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A Proof of Lemma 1

We first introduce the following Lemma, which shows
that wt1 and wt2 can be written in closed-forms in terms
of (w0

1, w
0
2,Mtr, α, t):

Lemma 7. Let Mtr = UΣV T be (any of) its SVD
such that U ∈ Rd×k,Σ ∈ Rk×k, V ∈ Rk×k, UTU =
V TV = V V T = I. Then for any t ≥ 0
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(4)

where we define Λ+,t = (I + αΣ)t + (I − αΣ)t and
Λ−,t = (I + αΣ)t − (I − αΣ)t.

Proof. We start with stating the following facts for
Λ+,t and Λ−,t:

Λ+,0 = 2I, Λ−,0 = 0 and for any t ≥ 0

Λ+,t+1 = Λ+,t + αΣΛ−,t ,

Λ−,t+1 = Λ−,t + αΣΛ+,t .

Now we prove (4) by induction. When t = 0, w0
1 =

V V Tw0
1 and w0

2 = UUTw0
2−UUTw0

2 +w0
2 so (4) holds

for t = 0. Assume Lemma (4) holds for t then consider
the next step t+ 1:
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Similarly, we can show
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Thus (4) holds for all t ≥ 0.

Proof of Lemma 1. Taking w0
2 = 0 in Lemma 7 we can

write wt1 = 1
2V Λ+,tV Tw0

1 and wt2 = 1
2UΛ−,tV Tw0

1

For 1 ≤ i ≤ m, σi = σ1 thus

lim
t→+∞

(1 + ασi)
t

(1 + ασ1)t
= 1 . (5)

For m < i ≤ k, σi < σ1 thus

lim
t→+∞

(1 + ασi)
t

(1 + ασ1)t
= 0 . (6)

For any 1 ≤ i ≤ k, we have 1−ασi

1+ασ1
≤ 1

1+ασ1
< 1 and

1−ασi
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> −1 thus
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= 0 . (7)

Applying (5)—(7) to compute the limits in (2) gives
the result in Lemma 1.

B Proof of Theorem 2

Proof. For any vector z ∈ Rm such that ‖z‖2 = 1, we
have

MtrV:mz = UΣV TV:mz = σ1U:mz ,

MT
trU:mz = V ΣUTU:mz = σ1V:mz ,

Since

‖V:mz‖22 = zTV T:mV:mz = 1 ,

‖U:mz‖22 = zTUT:mU:mz = 1

we know that (U:mz, V:mz) is also a pair of left-right
singular vectors with singular value σ1. Therefore,
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is also such a pair. Following (3) we have

F∞(x, y, w0
1, Dtr)

‖V T:mw0
1‖

2
2

=

(
V:mV

T
:mw

0
1

‖V T:mw0
1‖2

)T
MT
x,y

(
U:mV

T
:mw

0
1

‖V T:mw0
1‖2

)
≥ min

(u,v)∈UVMtr
1

vTMT
x,yu (8)

for any w0
1 such that V T:mw

0
1 6= ~0.

When w0
1 ∼ N (0, b2Ik), for any fixed V:m satisfying

V T:mV:m = Im, the random variable V T:mw
0
1 also follows

a normal distribution:
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hence V T:mw
0
1 ∼ N (0, b2Im).

Applying the fact that Ē(·) ≤ 1 is non-increasing and
Ē(αx) = Ē(x) for any α > 0 we can upper bound (3)
by

E∞Convk(D)
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C Perron-Frobenius Theorem

Let A ∈ Rk×k be a non-negative square matrix7:

• Definition: A is primitive if there exists a positive
integer t such that Atij > 0 for all i, j.

• Definition: A is irreducible if for any i, j there ex-
ists a positive integer t such that Atij > 0.

• Definition: Its associated graph GA = (V,E) is de-
fined to be a directed graph with V = {1, ..., k} and
(i, j) ∈ E iff Aij 6= 0. GA is said to be strongly
connected if for any i, j there is path from i to j.

• Property: A is irreducible iff GA is strongly con-
nected.

• Property: If A is irreducible and has at least one
non-zero diagonal element then A is primitive.

• Property: If A is primitive then its first eigenvalue
is unique (λ1 > λ2) and the corresponding eigenvec-
tor is all-positive (or all-negative up to sign flipping).

D Proof of Theorem 4

Proof. Following (3) and let
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7https://en.wikipedia.org/wiki/

Perron-Frobenius_theorem .
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Now look at the second term in (9). If MT
trMtr is

primitive then its first eigenvalue λ1 = σ2
1 is unique

(σ1 > σ2) and the corresponding eigenvector v is all
positive (or all negative if we flip the sign of v and u,
which does not change the sign of vTMTu thus it is
safe to assume v > 0). u = Mtrv/σ1 gives that u is
also unique and non-negative. Since Mx,y is also non-
negative we have vTMT

x,yu ≥ 0 for any x, y. Therefore,
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From u = Mtrv/σ1 and v > 0 we know that ui > 0 iff
there exists 1 ≤ j ≤ k such that (Mtr)i,j > 0, which
is equivalent to that there exists i ≤ l < i + k such
that l ∈ Str. Also for x = el (y = 1), according to
the definition of Mx,y and the fact that v > 0 we have
vTMT

el,1
u > 0 iff there exists l − k < i ≤ l such that

ui > 0. So we have

vTMT
el,1

u > 0 ⇐⇒ ∃l′ ∈
⋃

l−k<i≤l

[i, i+ k) s.t. l′ ∈ Str

Since vTMT
el,1

u ≥ 0 and
⋃
l−k<i≤l[i, i+k) = (l−k, l+k)

we have

vTMT
el,1

u = 0 ⇐⇒ ∀l′ ∈ Str, |l′ − l| ≥ k .

Now we have proved that, if MT
trMtr is primitive then

Ê(el, 1, Dtr) =
1

2
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which means that
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holds for any Dtr. Therefore
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=
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which concludes the proof.

E Proof of Lemma 5

Proof. If k ≤ i ≤ d and i− 1, i ∈ Str then for any 1 ≤
j ≤ k we have (Mtr)i−j,j > 0 and (Mtr)i−j+1,j > 0,
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which also means that for any 1 ≤ j < k we have
(Mtr)i−j,j > 0 and (Mtr)i−j,j+1 > 0. Since every
two adjacent columns have at least one common non-
zero position what we have is (MT

trMtr)j,j+1 > 0 and
(MT

trMtr)j+1,j > 0 for all 1 ≤ j < k. So its associ-
ated graph GMT

trMtr
is strongly connected thus MT

trMtr

is irreducible. It is also true that all diagonal ele-
ments of MT

trMtr are positive since every column of
Mtr must contain at least one non-zero element. Now
we have proved that MT

trMtr is primitive because it is
irreducible and has at least one non-zero element on
its diagonal.

F Proof of Proposition 6

Proof. Let n = |Str|. Then given the conditions in
this proposition we can see that any column in Mtr

has exactly n non-zero entries with value 1/n and any
two columns in Mtr has no overlapping non-zero posi-
tions. Hence we have MT

trMtr = 1
nIk so that m = k in

Lemma 1 and V V T = I. Applying Lemma 1 we have
w∞1 = w0

1 and w∞2 = nMtrw
0
1. Then for any x = el we

have

yfw∞(x) = w∞1
TMT

x,yw
∞
2 = nw0

1
T
ATxMtrw

0
1 .

For x to be correctly classified we need yfw∞(x) > 0.
We will show that this is guaranteed only when l ∈ Str,
i.e. x or −x ∈ Dtr.

Since for any l, l′ ∈ Str, |l − l′| ≥ 2k we know that
there exist at most one l′ ∈ Str such that |l − l′| < k.

If there does not exist such l′ then ATxMtr = 0 and
yfw∞(x) = 0, which means x is classified randomly.

If there exists a unique l′ such that |l− l′| < k and let
s = |l − l′|, we have that

yfw∞(x) = nw0
1
T
ATxMtrw

0
1 =

k−s∑
i=1

w0
1,iw

0
1,i+s .

When l ∈ Str, which means s = 0, we have yfw∞(x) =

w0
1
T
w0

1 > 0 when w0
1 6= 0 (which holds almost surely).

When 0 < s < k it is not guaranteed that∑k−s
i=1 w

0
1,iw

0
1,i+s > 0 under w0

1 ∼ N (0, b2I). Actu-
ally we can show that the distribution of this quan-
tity is symmetric around 0: For any s we can draw
a graph with k nodes and every (i, i + s) forms an
edge. This graph contains s independent chains so we
can choose a set of nodes S ⊂ [k] such that for any
edge exactly one of the two nodes is contained in S.
Now for any w0

1 if we flip the sign at the positions

that belong to S then the sign of
∑k−s
i=1 w

0
1,iw

0
1,i+s is

also flipped. With w0
1 ∼ N (0, b2I) this indicates that

P (
∑k−s
i=1 w

0
1,iw

0
1,i+s > 0) = 1/2.

Now we have shown that, under the condition in this
proposition, a data sample is correctly classified by
Conv-k with w∞ if and only if this sample appears in
the training set. Otherwise it has only a half change to
be correctly classified. This generalization behavior is
exactly the same as Model-1-Layer in Task-Cls, which
concludes the proof.

G A Supporting Evidence for
Interpreting Conv-Filters as a Data
Adaptive Bias

We have shown that, different from typical regulariza-
tions, the bias itself may require some samples to be
built up (see Figure 4(b)). We conjecture that convo-
lution layer adds a data adaptive bias: The set of pos-
sible filters forms a set of biases. With a few number
of samples gradient descent is able to figure out which
bias(filter) is more suitable for the dataset. Then the
identified bias can play as a prior knowledge to reduce
the sample complexity. We provide another evidence
for this: Let the dataset contains all el, l ∈ [d] while
yel = +1 if l is odd and −1 is l is even. Model-Conv-k
is still able to outperform Model-1-Layer on this task
(see Figure 7). We observe that the sign of the learned
filter looks like (+, -, +, -, ...) in contrast to the ones
learned in our three tasks, which are likely to be all
positive or all negative. This indicates that, besides
spatial shifting invariance, jointly training the convo-
lutional filter can exploit a broader set of structures
and be adaptive to different data distributions.
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Figure 7: Classifying even v.s. odd non-zero position.
Settings are the same as in Figure 2.

H Correlation Between Normal-hinge
and X-hinge under Different
Initializations

Figure 8 and 9 shows the variance introduced by
weight initialization is also strongly correlated under
two losses in Task-1stCtrl and Task-3rdCtrl. Fig-
ure 9(a) looks a bit different from the other two tasks
because the extreme hinge loss is biased and w∞ may
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not able to separate the training samples in Task-
3rdCtrl. But the strong correlation between the nor-
mal hinge loss and the extreme hinge loss under dif-
ferent weight initializations still holds.
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(b) Correlation at t = 150.

Figure 8: The effect of weight initialization in Task-
1stCtrl. We fix d = 100, n = 30 and train Model-
Conv-k with 100 different random initializations using
both losses.
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Figure 9: The effect of weight initialization in Task-
3stCtrl. We fix d = 100, n = 50 and train Model-
Conv-k with 100 different random initializations using
both losses.

I The bias of X-Hinge in Task-3rdCtrl
and Potential Practical Indications

In Figure 9(a) we observe that running gradient de-
scent may not be able to achieve 0 training error
even if the samples are linearly separable. To ex-
plain this, simply consider a training set with 3 sam-
ples and k = 1, d = 4: x1 = [−1, 1, 0, 0], x2 =
[0,−1, 1, 0], x3 = [0, 0,−1, 1]. All labels are positive.
Then Mtr = [−1/3, 0, 0, 1/3]. If we optimize the X-
hinge loss then the network has no intent to classify
x2 correctly.

Notice that in Figure 9(a), under X-hinge, the gener-
alization performance is still improving even after the
training accuracy starts to decrease. We conjecture
that this indicates a new way of interpreting the role
of regularization in deep nets. On real datasets we typ-
ically use sigmoid with cross entropy loss which can be
viewed and a smoothed version of the hinge loss. We
say a data sample is active during training if yf(x) is
small so that the gradient for fitting (x, y) is salient
since it is not well fit yet. With X-hinge all samples
are “equality active”. One message delivered by our
observation is that having more samples to be “active”

during training will make convolution filters have bet-
ter generalization property, but may hurt with train-
ing data fitting. In practice we cannot recommend
using X-hinge loss since the network will fail to fit the
training set if we keep all samples to be equally “ac-
tive”. But we can view this as a trade off when using
logistic loss: keeping more samples to be “active” dur-
ing training with gradient descent will help with some
generalization property (e.g. better Conv filters) but
cause underfitting. For regularization we may want to
keep as many samples to be active as possible while
still be able to fit the training samples. This provides
a new view of the role of regularization: Taking weight
norm regularization as an example, traditional inter-
pretation is that controlling the weight norm will re-
duce the capacity of neural nets, which may not be
sufficient to explain non-overfitting in very large nets.
The new potential interpretation is that, if we keep the
weight norm to be small during training, the training
samples are more “active” during gradient descent so
that better convolution filters can be learned for gen-
eralization purposes. Verifying this conjecture on real
datasets will be an interesting future direction.


