Next, we consider the stochastic setting studied in Sec-
tion 4 with gaps A and A, defined in Eq.(2) and Eq.(3),
respectively, but now having only bandit feedbacks.
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A natural attempt is to use the UCB algorithm of
Auer et al. (2002a) to learn both representations and
predictors. However, the standard regret analysis of
UCB relies crucially on the assumption that the mean
of each arm’s loss does not change over time, as this
guarantees that a suboptimal arm with gap A is likely
to be distinguished after being played for about 1/A2
iterations, and each such iteration contributes A to the
total regret. Unfortunately, such an argument can no
longer work in our lifelong learning setting because the
mean of each representation’s loss (with respect to its
best predictor in a task) here is not fixed over time. In
fact, in the bandit setting, a suboptimal representation
g may have a lower average mean loss over the iterations
g is played, compared to the average mean loss of the
optimal g* over the iterations ¢g* is played, because
g and g* are played at different iterations (although
we assume that pp(g*) < pr(g) for any k, we allow

pi(g*) > i (g) for k # K').

To avoid such an issue, we would like to design our ban-
dit algorithm based on our full-information algorithm
in Section 4. In particular, we would like to replace
the full-information adversarial algorithm used in the
first phase there by the adversarial bandit algorithm in
Subsection 5.1, and then use the UCB bandit algorithm
to learn the predictors in the second phase. However,
an apparent difficulty is that there is no guarantee
that each representation is played often enough by our
EXP3-based adversarial bandit algorithm, and we may
never have the confidence intervals of all the represen-
tations small enough in order to identify the optimal
representation ¢g* reliably. This requires us to find a
different way for identifying g*. Our key observation
is that in the stochastic setting, the optimal arm must
be played often enough in order to guarantee a small
regret. Therefore, our solution is to run our adversar-
ial bandit algorithm, which has a small regret, for a
sufficient number of iterations, and then take the most
often played representation as g*.

Algorithm. Our algorithm runs in two phases. In

~ K
the first phase, which lasts for T = c(GHloii(QGH))
iterations, for a large enough constant ¢, we use our
adversarial bandit algorithm in Subsection 5.1 to choose
our actions. The purpose of this phase is to identify the
optimal representation, and we take the representation
g which was played most often during this phase. Then
we enter the second phase, in which we always choose
the representation §. As there is no representation to
learn, the problem of learning each task then reduces
to the traditional multi-armed bandit problem, and we
simply use the UCB algorithm to relearn the predictors
in each remaining task. The regret achieved by our
algorithm is guaranteed by the following theorem.

Theorem 5.4. In the finite stochastic bandit set-

ting, the pseudo-regret of our algorithm is at most
%, (GH log(GH*) n KHlogT)
A A

with high probability.

In Appendix C.4, we provide the proof of the theorem
and summarize our algorithm in Algorithm 3.
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