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1 Proofs1

Proof of Theorem 5.1.2

Let Ut = 1{Xt∈Er}Xt. By equation (2), we have3

√
n(β̂ − β) =

(
1
n

n∑
t=1

UtU′t

)−1(
1√
n

n∑
t=1

Ute′t

)
, (1)

which is understood as −
√
nβ if the invertibility fails. Note that4

E[vec(Ute′t) vec((Ute′t)′] = Ω⊗ Γ(r). (2)

For any column vector a ∈ RK2p, the linear combination a′ vec(Ut)et forms a stationary5

martingale difference in t with respect to the filtration Ft = σ(ei, i ≤ t) since Ut is Ft−1-6

measurable and et is centered and independent of Ft−1. By (2) and the Martingale Central7

Limit Theorem (Theorem 35.12 of [Billingsley 1995 Probability and Measure 3rd ed.]), as8

n→∞,9

1√
n

n∑
t=1

a′ vec(Ute′t)
d→ N(0,a′Ω⊗ Γ(r)a).

In view of the Cramer-Wold Device, we have thus shown that as n→∞,10

1√
n

n∑
i=1

vec(Ute′t)
d→ N(0,Ω⊗ Γ(r)). (3)

On the other hand, each component of the Ut is a causal linear filter of i.i.d. (thus ergodic)11

et, and is hence an ergodic sequence by Lemma 10.5 of [Kallenberg 2002 Foundations of12

Modern Probability 2nd ed]. Therefore, by the Birkhoff Ergodic Theorem (Theorem 10.6 of13

[Kallenberg]) applied to each entry, one has almost surely as n→∞ that14

1
n

n∑
i=1

UtU′t → Γ(r). (4)

At last, notice that the invertible matrices of a fixed size form an open subset under the15

product topology. Hence 1
n

∑n
i=1 UtU′t is invertible with probability tending to one as16

n→∞. Combining (1), (3) and (4) yields (12).17

Proof of Theorem 5.2.18

The case of consecutive sampling can be directly deduced from Theorem 5.1 by letting19

E = Rm and substituting n by nq. For the Bernoulli sampling, the proof can be carried20

out similarly as the proof of Theorem 5.1. In particular, the indicator 1{Xt∈E} is replaced21

by i.i.d. Bernoulli(q) variables independent of the time series (Yt), which still retains the22

martingale property used in the proof of Theorem 5.1.23
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Proof of Theorem 5.3.25

(a) Since et’s are Gaussian, for each t ∈ Z, Xt ∼ N(0,Γ). Let X = (X1, . . . , Xm) : d= Xt, and26

let Z = Γ−1/2X ∼ N(0, Im). Then27

Pr(X ∈ Er) = Pr(Z ∈ Dr) = Pr(χ2
m > r2) = Q(m, r).

(b) For any column vector a ∈ Rm with ‖a‖ = 1, define28

F (a; Er) := a′(Γ(r)−Q(m, r)Γ)a

=E

( m∑
i=1

aiXi

)2

[1{X∈Er} −Q(m, r)]

 . (5)

Let φΓ denote the density of N(0,Γ). Then by a change of variable x = Γ1/2y,29

F (a; Er) =
∫

(a′x)2[1Er
(x)−Q(m, r)]φΓ(x)dx

=
∫

(a′P ′Λ1/2Py)2[1Dr
(y)−Q(m, r)]φIm

(y)dy.

Let b = (b1, . . . , bm)′ = Pa. By orthogonality of P , we have ‖b‖ = 1 as well. By a change30

of variable z = (z1, . . . , zm)′ = Py, and using the invariance of dz, φI and Dr with respect31

to an orthogonal transform, we have32

F (a(b); Er)

=
∫ ( m∑

i=1
biλ

1/2
i zi

)2

[1Dr
(z)−Q(m, r)]φIm

(z)dz. (6)

By the symmetry of Dr and φIm
, the “covariance”33 ∫

zizj [1Dr
(z)−Q(m, r)]φIm

(z)dz = 0, if i 6= j.

Hence34

F (a(b); Er) =
∫ m∑

i=1
b2iλiz

2
i [1Dr

(z)−Q(m, r)]φIm
(z)dz

=
(∫

z2
1 [1Dr

(z)−Q(m, r)]φIm
(z)dz

)( m∑
i=1

b2iλi

)
.

Note that35

min
‖b‖=1

(
m∑
i=1

b2iλi

)
= λmin,

which is positive since Γ is non-singular by assumption. On the other hand, we have36 ∫
Dr

z2
1φIm

(z)dz = 1
m

∫
Dr

‖z‖2

φIm
(z)dz = 1

m
E[χ2

m1{χ2
m>r

2}] = T (m, r).

and37 ∫
z2

1φIm(z)dz = 1.

Hence38

min
‖b‖=1

F (a(b); Er) = λmin [T (m, r)−Q(m, r)] .
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