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Abstract

Estimating the dependence structure of mul-
tidimensional time series data in real-time is
challenging. With large volumes of stream-
ing data, the problem becomes more dif-
ficult when the multidimensional data are
collected asynchronously across distributed
nodes, which motivates us to sample represen-
tative data points from streams. We propose
a leverage score sampling (L.SS) method for ef-
ficient online inference of the streaming vector
autoregressive (VAR) model. We define the
leverage score for the streaming VAR model so
that the LSS method selects informative data
points in real-time with statistical guarantees
of parameter estimation efficiency. Moreover,
our LSS method can be directly deployed in
an asynchronous decentralized environment,
e.g., a sensor network without a fusion cen-
ter, and produce asynchronous consensus on-
line parameter estimation over time. By ex-
ploiting the temporal dependence structure
of the VAR model, the LSS method selects
samples independently on each dimension and
thus is able to update the estimation asyn-
chronously. We illustrate the effectiveness of
the LSS method in synthetic, gas sensor and
seismic datasets.

1 INTRODUCTION

Understanding the dependence structure of streaming
multidimensional time series in real-time is a “space-
time” challenge due to (1) the temporal dependency
and infinite sample size of data streams in time, and
(2) cross-correlation among multidimensional streams
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and information transition in the data acquisition net-
work on space. The multidimensional streaming data
are commonly collected from a network system with
each node corresponding to one marginal dimension
of the streams. The multidimensional streams contain
complex temporal and cross-sectional dependency, usu-
ally along with a huge volume of data. Accurately
and efficiently estimating the dependence structure is
crucial, especially for real-time inference tasks, but the
estimating process is time-consuming. Sampling is a
natural and efficient way to reduce the data size and
speed up the computation. Meanwhile, when the mul-
tidimensional streams are collected across distributed
nodes asynchronously, it is not practical to transfer all
data to one computing node and process them with
an increasing data volume. One reasonable approach
to retrieve dependence information is to perform asyn-
chronous consensus estimation on each node in the
decentralized computing framework [50, [5I]. Sampling
can relief the storage pressure and minimize the com-
munication cost in such decentralized network.

The vector autoregressive (VAR) model, one of the most
popular and fundamental time series models, provides a
mechanism for capturing complex temporal dependency
and cross-correlation among the multidimensional time
series. Inferring these dependencies requires both effi-
cient methodology and intensive computational efforts.
Precisely understanding theses dependencies facilitates
the interpretation of the model and improves prediction
accuracy.

In this work, we introduce a leverage score sampling
(LSS) method that can efficiently estimate the depen-
dence structure from asynchronous multidimensional
streaming time series. By exploiting the VAR model,
we parameterize the temporal dependence (auto/cross-
correlation) structure and propose the streaming sta-
tistical leverage scores for streaming sampling. We
also seek to directly deploy this method to an asyn-
chronous decentralized network, which has limited en-
ergy, memory and processing resource. In these cases,
finding the informative data points is highly desired for
accelerating the estimation process and boosting the
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transmission of the streaming data in the decentralized
network system.

Challenges: In this paper, we focus on designing
a sampling strategy that can improve the parameter
estimation accuracy and maintain the computation effi-
ciency. We address a few specific challenges in sampling
streaming multidimensional time series. First, how do
we find a subset of samples that efficiently capture the
temporal structure under a multidimensional setting?
The proposed sampling method aims to find influential
data points, which are highly efficient for estimating
the parameter matrix of the VAR model, in real-time
to reduce evaluation times without losing too much
accuracy. Second, how do we adapt the importance
sampling method to the streaming and decentralized
environment? We utilize the VAR model to decompose
the dependence structure and distribute it to each node
so that the sampling method can be applied on each
node independently.

Prior Work: Sampling is an important data reduc-
tion approach for reducing the computational cost and
memory usage, and it is widely used in matrix approxi-
mation or sketching [I5] [14] 38, 53], kernel approxima-
tion [34, [I], graph sparsification [44] 27], linear regres-
sion 3T, 13 [38], and etc. Especially, sampling method
based on leverage score is one of the most popular tech-
niques [36, 111 33]. Random sampling with probability
proportional to exact or approximated leverage scores
can yield high accuracy on model parameter estimation
for linear regression [32] [38], logistic regression [46] and
kernel ridge regression [2].

On the other hand, sampling as the subset selection-
which optimizes a specified objective function leads to
numerous applications in image, video, speech sum-
marization [I7, [I8], 2T], 42, [30, 28], and bioinformat-
ics [49, 25]. Most of the existing methods treat the
samples independently and ignore the dependence in-
formation among the samples, except the most recent
work of [I8] that selects the sequential data based on
Markov models.

Meanwhile, literatures on sampling for streaming data
have focused on column sampling [I1], spectral sparsifi-
cation or subgraph sampling for graph streams [27, [10],
data management [I2] [16], and clustering [43]. To the
best of our knowledge, the study on sampling with an
objective of recovering the dependence information of
streaming data is still lacking.

Paper Contributions: In this paper, we develop a
novel sampling method for estimating temporal depen-
dence structure of multidimensional streaming multi-
dimensional time series. Our leverage score sampling
(LSS) method is based on the statistical leverage score
of vector autoregressive model for online selecting repre-

sentative data points, which are later used to estimate
the VAR model parameter matrix.

1. The LSS differs substantially from other leverage-
based sampling methods. The LSS focuses on selecting
informative data points that contribute to the estima-
tion efficiency of the VAR model parameter matrix,
which is a model-based surrogate for temporal depen-
dence structure of the multidimensional time series
streams.

2. We provide a theoretical guarantee that the LSS
method yields a better estimation efficiency for the
VAR model parameter matrix than naive sampling
methods.

3. Not only is the LSS method fast and accurate
for estimating temporal dependence structure, but it
can also be applied in an asynchronous decentralized
environment where traditional leverage-based sampling
methods cannot.

As an illustration, we present a single-pass streaming
sampling algorithm on the asynchronous decentralized
framework for consensus optimization. We demonstrate
the practical effectiveness with such asynchronous de-
centralized environment, both in parameter estimation
on K-dimensional VAR(p) synthetic data streams, as
well as in real large-scale sensor data prediction tasks.

2 BACKGROUND

2.1 Notation

A curly capital letter A is used for set and collection
of sets. The upper-case letters A or A are used for
matrices and operators. A lower-case bold letter a
is used for vector and a lower-case letter a is used
for scalar. Specifically, we reserve E(-) to denote the
expectation operator. The integers are denoted by Z,
and real numbers are denoted by R. We denote the
identity matrix of dimension n by I,, € R™*". We use
1.y to denote the indicator function. We use X1 < X,
for two non-negative-definite matrices 3; and Xs, to
indicate that 3o — X is positive definite. We denote
the transpose of a matrix A as A’, the determinant
of a matrix A as det(A) and vectorization operator
as vec(:). The Kronecker product is denoted by ®.

Finally, % denotes the convergence in distribution, 2
means defined to be equal to, || - ||2 denotes the vector
lo-norm, and || - || denotes the matrix Frobenius norm.

2.2 Vector Autoregressive Model

Time series data, one of the most representative classes
of dependent data, which contain temporal dependence
structure among samples, are often modeled by the
vector autoregressive (VAR) models 4] 24, [47]. VAR
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model represents a family of time series models that of-
fers a broad framework for capturing complex temporal
and longitudinal interrelationship among the multidi-
mensional time series data. A centered time series
y: € RE follows a K-dimensional vector autoregressive
model of order p, i.e., VAR(p), if

p
Yt = Z ‘I’i}’t—i + €, t e Za (1)

i=1

where ®,;’s are K x K matrices, and e; is a sequence of
independent and identically distributed (i.i.d.) random
vectors with mean zero and and finite non-singular
covariance matrix Ele;e}] = ¥. Let ®(z) = I —
Z?Zl ®,27 be the the associated characteristic matrix
polynomial, where I, is the p x p identity matrix. We
assume that det(®(z)) # 0 on the complex unit disk
{z € C: |z|] < 1}. In this case, there is a unique
stationary solution y; of , which is expressed as a
causal linear filter of (e;) (Theorem 11.3.1 of [5]).

We rewrite the VAR(p) model as

vi=xB+e;, teZ, (2)
where B = [®7,®5,---,®,]" is the Kp x K model
parameter matrix, x; = (y;_1,¥;_2," " ,¥t_p) 15
column vector of length m = Kp. We assume that
the covariance matrix I' = E[x;x}] is non-singular.
The model parameter estimation can be done through
Ordinary Least-Squares (OLS) estimate [45], which

R -1
is Bors = <ZtT:1 xtxg) Zthl x:y;. The computa-
tional cost of estimating the model parameter matrix
B is O(TK?p?).

2.3 Statistical Leverage Score

The VAR(p) model can be expressed in the form of
linear model. In general, consider the parameter esti-
mation of a linear model

y=XB+e, (3)

where y is the response vector, X is the design matrix,
B is the parameter vector, and € is the i.i.d. noise
vector. The unknown parameter 3 in this model can
be estimated as

B = argmin|ly - X813 = (X' X)Xy, (4)
in which case the predicted value is y = Hy with the

so called Hat Matrix H = X(X'X)"!X’. The i-th
diagonal element of H,

i = x(X'X) " 'x, (5)

is the statistical leverage score of the i-th sample, where
x; is the i-th row of X. Alternatively, the leverage score

can be expressed as
Ciy = [[ui[3,

where u is the i-th row of U, which can be any orthogo-
nal basis for the column space of X, i.e., H = UU’ [14].
The statistical leverage scores have been used to re-
gression diagnostics and to quantify the influential
observations, which is critical for the leverage-based
importance sampling.

3 LEVERAGE SCORE SAMPLING
FOR TIME SERIES DATA

The leverage score sampling (LSS) method for stream-
ing time series data utilizes the structure information
of the underlying dynamic model to efficiently select
informative samples. The information contained in
multidimensional time series are projected onto a one-
dimensional space through the LSS procedure, which
results in an easy-to-implement and efficient sampling
criterion.

We use the VAR(p) model to characterize the tem-
poral dependence structure of K-dimensional time se-
ries, which keeps the interoperability, compatibility and
avoids the overparameterization. For a fixed-sample-
size case, suppose we observe the K-dimensional time
series at T' time points, {y¢|t = 1,...,T}. The depen-
dence structure between data points can be modeled
through a VAR(p) model. Our goal is to select a subset
S c {1,...,T} of samples over which the estimation
of the model can be efficiently performed. The least
square estimator of B based on the selected sample
then becomes [23]

-1
By = <Z thé> (Z Xtst) :
tes tes

The leverage score sampling method finds subset S =
Siev according to the sampling rule

Siev ={t =1,...,T| hy =x,T " 'x, >7*}  (6)

for some threshold r > 0, where we recall that I' =
E[x;x}] is the covariance matrix. The choice of r is
based on the quantile of a probability distribution of
normalized data points. In practice, the unknown I'™*
in @ is replaced by an estimate based on a pilot sample,
denoted as 2, and the regressor vector x; is constructed
based on the VAR model. From the definition , the
quadratic form hy = x,Qx; can be viewed as the
(unscaled) statistical leverage score.

The leverage score sampling can be summarized as, if
for sample stretch (x¢,y;), the Mahalanobis distance
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Figure 1:  Illustration of sampling criterion: One-

dimensional AR(2) time series {y; }+cz are plotted with
azes lag-2 values yi_o vs. lag-1 values y;—1. Sampling
criterion r is the quantile of a desirable chi-squared
sampling probability distribution. The normalized data
points outside the ellipses (orange: 90-th percentile;
blue: 95-th percentile) will be selected by the LSS.

satisfies \/x}Qx; > r, then we include ¢ in subset Sje,.
As illustrated in Fig. [T} the normalized data points
outside the ellipse are selected into &, , where the nor-
malization is based on their statistical leverage scores.
The rate of sampling, |Sie,|/T, is determined by the
quantile r that measures the proportion of information
selected rather than a prespecified sample size.

LSS simultaneously achieves the following goals

1. Improving the estimation efficiency of Bg,., by
reducing its estimation uncertainty;

2. Selecting a small set of samples to improve the
computational efficiency;

3. Preserving the dependence structure since the data

stretch (Xtv Yt) = ((yilt—la yg—2v T 7y£—p)/) yt) is
the smallest sampling unit for any t =1,...,T;

4. Leading to streaming and decentralized algo-
rithms.

3.1 Leverage Score Sampling for Streaming
Time Series

The fundamental characteristic of a sampling method
in the streaming setting, which distinguishes itself
from its off-line version, is that streaming sampling
requires a real-time decision-making mechanism. The
LSS method utilizes a single-pass streaming procedure
that calculates the leverage score in real-time so that
one can make an immediate decision on sampling the

current data point or not. In the streaming setting, we
can first initialize 2 as an estimator of the precision
matrix T™' (see, e.g., e.g. [9,[6]) based on a pilot sam-
ple, and then periodically update it using new stream
samples, so that  is a consistent estimator for the
model precision matrix I'". For computational ad-
vantage, an infrequent update of €2 is desired. Then
the streaming leverage score and the corresponding
sampling criterion is given by

ﬁtt £ X;QXt > 7"2 (7)

to select the important data point in real time, which
is a single-pass procedure and only requires linear com-
putation time with respect to the model dimension
Kp.

Streaming time series also requires an online method to
continuously aggregates past data, updating the current
estimate of parameter to incorporate the information
obtained from the new data. As the streaming data
comes in sequentially, we would like to update the
estimate of the parameter B, sequentially as well. With
a slight abuse of notation, we use B; to denote the
estimate of the parameter B using LSS method at time
t. Hence, for each time point ¢ in the selected subset
Siev up to current time 7', we find the estimate B,
through optimizing the /5 loss,

B; = argmin E
i€81evN{1,...,t}

ly; —=Bll3. (8

which is in the form of dynamic linear model (DLM) [29]
37|, where the observation vector at time ¢t becomes,
v+ = Bix; 4+ e; and the underlying state vector satisfies
EB; = EB;_; = By (unbiased).

There are plenty choices to solve the DLM in ,
for example the classical Kalman filter. The Kalman
filter |26 22] updates the state vector vec(B;) for V ¢ €
Siev- The updates of the parameter vec(B;) depends
on accumulating the corresponding values themselves
while streaming, and do not require accessing previous
data points. It is important to note that, our LSS
method is independent of the choice of the DLM solver
in . The leverage score sampling for streaming time
series can, therefore, run in constant memory and at a
computational cost constant in time.

4 DECENTRALIZED LEVERAGE
SCORE SAMPLING

When the multidimensional streams are observed in
a decentralized environment, the LSS method can be
efficiently applied in parallel into asynchronous decen-
tralized optimization algorithm by exploiting to VAR
model structure. The leverage score and sampling crite-
rion defined in can be computed on each dimension
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Figure 2: Diffusion strategy of the decentralized net-
work. At every time t, node j collects a measurement
ygj) and neighborhood data.

in parallel and asynchronously under the decentralized
setting.

The decentralized architecture is needed as long as the
streams dimension K is large or distributed physically
apart in a network that accessing the data streams
on a single machine is impossible. More specifically, a
decentralized system lacks a fusion center (a centralized
computing node) and may be communication-restricted,
which requires a communication-efficient information
diffusion strategy in the design of the decentralized al-
gorithm. As illustrated in Fig. 2] we use neighborhood-
based communication strategy in our sampling method
and parameter estimation.

Note that the problem of can be decomposed into
K subproblems by taking advantage of the VAR model
structure. We assume that, without loss of generality,
each node in the network observes one dimension data
of the multidimensional streams. The selection criterion

Slw for node j becomes,

B = X, Ox,, > 12,

as long as the node j receives its local copy of data x,
at local time 7;. We express the parameter matrix B
as a block matrix with column vectors

B = [ﬂ(1)7/6(2)7"'7ﬁ(K)]

with ﬁ(j) being the jth column of B for j =1,..., K.
Hence for node j with its local time 7;, the j-th sub-
problem is

,3(7? = arg min Z IIyﬁf) - X/rjﬂ(j)H%n (9)

(4)
B reSIn(1,... t}

lev

where yg) is the jth element of y, ﬂ(T]J ) is the estimate
of ﬁ(j) at time 7;, for j = 1,..., K. Those ﬁ(j) can be
estimated at each corresponding node locally as soon
as X, is completed at local time 7;. From @[), we see

Algorithm 1 Online Asynchronous Decentralized
Leverage Score Sampling

Require: Precision matrix Q (updated periodically),
quantile r.
Broadcast initial value of parameter By and covari-
ance Py.
1: while ¢t > 0 do

2:  while node j € [1,..., K] in parallel do
3: Receive the local data yt(J ) without delay, and
the neighborhood data with arbitrary delay
4: Send out the local data yt(J ) to neighbors
5: ‘Wait until Xr; 18 complete for some 7; <t
6: if Eﬁi) =x7, Ox;; > r? then > LSS
7: Update 3./ () and P, according to the local
Kalman filter and .
8: else 4
9: 50) =pY)  and P, = P, _,
10: end if ’
11: Transmit the local estimate ﬁ(j ) to neighbors
and receive neighbors’ estimation
12: Set 7; 1 +1
13: return B, = [,GT] ,...,,B(J)7...,ﬁg{)]

14: end while nodes
15: end while ¢

that the sampling, parameter estimation and commu-
nication of nodes are uncoordinated. Each node j has
its own local time 7; and a global clock is not needed,
resulting in an asynchronous algorithm. The algorithm
then is running over the ad hoc network topology [48],
i.e. decentralized network without fusion/data center
to aggregate data asynchronously, where the nodes
communicate with their neighbors and perform the
local computation. The data from neighbors arrived
sequentially with delay depends on the distance in the
network due to the limited communication, see Fig.

Solving @ can be done by various decentralized con-
sensus optimization, e.g. decentralized gradient de-
scent [52], decentralized ADMM [41], decentralized
Kalman filter [35, [7] and references therein, etc. We
use diffusion strategies in [7] as an illustration to handle
the parameter estimation and sampling, which allow
asynchrony and delay in the decentralized consensus op-
timization. We use the local Kalman filter to estimate
the local parameter ﬁ%) for j-th node and 7; € Sjey

PTJ. = Pijl - k.,-J,X/ Pijl (10)
By =B+ ) —x Bk, (D)

where k,, £ ’y;ijTj_lej, and v, £ 1+ x, Pr 1%y,
with P, as the j-th local estimate of the precision
matrix at local time 7;. After getting the local esti-
mate ,B(Ti ), the node exchanges the local estimate with
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neighbors to form a complete estimate of B, at time
7j. The theoretical guarantee of the consensus result
of the algorithm can be found in [7]. The algorithm is
summarized in Algorithm [T}

5 THEORETICAL JUSTIFICATION
OF LEVERAGE SCORE
SAMPLING

The goal of this section is to provide the theoretical
justification on the superiority of the LSS method over
the Bernoulli sampling method. In Bernoulli sampling,
we take the simple random sampling over time, i.e.,
conduct Bernoulli trail to with success probability ¢ at
each time t to select samples.

For simplicity of theoretical discussions, we shall as-
sume below that Q = I'"! exactly, while careful exami-
nation of the uncertainty of the Q) estimate is left as a
future work.

The following theorenﬂestablishes the asymptotic nor-
mality of the estimate Bg,,, based on the LSS-selected
samples indexed by Sje,, .

Theorem 5.1. Let m = Kp and let K x K matriz
U = Elese;]. Define the m x m matriz

F(’I“) =E [1{x2p71xt>rz}xtxg] .

and suppose that it is non-singular. Then as T — oo,
VT (vee(Bs) — vee(B)) 5 N(0, T @ T(r)"}). (12)

In view of Theorem the asymptotic covariance
matrix of vec(Bs) dropping the scaling T~ is

TT(r)~t (13)

Our goal is to compare this covariance matrix with
those arising from some naive sampling approaches.
One option is to directly use a consecutive sample
(x¢,¥t)1<t<Tq, g € (0,1). Another option is to employ
an i.i.d. Bernoulli sampling: for each ¢t € {1....,T},
the sample (x¢,y:) is selected for regression with prob-
ability ¢ independently. It turns out that these two
options lead to the same asymptotic covariance matrix:

Theorem 5.2. Under either the consecutive sampling
or the i.i.d. Bernoulli sampling described above, we
have as T — 00,

VT (vee(B) — vee(B)) % N(0,¢ 'O @ TY), (14)

where

I = E[x,x|] = D(R™). (15)

IThe proofs of all theorems can be found in Supplemen-
tary Material.

To have a fair comparison with a leveraged-based sam-
pling approach, we shall set

q=Q(m,r) = Pr(x,T 'x; > r?).

This ensures that the average sampling proportions
across the different approaches are the same. Now the
asymptotic covariance matrix (dropping scaling T—1)
of the consecutive or Bernoulli sampling approaches is

¢RIt (16)
Comparing with , we want to achieve
vRT(r) ' <Q(m,r) ' eI\ (17)
Relation is equivalent to
Q(m,r)T' < T'(r). (18)
See items 10.51(b) and 11.1(i) of [40].

Under the Gaussian assumption, the following theorem
provides an expression for the minimum eigenvalue of
Q(m,r)I'=T'(r), which implies that or equivalently
holds.

Theorem 5.3. Suppose in (@ that e;’s are i.i.d.
N(0,%). Let m = Kp and let T2 = P'AY2P be
a square Toot of the covariance matriz I in , where
P is an orthogonal matriz and A = diag(A1, ..., Am)
18 a diagonal matriz of the eigenvalues of I'. Let
D, = {x € R" : |x| > r}, » > 0. Define & as
the complement of an ellipsoid:

& =T'?D,.

(a) The (marginal) sampling probability is
Pr(x; € &) = Q(m,r) = Pr(x2, > %), (19)

where x2, denotes a chi-squared random variable
with m degrees of freedom.

(b) The minimum eigenvalue of Q(m,r)I' —T'(r) is
)\min [T(m7 7’) - Q(mv T)] )

where Apin = min(Aq, ..., Ay,) > 0 and
1

T = —E[% 1112 wr2n].

(m,r) m [Xm {x2,>r }]

Some elementary calculus entails that T'(m,r) >
Q(m,r) for any r > 0. Hence we have the following.

Corollary 5.4. Under the setup of Theorem[5.3, the
relation , namely, the asymptotic superiority of
LSS over the Bernoulli sampling holds for any r > 0.

Remark 1. If e; is non-Gaussian, then some symmetry
explored in the proof of Theorem is unavailable.
Nevertheless, is expected hold under a moderate
departure from normality.
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Figure 3: Each column shows the comparison of estimation error with different sampling rate (a): ¢ = 0.1, (b):

q=0.2, and (c): ¢ =0.5. Fig.(a)-(c) show the results

with a 10-dimensional stationary VAR(3) process and

Fig.(d)-(f) show the results with a 30-dimensional stationary VAR(1) process. The estimation error, ||B; — B||p
of LSS (red), Bernoulli (blue) and Vanilla (green) methods are plotted against time T with total time steps 5000.

6 EXPERIMENTS

In this section, we demonstrate the applicability of
the LSS method on three experiments: the synthetic
data with various settings and two real multidimen-
sional streaming data. In all experiments, we compare
our proposed LSS method against Bernoulli sampling
method (hereafter, Bernoulli) and vanilla Kalman fil-
ter method (hereafter, Vanilla) [7] in a decentralized
setting with fixed network topology structure. The
Vanilla method uses full observed data, while the LSS
and Bernoulli methods take samples accordingly with
the same sampling rate g. We assume that the current
node can only access its own data in real time, and
the data transition from other nodes is delayed by the
distance in the network connectivity to the current
node. The results show the distinguishing features of
our LSS method: accurate in parameter estimation
with faster and better convergence at different sam-
pling rate ¢, and computation efficiency with shorter
execution time.

6.1 Synthetic Data

To compare accuracy and efficiency of parameter esti-
mation in the streaming setting at different sampling
rates ¢, dimensions K and lags p, we perform simula-
tion study on synthetic data and report the estimation
error ||B; — B||p. The simulation data is generated by
two settings: the first one (used in Fig. [3] (a)-(c)) is a
10-dimensional stationary VAR(3) process for 10 nodes,
i.e., K =10, p = 3 and the second one (used in Fig.
(d)-(f)) is a 30-dimensional stationary VAR(1) process
for 30 nodes, i.e., K = 30, p = 1. The topology struc-
ture and the connectivity of nodes is created randomly

at the beginning of the simulation and then applied
to all methods [39]. The first 200 data points from all
nodes are used as pilot samples to obtain the estimate
of € for each setting. In each subplot of Fig. [3] the
result is compared by the estimation error, ||B; — B||F,
against time 7', with 100 independent replicates, on dif-
ferent sampling rate ¢ € [0.1,0.2,0.5] and two settings
of K and p.

Fig. [3| shows that our method converges significantly
faster (high accuracy and efficiency) than Bernoulli
method, and converge as fast or slightly faster than
the Vanilla method that uses full data points in all
test cases. In addition, LSS takes fewer computational
steps (require fewer samples) than the Bernoulli method
to achieve convergence. Fig. d) shows the average
elapsed time of 100 trials of the three methods. It can
be seen that the time consumption of LSS is much
smaller than vanilla Kalman filter and similar to the
Bernoulli, while LSS achieves better estimation results
than both of the other two methods, especially com-
paring to Bernoulli sampling. From Fig. [3(a) and (c),
the advantages of the LSS method are more obvious
when the sample size is small.

6.2 Real Data

The LSS, Bernoulli and Vanilla methods are imple-
mented on two real datasets to compare the prediction
error, |ly: — ¥¢||2, since the VAR model parameters are
unknown for real data. In both experiments, the first
2000 data points are used as pilot samples.

Seismic Data: We consider the seismic data that
records the wave amplitude (mm/s) from earthquake
sequences in Oklahoma collected on October 26, 2014
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Figure 4: Prediction error from seismic data. The LSS
(red) and Vanilla (green) error are tangled together in
bottom of the plot.

[8]. The data contains 17 sensors with 17,698 time-
steps. The VAR(3) model was chosen based on the
analysis of the pilot sample. Fig.[]shows the prediction
error of the seismic data estimation. LSS outperforms
the Bernoulli method, and it can achieve comparable or
better prediction than the Vanilla method. From the
first-order parameter matrices ®; shown in Fig. [5] we
see that LSS (a) and vanilla Kalman filter (c¢) perform
similar estimation, while Bernoulli method has several
off-diagonal unusual patterns. Combine Fig. [f] and
Fig. 4] we see that Bernoulli method failed to capture
the correlation information in the seismogram so that
the prediction reflects a severer bias and delay.
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Figure 5: Seismic Data: Fig.(a)-(c) show first-
order estimated parameter matrices ®1 at time t =
8500. Flig.(d) is the average elapsed time (seconds) of
LSS(red), Bernoulli(blue) and Vanilla(green) methods
over 100 replicates.
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e s 1
(c) Vanilla

Gas Sensor Array: We do another experiment on
the UCI dynamic gas mixtures dataset [19] 20]. The
data uses 16 chemical sensors at a sampling frequency
of 100 Hz and records 4, 208, 261 time-steps of Ethylene
and CO mixture in air. For our experiments, we use
data from 15 sensors to build a VAR(3) modeﬂ A
snapshot of the prediction error is shown in Fig. [6 It is
clear that LSS captures the correct patterns in streams
and performed superior or comparable to the Vanilla
method that using the full data points.
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Figure 6: Prediction error from gas sensor data.

7 CONCLUSION

We develop a novel online leverage score sampling
method for efficiently estimating the temporal depen-
dence of streaming multidimensional time series in an
asynchronous decentralized environment. We prove
that leverage score sampling yields a lower parameter
estimation variance by selecting informative samples in
infinite-sample streaming time series. Our future work
includes, from the theoretical perspective, finding an op-
timal selection criterion under a more general (such as
nonlinear or nonparametric) dynamic streaming model,
and from the application perspective, extending the
sampling scope to irregular-sampled high-dimensional
random field streams, such as medical imaging real-
time diagnosis, video and audio summarization, and
environmental monitoring.
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