Supplementary Material

1 Description of Datasets

We provide details in preprocessing for datasets used in the experiments in the main text. In total, we tested
AntiVAE on seven datasets: static MNIST, dynamic MNIST, FashionMNIST, OMNIGLOT, Caltech 101 Silhou-
ettes, Frey Faces, and Histopathology patches. As in previous literature, static MNIST uses a fixed binarization
of images whereas dynamic MNIST resamples images from the training dataset at each minibatch. In dynamic
MNIST, the validation and test sets have fixed binarization. We do an identical dynamic resampling procedure
for OMNIGLOT. Caltech101 is given as binary data, so we cannot resample at training time, which we find to
cause overfitting on the test set. For grayscale images that cannot be binarized, we would like to parameterize
the generative model as a Gaussian distribution. In practice, we found this choice to cause over-prioritization
of the reconstruction term, essentially causing the VAE to behave like a regular autoencoder. Instead, we find
that a logistic distribution over the 256 grayscale domain avoids this failure mode. We use the default variance
constraints as in (Tomczak and Welling, 2017). We now provide a brief description to introduce each dataset.

MNIST is a dataset of hand-written digits from 0 to 9 split into 60,000 examples for training and 10,000 for
testing. We use 10,000 randomly chosen images from the training set as a validation group.

FashionMNIST Similar to MNIST, this more difficult dataset contains 28x28 grayscale images of 10 different
articles of clothing e.g. skirts, shoes, shirts, etc. The sizing and splits are identical to MNIST.

OMNIGLOT is a dataset with 1,623 hand-wrriten characters from 50 different alphabets. Unlike the MNIST
family of datasets, each character is only represented by 20 images, making this dataset more difficult. The
training set is 24,345 examples with 8,070 test images. We again take 10% of the training data as validation.

Caltech 101 Silhouettes contains silhouettes of 101 different object classes in black and white: each image
has a filled polygon on a white background. There are 4,100 training images, 2,264 validation datapoints and
2,307 test examples. Like OMNIGLOT, this task is difficult due to the limited data set.

FreyFaces is a collection of portrait photos of one individual with varying emotional expressions for a total of
2,000 images. We use 1,565 for training, 200 validation, and 200 test examples.

Histopathology Patches is a dataset from ten different biopsies of patients with cancer (e.g. lymphona,
leukemia) or anemia. The dataset is originally in color with 336 x 448 pixel images. The data was processed to
be 28 x 28 grayscale. The images are split in 6,800 training, 2,000 validation, and 2,000 test images. We refer to
(Tomczak and Welling, 2016) for exact details.

All splitting was either given by the dataset owners or decided by a random seed of 1.

1.1 Evaluation Details

To compute the test log-likelihood (in any of the experiments), we use k& = 100 samples to estimate the following:
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where ¢4(z|z) is an amortized inference network, py(z|z) is a generative model, and p(z) is a simple prior.
Notably, we use (unbiased) i.i.d. samples to estimate Eqn. 1. The final number reported is the average test log
likelihood across the test split of the dataset. 1



1.2 Approximate Antithetic Sampling Algorithm

We explicitly write out the approximate algorithm for antithetic sampling. Note the similiarity to Alg. 2 in
the main text; the only distinction is that we use a derived approximation to the inverse CDF tranform for a
Chi-squared random variable.. Here, we refer to this as APPROXANTITHETICSAMPLE. In the main text, this
algorithm is often referred to as ANTITHETICSAMPLE.

Algorithm 1: APPROXANTITHETICSAMPLE

Data: i.i.d. samples (71,...,21) ~ N(u,02); i.i.d. samples € = (€1, ..., e,_1) ~ N(0, 1); Population mean s
and variance 02; Number of samples k € N.
Result: A set of k samples @y 1, Tk, ..., Top marginally distributed as N (i, 0?) with sample mean 7’
and sample standard deviation ¢’.

v=k—1;
k
n= %21‘:1 Zy;
k
8 = ¢ i (i = )%
' =2p—mn;
A\ =v62/0?;

N = v(2(1 - 121; 5121)2 + 81293211)3) - (%)1/4)4?

(5/)2 — )\/0.2/,0;

(k1 -y T2x) = MARSAGLIASAMPLE(€, 17/, (6)2, k);
Return (zg41, ..., T2k);

2 Proofs of Propositions

In this section, we provide more rigor in proving (1) properties of antithetic samplers using Marsaglia’s method
and (2) properties of Marsaglia’s method itself. In particular, we provide the proof of Proposition 1 (from the
main text).

2.1 Properties of Antithetic Sampling

Theorem 2.1. Let p(x) be a distribution over R and let p(¢) = Hf p(x;) be the distribution of k i.i.d. samples.
Let T : R¥ — R be a (I-dimensional) statistic of (. Let s(t) be the induced distribution of this statistic:
t) = f( 6r()y=p(¢)d¢. Let F : RE — R be a deterministic function such that s(F(t)) = s(t). We now construct

a sample  by: sampling ¢ ~ p(C), computing t = F(T(()), sampling ¢ ~ p(C|t) from the conditional given
T(¢) =t. This ¢ 1is distributed according to p() and, in particular, it’s elements are i.i.d. according to p(x).

Proof. We begin by noting that:
€)= [ picltste @)

By assumption,

Thus,

/t, (¢lp)s (D) (5)
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Thus ¢ ~ p(¢). Since p(¢) is the distribution over i.i.d. samples from p(x), the resulting elements of ¢ are also
iid. from p(zx). O



We provide one example of a function F' with the desired property.

Lemma 2.2. Let F(t) = CDF(1 — CDF *(t)) where CDF is the cumulative distribution function for s(t).
Then s(F(t)) = s(t).

Proof. Let X ~ U(0,1). By definition, CDF(X) will be distributed as s(¢). Trivially, CDF~*(¢) ~ U(0,1) when
t ~ s(t), and so too is 1 — CDF (). O

Corollary 2.2.1. Let 0 = E,[h(x)] be a function expectation of interest with respect to a distribution, p(z),z € R.
Let 61 be an unbiased Monte Carlo estimate using i.i.d. samples ¢ ~ p(C). Let 02 be an “antithetic” estimate
using samples ¢ generated as in Theorem 2.1. Then the following hold,

e 0y is unbiased estimate of 0

o 05 = 014062

2

is unbiased estimate of 0

e Let F = CDF(1 — CDF~Y(T)). Then the first and second moments of { are anti-correlated to those of ¢

Proof. By Theorem 2.1, “antithetic” samples ¢ ~ p(¢) i.i.d., hence 6 is unbiased (05 is equivalent to 6;). 05 is
also unbiased as a linear combination of two unbiased estimators is itself unbiased. Anti-correlation of moments
falls trivially from our choice of F. O

Connection to Differentiable Antithetic Sampling In the paper, we proposed the following proposition,
Proposition 1. For any k > 2, p € R and 0> € RY, if n ~ ./\/'(M,UT.Q) and (k;712)52 ~ Xi_,, and
7 = f(n),6% = g(6%02) for some functions f : R — R and g : R — R, and ¢ = (e1,...,ex) ~ N(0,1),

then the “antithetic” samples ¢ = (z1, ..., ) = MARSAGLIASAMPLE(¢, 7], 02, k) are independent normal variates
sampled from N (u,0?) such that %Zf x; =1 and %Zf(ﬂh —1)? =62

Define a statistic T = [7, 62], and function F = [f, g]. Marsaglia’s algorithm (or Pullin’s, Cheng’s) can be seen
as a method for sampling from p(¢|¢) for a fixed statistic ¢t. In Proposition 1, we first sample ¢ ~ s(T'(¢)) where
¢ ~ N (u,0?). Then, we choose “antithetic” statistics using

f = GAUSSIANCDF (1 — GAussiaANCDF ! (n)) (8)

o? 1, (k—1)82
g = mCHISQUAREDCDF(l — CHISQUAREDCDF ™ (~—7%")) 9)
- g

such that s(F(t)) = s(t) by symmetry in U(0,1). By Theorem 2.1, antithetic samples ¢ are distributed as ¢ is.
In practice, we use both ¢ and ( for stochastic estimation, as anti-correlated moments provide empirical benefits.

2.2 Properties of Marsaglia’s Method

Theorem 2.3. Let € = (e1,...,e5-1) ~ N(0,1) auziliary variables. Let 1,5 be known variables. Then ( =
(21, ..., ) = MARSAGLIASAMPLE(e, 1, 62, k) are uniform samples from the sphere

k k
S ={(z1, ..., )] Zwi = kr],Z(mi —n)? = ké*}

Proof. S is the intersection of a hyperplane and the surface of a k-sphere: the surface of a (k — 1)-sphere.
Marsaglia uses the following to sample from S:

Let z = (#1,...,2k—1) be a sample drawn uniformly from the unit (k — 1)-sphere centered at the origin. (In
practice, set z; = €;/4/ Zl; ¢7.) Let
(=rzB+nv (10)



where v = (1,1,...,1) and choose B to be a (k — 1) by k matrix whose rows form an orthonormal basis with
the null space of v. By definition, BB = I and Bv? = 0 where [ is the identity matrix. We note the following
consequence:

o' = (rzB + nu)vt (11)

= rzBv' + nquvt (12)

=0+ nuv' (13)

=kn (14)

(C = m)(C = o)t = (r2B 4w — o) (rB + 10 — )’ (15)
= (rzB)(rzB)" (16)

=r?2BB!! (17)

=2zt (18)

=72 (19)

Eqn. 14, 19 exactly match the constraints defined in S. So ¢ € S. Further ¢ is uniformly distributed in S as z is
uniform over the (k — 1)-sphere. O

Theorem 2.4. Let ¢ = (z1,...,z) ~ p(C) be
and 6% = %Zf(xz —n)2. Then n ~ N(p ,%) and (’HJ‘;Z ~ X3_, and n,6% are independent random variables.

[oa

a random vector of i.i.d. Gaussians N'(u,0?). Let n = %Zf x;

Proof. This is a known property of Gaussian distributions. Reference Statistics: An introductory analysis or any
introductory statistics textbook. O

Theorem 2.5. Let ( = (z1,...,x1) be a random vector of i.i.d. Gaussians N (u,c?). Let n = %Zf x; = and
§? = %Zf(ml —n)? and T = [n,6%]. Let p(¢,T(C)) = p(¢,n,8%) denote their joint distribution.

Then, the conditional density is of the form

aifCes
0ifC¢S.

where S = {(x1,...,xx)| >, xi = kn, >, (x; —n)* = k6?}, 0 < a < 1 is a constant.

p(Cln=mn,6>=6%) = { (20)

Proof.
Intuition: Level sets of a multivariate isotropic Gaussian density function are spheres. The event we are
conditioning on is a sphere.

Formal Proof: Let f(z1,...,z5) = (2m02)*/2e(= Zi(#:=1)*/(20%)) denote a Gaussian density. Note the following
derivation:

k

> (wi—p)? = Z(x n)* 200 = 1) 3 (wi = m) + k(= p)? (21)
= Z ?+k(n — p)? (22)
=7+ k(n—p? (23)

This implies f(z1,...,zk) is equal for any (z1,...,z5) € S. Thus, the conditional distribution p(¢|¢ € S) is the
uniform distribution over S for any u,o. O



Finally, proof of Proposition 1 from the paper (denoted as Proposition 2 here):

Proposition 2. For any k > 2, u € R and 0 > 0, if n ~ N (u, %2) and (k;lz)‘sQ ~Xi_, and € = €1, ..., €51 ~

N(0,1) i.i.d., then the generated samples x1, ...,z = MARSAGLIASAMPLE(€, n, 62, k) are independent normal
variates sampled from N(p,0?) such that + 3, x; =n and £ >, (z; —n)? = 62

Proof. Let ¢ = (x1,...,7;) be a random vector of i.i.d. Gaussians N'(u,0?). Compute n = %Zf z; and §% =
%Zf(x, —n)? and T = [n,6%]. Let p(¢,T(C)) = p(¢,n, 62) denote their joint distribution. Factoring

p(¢,n,6%) = p(n,6%)p(¢ | n,6%)

, it is clear that we can sample from the joint by first sampling 7,02 ~ p(n,d%) and then ¢’ ~ p(¢ | n =
n,0% = §?). From Theorem 2.4, we know p(n,§?) analytically and from Theorem 2.5 we know p(C | n,5?) is a
uniform distribution over the sphere. By assumption, 1, 62 are sampled independently from the correct marginal
distributions from Theorem 2.4. Then, from Theorem 2.3, we know MARSAGLIASAMPLE(e, 7,62, k) samples
from the correct conditional density (i.e. from S). Thus, samples ¢’ from MARSAGLIASAMPLE will have the same
distribution as ¢, namely i.i.d. Gaussian. O

3 Additional Experiments

3.1 Convolutional Architectures

In the main text, we present results where g, (2|z) and pg(x|z) are parameterized by feedforward neural networks
(multilayer perceptrons). While that architecture choice was made for simplicitly, we recognize that modern
encoder/decoders have evolved beyond linear layers. Thus, we ran a subset of the experiments using DCGAN
architectures (Radford et al., 2015). Specifically, we design g, (z|z) using 3 convolutional layers and pg(z|z) with
3 deconvolutional layers and 1 convolutional layer.

Model ‘ stat. MNIST  dyn. MNIST  FashionMNIST  Omniglot Caltech Hist.

VAE -90.58 -90.02 -2767.97 -108.97 -116.15  -3218.16

AntiVAE -90.25 -89.53 -2762.02 -108.40 -115.14  -3213.83
VAE+IWAE -89.19 -88.61 -2758.72 -107.52 -116.25  -3213.05
AntiVAE+IWAE -89.01 -88.13 -2751.11 -107.44 -115.04  -3209.98

Table 1: Test log likelihoods between the VAE and AntiVAE using (de)convolutional architectures for encoders
and decoders. All images were reshaped to 32 by 32 to match standard DCGAN input sizes.

Table 1 shows log-likelihoods on a test set for a variety of image datasets. Like experiments presented in the
main text, we find improvements in density estimation when using antithetics. This agrees with our intuition
that more representative samples benefit learning regardless of architecture choice.

3.2 Variance over Independent Runs

In the main text, we report the average test log likelihoods over 5 runs, each with a different random seed. Here,
we report in Table. 2 the variance as well (which we could not fit in the main table).

Dataset ‘ VAE AntiVAE VAE+4+IWAE AntiVAE4IWAE VAE+10-NF AntiVAE+410-NF
StaticMNIST —90.44 4+ 0.031 —89.74 4+ 0.066 —89.78 + 0.080 —89.71 + 0.059 —90.07 + 0.033 —89.77 + 0.042
DynamicMNIST —86.96 £ 1.398 —86.94 £+ 1.412 —86.71 £ 1.778 —86.62 £ 1.426 —86.93 = 1.132 —86.57 £ 1.173
FashionMNIST —2819.13 £ 1.769 —2807.06 £ 1.591 —2797.02 £ 1.714 —2793.01 £1.174 —2803.98 £ 1.487 —2801.90 £ 1.459
Omniglot —110.65 4+ 0.141 —110.13 4+ 0.063 —109.32 +0.134 —109.48 4+ 0.104 —110.03 +£0.178 —109.43 + 0.057
Caltech101 —127.26 4+ 0.254 —124.87 +0.213 —123.99 4+ 0.262 —123.35 +0.195 128.62 £ 0.278 —126.72 4 0.247
FreyFaces —1778.78 £ 4.649 —1758.66 £ 7.581 —1772.06 £ 7.275 —1771.47 £ 5.783 —1780.61 £ 4.595 —1777.26 £+ 6.467
Histopathology —3320.37 £ 6.136 —3294.23 £ 1.543 —3311.23 £ 2.859 —3305.91 £ 1.972 —3328.68 £ 5.426 —3303.00 £+ 1.517

Table 2: Identical to Table 1 in the main text but we include an errorbar over 5 runs. We find the differences
induced by antithetics to be significant.



3.3 Runtime Experiments

To measure runtime, we compute the average wall-time of the forward and backward pass over a single epoch with
fixed hyperparameters for VAE and AntiVAE. Namely, we use a minibatch size of 128 and vary the number of
samples k = 8,16. The measurements are in seconds using a Titan X GPU with CUDA 9.0. The implementation
of the forward pass in PyTorch is vectorized across samples for both VAE and AntiVAE. Thus the comparison
of runtime should be fair. We report the results in the Table. 3.

k ‘ Model ‘ StaticMNIST DynamicMNIST FashionMNIST OMNIGLOT Caltech101 FreyFaces Hist. Patches
8 VAE 0.0132 £ 0.011 0.0122 + 0.010 0.0142 + 0.009 0.0144 + 0.015 0.0188 + 0.034 0.0283 + 0.052 0.0173 4+ 0.028
8 AntiVAE 0.0179 £ 0.011 0.0156 £ 0.009 0.0173 £ 0.010 0.0164 £ 0.017 0.0220 + 0.036 0.0334 + 0.054 0.0196 + 0.029
8 AntiVAE (Cheng) 0.0242 £ 0.014 0.0210 £ 0.010 0.0231 + 0.009 0.0221 £ 0.015 0.0353 + 0.040 0.040 £+ 0.062 0.0303 + 0.026
16 VAE 0.0228 £ 0.009 0.0182 4+ 0.011 0.0207 £+ 0.010 0.0181 + 0.015 0.0275 + 0.035 0.0351 + 0.049 0.0245 £+ 0.027
16 AntiVAE 0.0252 + 0.009 0.0240 + 0.011 0.0288 + 0.010 0.0256 + 0.015 0.0308 + 0.035 0.0384 + 0.049 0.0315 £+ 0.027

AntiVAE (Cheng) 0.0388 + 0.011 0.0396 + 0.010 0.0452 4+ 0.011 0.0399 + 0.015 0.0461 + 0.038 0.0550 + 0.054 0.0505 + 0.033

Table 3: A comparison of runtime estimates between VAE and AntiVAE over different datasets. The number
reported is the number of seconds for 1 forward and backward pass of a minibatch of size 128.

To compute the additional cost of antithetic sampling, we divided the average runtimes of AntiVAE by the
average runtimes of VAE and took the mean, resulting in 22.8% increase in running time (about 0.004 seconds).
We note that AntiVAE (Cheng) is much more expensive as it is difficult to vectorize Helmert’s transformation.

3.4 Importance of Differentiability

We report the numbers plotted in Fig.4e, which showed that differentiability in antithetic sampling is the driving
force behind sample diversity. The numbers reported are averaged over 5 runs on Histopathology.

Epoch | VAE AntiVAE (no backprop) AntiVAE (with backprop)
1 0.302 £ 0.031 0.301 + 0.026 0.479 £0.021
10 0.102 £ 0.008 0.103 + 0.022 0.348 +£0.024
20 0.068 £ 0.006 0.065 + 0.010 0.143 £0.016
50 0.040 £ 0.005 0.033 £ 0.006 0.063 £ 0.004
100 0.030 £ 0.002 0.028 + 0.008 0.042 £ 0.009

Table 4: Variance of the first k/2 samples (non-antithetics) as measured over five independent runs on
Histopathology. Without backprop, the variance is roughly equivalent to regular VAE.

As an aside, we provide the following remark: it is important to check that by adding differentiability, we do not
introduce any unintended effects. For example, one might ask if differentiability leads to collapse of the VAE
to a deterministic autoencoder (AE), thereby learning to “sample” only the mean. To confirm that this is not
the case, we measure the average variance (across dimensions and examples in the test set) of the variational
posterior ¢(z|z) when trained as a VAE versus as a AntiVAE.

Dataset | VAE AntiVAE

StaticMNIST 0.253 0.290
DynamicMNIST | 0.269 0.290
FashionMNIST 0.049 0.049

OMNIGLOT 0.208 0.285
Caltech101 0.179 0.182
FreyFaces 0.048 0.061

Histopathology 0.029 0.028

Table 5: Learned variance of the approximate Gaussian posterior with and without antithetics. We measure
variance on a variety of datasets.

If differentiating through antithetic sampling led to ignoring noise, we would expect q(z—=x) to be deterministic
i.e. near 0 variance. This does not appear to be the case, as shown in Table. 5.



4 Deriving One-Liner Transformations

We provide a step-by-step derviation for g(-) in one-liner transformations, namely from Gaussian to Cauchy and
Exponential. We skip Log Normal as its formulation from a Gaussian variate is trivial. Below, let X represent
a normal variate and let Y be a random variable in the desired distribution family.

Exponential Let F(X)=1— exp *X. Parameters: \.
We start with F(F~1(Y)) =Y.

1- exp_(/\Ffl(Y)) =Y
exp_(/\Ffl(Y)) =1-Y
~(AF7H(Y)) =log(1-Y)
AFHY) = —log(1—Y)

F7Yy) = —ilog(l -Y)

Since 1 =Y € U(0,1) and Y € U(0, 1), we can replace 1 — Y with Y.

F7 YY) = —ilogY

Cauchy Let F(X) =3+ %arctan(%). Parameters: g, 7.

1 1 F~1(y) -
— 4+ = arctan(u
2

arctan(

In practice, we only optimize over v, fixing xy to be 0.

5 Deriving Antithetic Hawkins-Wixley

We provide the following derivation for computing an antithetic x? variate using a normal approximation to the
x? distribution. We assume the reader is familiar with the inverse CDF transform (as reviewed in the main text).

(Hawkins and Wixley, 1986) presented the following fourth root approximation of a x? variate, denoted X @)
with n degrees of freedom as distributed according to the following Gaussian:

3 7 231 1 3 23

Xt o N - —— - = &
X/ N = 160~ 51 * 510200 80+ 12802 102408

) (24)

We can separately define a unit Gaussian variate, Z(") ~ A(0,1) such that

3 7 231 1

70 = (XD - S ~ ?
(/) = (= 360 ~ 51902 * 10203 ) T NI 25)

8n 128n2 1024n3




Notice this is just the standard reparameterization trick reversed (Rezende et al., 2014).

Independently, we can define a second x2 variate, X (2) and unit Gaussian variate Z2 in the same manner.

3 7 231 1

_ . 26
16n  512n2 + 8192n3)) 1, 3 _ 23 (26)
8n 128n2 1024n3

7(2) — ((X(Q)/n)l/“ —(1-

As each Z is distributed as N(0, 1), the inverse CDF transform amounts to:

z® = _zW (27)

Expanding each Z, we can derive a closed form solution:

3 7 231 3 7 231
X /)4 o 2~ " £ ((xOD )V  2 9
(X/n) (= 160 ~ 51202 T s10208) = (X/m) (=160 ~ 51202 * s1020% ) (28)
3 7 231
X@ /14— - 2~ (X @) yp)1/4 29
(X/n) (= T6n ~ 51202 + 819203 ~ X/ (29)
3 7 231

X® =n[2(1 )) = (X /mtt(30)

T 16n 51202 819243

This is the approximation we use in the main text. Coincidentally, (Wilson and Hilferty, 1931) present a similar
approximation but as a third root that is more popular. In the main text, we noted that we could not use this
as it led negative antithetic variances. To see why, we first write their approximation:

2 2

XO /3 O N(1 - = 2
(XS N (1= o

) (31)

Following a similar derivation, we end with the following antithetic Wilson-Hilferty equation:

2
X® =n[2(1 - o)~ (e /)12 (32)
n
The issue lies in the cube root. If (z(1)/n)1/3 > 2(1 — &), then inference is ill-posed as a Normal distribution
with O or negative variance does not exist.

6 Cheng’s Solution to the Constrained Sampling Problem

In the main text, we frequently reference a second algorithm, other than (Marsaglia and Good, 1980) to solve
the constrained sampling problem. Here we walk through the derivation of (Cheng, 1984; Pullin, 1979) (which
we present results for in the main text):

We first review a few useful characteristics of Gamma variables, then review an important transformation with
desirable properties, and finally apply it to draw representative samples from a Gaussian distribution.

6.1 Invariance of Scaling Gamma Variates

We wish to show that Gamma random variables are closed under scaling by a constant and under normalization
by independent Gamma variates.

Lemma 6.1. If x ~ Gamma(u, o) where p > 0 represents shape and o > 0 represents rate, and y = cx for some
constant ¢ € RY, y ~ Gamma(y, <).

Proof. In generality, let the chain rule be f,(y) = F, (gil(y))\g—ﬂ where [ is the cumulative distribution func-

a“(y/k)"*l cxpf"‘y/k _ (a/k)“Y"71 cxpfy'o‘/k
T'(p) B T'(p)

tion for a random variable. Applying this to a Gamma: F,(y) =
Gamma(y, ¢).



Lemma 6.2. Let x1,z9,...,x, be Gamma(u, ) variates and let xr+1 be a Gamma(kp, o) variate independent
of vi, fori=1,...k. Then, y; = ka(Ek’“ L) where y; ~ Gamma(p, a).
j=1Tj

Proof. See Aitchison (1963). O

Lemma 6.3. If 2 ~ N(0,1), then 2% ~ x3. Additionally, z* ~ Gamma(3, 1).

Proof. By definition. O

gorolla(rly 61.3).1. If z ~ N(0,0%), then i—i ~ X3. Furthermore, we can say 2* ~ oy} = ¢? - Gamma(3, 1) =
amina 55552 )"

Proof. Direct application of Lemma 6.1, 6.3. O

6.2 Helmert’s Transformation

Given a random sample of size k from any Gaussian distribution, Helmert’s transformation (Helmert, 1875;
Pegoraro, 2012) allows us to get k — 1 new i.i.d. samples normally distributed with zero mean and the same
variance as the original distribution:

Let 1, ...,xx ~ N (11,02) be k i.i.d. samples. We define the Helmert transformed variables, yo, ..., yi, as:

Y mi— (k1= f)ay
T e+ 1—j)(k+2— )72

for j =2, ..., k. Helmert’s transformation guarantees the following for new samples:

Proposition 3. ys, ..., yx are independently distributed according to N'(0,0?) such that Zf:z y? = Zle(xi —z)?
where T = 1 Zle Z;.

Proof. See Helmert (1875) or Kruskal (1946). O

Critically, Prop. 3 also informs us that (1) the sample variance of ys, ..., yx is equal to the sample variance of
Z1,..., Tk, and (2) y;,7 = 2,...,k can be chosen independently of . These properties will be important in the
next subsection.

6.3 Choosing Representative Samples

We are tasked with the following problem: we wish to generate k i.i.d. samples 1, ...,z ~ N (i, 0?) subject to
the following constraints:

T =

k

=

k
Z(xz —7)2=5>=62 (35)

I =

where by definition Z ~ N (p, "72) and (k —1)s*/0? ~ x2_,. We assume that n and (k — 1)§?/0? are particular
values drawn from these respective sample distributions. In other words, given all the possible sets of k samples,
we wish to choose a single set such that the sample moments match a particular value, Z = 1 and s? = §2. Note
that this is not the same as choosing any 7 € R and 62 € R.

This problem is difficult as the number of sets of k& samples that do not satisfy Constraints 34 and 35 is much larger
than the number of sets that do. Thus, randomly choosing k£ samples will not work. Furthermore, preserving



that the samples are i.i.d. makes this much more difficult as we cannot rely on common methods like sampling
without replacement, rejecting samples, etc.

To tackle this, Pullin (1979) used the two following observations: (1) we can handle Constraint 34 independently,
and (2) as a linear transformation, Helmert is invertible. First, we investigate observation 1:

Helmert’s transformations allows us to untie Constraint 34 from Constraint 35 as ys, ..., yx are not dependent on
w or n. Suppose we instantiate a new variable, y; (Kendall et al., 1946) such that

n=p+y/Vk (36)

Asn~ N(u, %2), y1 is then distributed as N'(0,0?) by reparameterization. This means that we can determinis-
tically choose a value for y; given p and 7 to satisfy Constraint 34.

Next, satisfying Constraint 35 amounts to sampling ya, ..., yx according to Prop. 3. To do this, we follow (Cheng,
1984) and use the Gamma properties we introduced in Section 6.1:

First, we draw k — 1 independent samples from zy, ...,z ~ N(0,1). Compute ca,...,c; where ¢; = (2; * o).

Cheng (1984) defines y;,i = 2, ..., k such that

k—1 (52 - Cj
v = % (37)
Zj:Z Cj

By design, >, y? = (k — 1)6%, as desired by Prop. 3. Furthermore, as ¢; ~ Gamma(3, 525) and (k — 1)6% ~
k

Gamma(%l, #), Lemma 6.2 tells us that y? are also distributed as Gamma(%, ﬁ), which crucially guarantees
,0°) by Corollary 6.3.1. For ¢ = 2, ..., k, we do the following:

yi ~ N(0,0?)
v =t v (39)

where b; = Bern(0.5) and b; = 2b; — 1 i.e. we randomly attach a sign to y;. Finally, now that we know how to
generate yi, ..., Yk, we use Pullin (1979)’s second observation to transform y; back to z;:

Precisely, the inverse of Eqn. 33 (Helmert) is the following:

o1 = 3 (o = VA= T)ge) (39)

(k42— )"y — (k— )"y
(k+1— )72

Tj=xj1+ (40)

for j = 2,....,k. By the “inverse” of Prop. 3, Eqn. 40 will transform yi, ...,y to samples z1, ...,z ~ N(0,0?)
such that the sample mean is 7 — p and the sample variance is 62. Lastly, adding x; = z; + u for i = 1,..., k
ensures samples from the correct marginal distribution along with the correct sample moments.

We refer to this procedure as CHENGSAMPLE, detailed in Alg. 2. We summarize the properties of CHENGSAMPLE
in the following proposition.

Proposition 4. Given k — 1 i.i.d samples z1,...2zk.1 ~ N(0,1); k — 1 4.4.d samples by,....bp_1 ~
Bern(0.5); population moments from a Gaussian distribution u € R,0%2 € R; and desired sample mo-
ments n, 62 such that n ~ J\/(u,%z) and (k — 1)6%/0® ~ x3_,, generated samples x1,...,x) from
CHENGSAMPLE([21, ..., 2k—1], [B1, oy bk—1], , 0,1, 8, k) are (1) i.i.d., (2) marginally distributed as N'(p,0?), and
(3) have a sample mean of n and a sample variance of 62.

As a final note, we chose to use Marsaglia’s solution instead of Cheng’s as the former as a nice geometric
interpretation and requires half as many random draws (no Bernoulli variables needed in Marsaglia’s algorithm).



Algorithm 2: CHENGSAMPLE
Data: i.i.d. samples 21, ..., zxg_1 ~ N(0,1); i.i.d. samples by, ..., br_1 ~ Bern(0.5); Population mean p and
variance o2; Desired sample mean 7 and variance 62; Number of samples k& € N.
Result: A set of k samples z1, 2o, ..., ¥, marginally distributed as N (i1, 0?) with sample mean 7 and
sample variance 2.
ci = (zi1-0)? fori=2,..,k;
a—( —1)0%/ 32, eis
yi=a-cfori=2,..k;
= (2bi—1— 1)y forz-Z Lk,
y1 = VE(n — p);
1
ag =k™2;
;= (i +1))72 for j =2,..,k;
Sk = o Yk
for j « k to 2 do
wj = (sj — aj1yj-1)/73;
$j-1 = 8j = T3

end

Tl = S1;

v, =x;+pfori=1,..k;
Return 4, ..., xg;

7 Miscellaneous

In the ANTITHETICSAMPLE proposition in the main text, we use the fact that the average of two unbiased
estimators is an unbiased estimator. We provide the proof here.

Lemma 7.1. A linear combination of two unbiased estimators is unbiased.

Proof. Let e; and e; denote two unbiased estimators that Ele;] = E[ea] = 0 for some underlying parameter 6.
Define a third estimator e3 = kjej + koeg where k1, ko € R. We note that Eles] = k1E[e1] + koElea] = (k1 + k2)0.
Thus e3 is unbiased if k1 + ko = 1. O
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