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A Proofs

In this section, we provide proofs for lemmas and theorems in Section 5. Throughout this section, we use
Tcqr € R™ to denote the concatenation of n vectors xy,..., ¢, € RY ie., Ter = [x],...,2]]T, = % S @
to denote the average of x;, and T4 = [:ET, e :ET]T € R" the concatenation of n copies of &. Note that
Teqt = (%lnlz ® I4)Tcqt, where I € R%*? is an identity matrix. Besides, we denote VFeat(Teat) € R™ as the
vector [VF;(z1)",...,VFi(x,)"]T. We note that the proofs of Lemma 1, 2, and 3 are borrowed from (Mokhtari

et al., 2018b) and we state them here for completeness.

A.1 Proof of Lemma 1

Proof. First, we observe that

t
2l = (W o L)al) + ol = (W o L)'al, + - ZW®IdtT§;t: zwmwgzz, (23)

T=1

where the first equality follows from the update rule of m ) and the second equlity holds because zr:( ) = = 04. Let
2" € R, i € [n], denote the i-th block of (W ® I,)v %) and y{™" denote the i-th block of (W @ I;)!~"v'7)

Veat-

Note that each UZ(T) belongs to the set C therefore z( Y= > eN (Ui} W”'Uj(- 7) also belongs to C, since zZ( s a

(m)

convex combination of v,
te[T],

Hence, yl ) e ¢, and thus * ZT 1 yl(T ) ¢ ¢. From (23) we can see that, for any

t
1 r r
0, <zl = TZ t>< Z b (24)

=1
which implies that w(tH) € X since C C X and X = {z]|04 < = < u}. Besides, since C has a radius R,

t

1 .
le <15 > w™ < R (25)

T=1

(T+1) _

Moreover, when ¢t = T', we have x; (T+1) cc.

i y!™ which implies that !

A.2 Proof of Lemma 2

Proof. For t =1, 20 = z{") = 0, the claim (11) immediately holds. Notice that \/ S Y — g2 =

if;” - ’S;DH, it suffices to prove that ||ngt'l) ’((:ZJ{DH < ‘/fh;) holds for ¢ € [T]. Observe that,
o & v(t) t

S+ %Z ( g (t)) _vY + ZZWZ]m(t) 20 — Z'B (26)

i=1 jl’ll =1

[

where o) = 1 Zz 1 v ) and the third equality holds because W is doubly stochastic. Therefore,

t

t
1 1 _(r 1 1 -
ot = 0 Ve = 7 9 (Ll @ Loy, (27)

T=1 T=1

Combining (23) and (27), we have

—T 1 T
|zl — ;t”n—fuzawt ——1,1,) ® L) cat||<72||wt - 1n1T||H 2l

T=1

NS Y— \FR i VMR
< ;IIW - 11T||< ZB T( —5 (28)
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where the first inequality follows from the fact that ||A ® I4|| = ||A]| for any matrix A; the second inequality

holds because v( € C. To see the third inequality holds, we observe that W has an eigenvalue 1 with an
eigenvector 1,, and (1 1,1,)) is a rank-one matrix that has an eigenvalue 1 with eigenvector 1,, too. Therefore,
the largest eigenvalue of W=7 — 1 o 0 1) is =7, where 3 is defined in Assumption 1.

We proceed to prove the second part of Lemma 2 as follows.

Fl) - Fa) =] ZF )= 23 B @)
i=1

S n ® e VnGR
< Glle)”’ —x < @G E . —x < —

where the first inequality holds because each F; is G-Lipschitz over X. the last inequality follows from (28). O

A.3 Proof of Lemma 3

Proof. Since each F; is L-smooth, the global objective F' is also L-smooth. Besides, Lemma 1 implies that
scl(»t) € X and thus 2 also lies in X for any t € [T + 1]. Thus, for ¢ € [T],

F(j(t‘i“l)) _ F(@(t)) > (VF(j;(t)),:E(t“) _ @(t)> _ £||§3(t+1) _ j(t)||2

L1
- ®y 5® ()2
V@), 80) - 7| 180
LR?
t ~(t
> (VF( )y, ”()>_W' (30)
where the first equality follows from (26). Next, we derive a lower bound of (VF(2®),5®).
(VE(@W), o) = (d® o®) + <VF(j(t)) —d®, M)
fZ a9 —d w®) + 13 (a0, 00) + (V@) — a0, 50)
[t
LSmig® — g® o0y 4 L= gt o RO G
25;<d( —d;’, v, >+ﬁ;<dz a$>+<VF(33( ) — d()"’()> (31)
where the inequality holds since 'vft) = argmaxvec<d§t), Z(t)>. Add and subtract (d), 2*), we have
(VP@),50) > 23 — d®, o — &%)+ (dD,2%) + (VF(@@?) - d),50)
n
=1
s ) 0
_1 0 _ g® O _ Fa®) _ b 50 F(a®
n;«t d”, v —a") + (V@) —d, 0" —a*) + (VF(z"),z")
> ——anm d"|| - D|VF(@") —dV| + (VF(@").2"), (32)

where we add and subtract (VF(2®)),2*) in the first equality, and we use Cauchy-Schwarz in the last inequality.
Since F is monotone and continuous DR-submodular, one can show that (VF(2®), x*) > F(z*) — F(z") as
follows. For any @ € X, define y = (z* — x) V 0q4, then

(VF(@),") > (VF(x),y) > Fla +y) - F(a)
~ FleVa') - F(a) > F(z") - F(a), (33)

where the first inequality follows from the monotonicity (VF(x) > 0) and the fact that y < x*; the second in-
equality follows from the concavity of F' along any non-negative direction (see, e.g., (Bian et al., 2017, Propositon



Jiahao Xie, Chao Zhang, Zebang Shen, Chao Mi, Hui Qian

4)); the last inequality follows from the monotonicity of F. Combining (30), (32), and (33) yields

1 D 5 LR?
DY _ pz®y > — * (t) ) _ g - = () _ g — ==
F@) - F(@®) >  (F(z) - F(@ Zud dV) - ZIVFE®) - dO) - 2 (34
After rearranging terms of the above inequality, we arrive at (13). O
A.4 Proof of Lemma 4
Proof. First, we show that d¥) = g() = 15" VF(x"). Since g = VF(2V), dV = I 1
Ly VF(2!") immediately holds. For ¢ > 2,
L~ g0 o _ @ 1§~ 0
I = I Y W = I Y w2 Yy
i=1 i=1 j5=1 j 1i=1 ] 1
1 ~ t—1 t —1
==Y (@Y + VR@?) - VR )
i=1
1< -
L3 R - VR )
=dW + Z VFi(z ZVF (t)) (35)
i=1 7=2
where (a) follows from Assumption 1.
We proceed to prove the second part of Lemma 4. Notice that (W ® Id)gg)t =
[(E Wl]gj )) ) ~-a(E?:1 angj) ] d&at and dcat ggz)t = (%1711'2 ® Id)gg;)tv then it is easy to
verlfy that
- . 1
> ld” —d O = [ldi) — g |F = (W~ ~1,1,) © Li)gc
1o &) _ (2
= H((W - 71711 ) ® Id) (gcat gcat)”
(36)
< W - 1] Pl - g1
< B*llgter — geal* = BQZ los” a1,
where the second equality holds because (W ® Id)ggl)t =(i1,1) ® Id)gga)t gg';)t O
A.5 Proof of Lemma 5
Proof. First, we notice that
n 9 n
| £ 3 t
(Dl = dO1)" < n(3 1 — dOI) = nljdiz, — ], (37)
i=1 i=1
where the first inequality follows from the Cauchy-Schwarz inequality. It suffices to show that ||d§f}t — dgat|| <
BINNG + HESE for t < T.
Applying Lemma 4, we obtain
et — dell < Bllates — gtiill = Bllgedh — decill (38)
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For t = 1, since g =VF, ( ) for all i € [n], ||dcat Sl)tH can be simply bounded as follows.
1 n
ldier — deatll” < 57 Z lg” —g™|? = 52 Z IVE((") ~ ~ Z I
<Y IVE G <ns'? (39)
i=1

where the last inequality holds because of Assumption 3. Therefore, Hdcfl)t — d(;tH < /nBG, which implies
that the claim (14) holds for ¢ = 1. Next, we show that the claim holds for 1 < ¢ < T. We define é(t
VE () - VE @), 60 = Ly 15? . Then we have g%, = di';V + 6., and d(l), — d(;, " 55;;1
Applying (38), we have

Ia%tD — dbtD ) < glglrt) —dlrt | = pl1(dY), + 68ty — (A%, + 85|

cat cat cat cat cat cat

1 1 1
< B, — dSh |+ 118%™ — 8Ly < B(IdL, — ALl + 1851, (40)

where the last inequality holds because ||6{:7 — 8|12 = > 160 — 502 = S 165D |2 —pf|6® )2 <
A L R D

cat

Notice that for any ¢ < T, ||6(t+1) || can be bounded as follows.

cat

185 = HVFcat(ﬂﬁ(tH))—VFcat( O € Lt -

cat Leat cat ||

= LI(W @ Lo)ag, + 7ol — xi

cat T Veat = Leat

1
= L|(W @ 1)(@) — @) + 0b0r — (@ — 20|

cat cat T cat cat cat
t
LW | + D))=l — 20, + f||vm|\

(b)
< D@l - 0 + Y2

cat

()  2ynR  +nR. _ 3nLR
SMraog T ST

where (a) follows from the smoothness of F;; (b) holds because |W|| = 1 and the fact that 'u )ec; (c) follows
from Lemma 2.

Let ¢ = ||d¢(:f1)t gf}t” and T = 2Y"LE - Combining (40) and (41), we have

(41)

T(1-p)
Cr1 <B(G+T), ted{l,...,T} (42)
Applying (42) recursively, we get
Cet1 Sﬁtﬁ-i-%r, te{l,...,T} (43)
where ¢y = |dl}, — dib)|| < VAG. Thus, we have ||, — diy|| < B'vnG + HZ2ER for any t € {1,...,T},
which is the desired result. O

A.6 Proof of Theorem 1

Proof. Since Lemma 3 holds under Theorem 1’s conditions, we proceed to bound (D||J(t) — VF(z®)| +
Dy dl — — d"|)) using Lemma 2 and Lemma 5. Recall that d® = L 3"  VF(z ) then

. _ 1 _ 1 ¢ _ LR
|d® ~VE@O)| < -S| VE@) - VE@E)| < -3 Ll -2 <

n T on— v T —p8)’ (44)
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where the second inequality holds because of Lemma 1 and the fact that Z* is a convex combination of x!;
the last inequality follows from Lemma 2 and the Cauchy-Schwarz inequality. Combining (44), Lemma 3, and
Lemma 5, we have

) 1 . LRD  B'GD  38LRD  LR?
o t+)y < (1 - L o ()

F(x*) - F(z )< (1 T)(F(a: ) — F(z')) + T2 (1= 5) t—Ft TSOEE t o (45)

With the above recursion, we obtain
) 1 LRD  ('GD  3BLRD LR’
F(z*) - F@™) < (1 - )T(F
(@) = P ") = (1= 7) (F2") = +Z<T21— T +(1—5)2T2+2T2>
1 ) LRD+3GD  38LRD  LR2
< ~(F(z*) — F(&W 4
< HP@) - Pt + SR 4 S S (16)
Rearrange terms and recall that acgl) = 04 for i € [n] and F(04) > 0, we arrive at
) 1 1 LRD +BGD  3BLRD  LR?
(T+1) > = * - _ _ _
F@mm) 2 (= 0F@) + 2P0 - —q— 5= 7052 ~ or
1 .. LRD+BGD  3BLRD LR?
>(1--)F — - - . 4

> (1- P - SR - s - (47)

Combining (47) and (12), we obtain
2
(T4 5 (1 _ 1 o LRD+BGD  3BLRD  LR®  /nGR
Pl )2 0P @) = =g “Ta—pp 27 T0-5) )

To ensure that F(:E(T“)) or each F(x; (T+1 )) is greater than (1 — 1/e)F(x*) — ¢, the number of iterations T'
should be T' = (9( ). Since at each 1terat10n DeGTFW requires one communication round and one full local

gradient evaluatlon at each node, we conclude that both the communication and gradient evaluation complexities
of DeGTFW are O(2). O

A.7 Proof of Lemma 6

Proof. Using the same argument as (35), one can show that d®) = g = L5°% | @Z@. On the other hand, since
the gradient estimate @Z(-t) is the average of t? samples of @Fi(mgt)), then

2
B[99 - VR[] < % "

Therefore, we have

- 1 e = 1 e -
dO _vFR(EO)| = ||~ ®) _ @M < = ) _ g z®
I VF(@™W)| ||n§ (Vi) - VE(z ))Il_n§ Vi7" = VE (@Y

=1 i=1

1« _

< (VY = VE@)] + IVE(”) - VE@")])

=1

LS~ o) 0 LR

< - Vz — VF; x; +
LY @O+ 75 -

where the last inequality follows from (44). Taking expectation on both sides yields
1 (t) (t) (t) LR o LR
(12 - V@) < L3 B[E[I0 - VRGO | o]+ mits <74 i 6

=1

where the last inequality follows from (49) and Jensen’s inequality. O
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A.8 Proof of Lemma 7

Proof. We prove the lemma by induction, which uses ideas in (Wai et al., 2017 Section D). Recall from (37)
that >0, ||d§t) dV| < f||dcat cat|| It suffices to prove the claim ]E[||d Sl)tH] < /nM/tfort <T.

cat

To begin with, using essentially the same argument as (38), one can show that

1a%), — 112 < 82)1g, — a4 |12 (52)

Then for t = 1, we have

1 = - SRR . 1
ldtr = deatll” < 5° Y llgi —aVIP =52 >V — vawi HI?
i=1 i

i=1

=Y (IVY = VE@D)|? + IVF (") ZVF )2

i=1

2(Vi) — VF(2), VE(z") Z VE((")). (53)
Taking expectation on both sides, we get

Ellldy) — diy ) < 82 ( SB[V - VE@)|?] +n6?) <nf?(0* + G2), (54)

where the first inequality follows from the same argument as (39) and the unbiasedness of @( Thus, IE[Hd
dON < @142 — d12)12 < By/n(0? + G?) < \/nb, which implies that (18) holds for ¢ = 1.

In the remaining of the paper, we define 6 ® @(t) @(tfl) and 6 = L3 th) Recall that d®) =

L E:L Vi () then we have d'7), = =(i1,1) ® Id)V(Cat and J(tH) d\+ dglt Note that (1/y/n) > i, ||d§t) -

cat — cat

O < (20, 4 — dO2)72 = 2, a0 1t suffces to prove that E[|d, — d)|] < yFl/t for ¢ < T.

cat cat

cat

First, we show that the claim (18) holds for ¢ < tg, where t( is defined in Lemma 7. Using the same argument
as (40), one can easily show that

1 1 1
1att —dl | < p(1dl, — d |+ 16 P. (55)

cat

Notice that ||V Feq:(x (t+1) ) — VFmt( Cat )|| can be simply bounded as follows.

Leat

IV Feat (it ) = VEar ()| = | Y IVE () = VE )2 < | > L2[a{") — 2|2
< > 2r2(J2 V)2 4 2 )2) < 2V/mLR, (56)
=1

where the last inequality follows from Lemma 1 and Assumption 2. Then the expectation of ||5£1:[1)H can be

bounded as follows:
1 1)
E[l6% V1] = B[V - v
<E[IVED = V(@i ) + IV, = V@) + 1V Fear(@le ) = Ve (@ )|

< (U9~ VFaalE ) + (BITE — VR @O0I7)* + 2V
< \/ﬁ(m + % +2LR) < 2v/n(o + LR). (57)
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where the second inequality follows from Jensen’s inequality and (56); the third inequality holds because

e (R B o )
=1

For tg = 1, (54) already holds for ¢ = 1. Now suppose that ¢ + 1 < ¢y, then taking expectation on both sides of
(55) and applying (54) and (57) yields

1
|:||d (t41) d(t+1 m < ﬁE[”dglt cat” + H‘scflth )H]

cat cat

< B'E[|d%, — dinil] +226T (o + LR)

QBf (0 +LR)

< Byv/n(o? +G?) + -

< V/nM/to < /nM/(t+1) (59)

where the third inequality holds because of Jensen’s inequality (|[E[z][|? < E[||«||?]). Therefore, ]E[Hdg;)t Sl)t Il <
V/nM /t holds for ¢ < t.

If to > T, then Lemma 7 immediately holds. Suppose that ¢y < T', and that E[||dcat
some t € [tg, T], we will show that the same claim holds for ¢t + 1. Note that ||d (t+1)

cat

d\"|] < \/nM /t holds for
|| can be bounded as follows:

1 -t 1
”6(t+ )” _ HV(H— ) (t) I

cat cat cat

= VD V(@i ™) = (V) = VEw (@) + Ve (25)) — V(20|
3vnLR
T1-pB)

where the inequality follows from the same argument as (41). Taking expectation on both sides, we have
3nLR

T(1-5)
Lo, BLR f 3LR

< [VEEY — V(@) + [V, = V()] +

[||6 t+1)H] < ]E[“v () _ chat(w(tJrl))”] E[”vcat VFcat( Cat)H]

cat cat cat

where the second inequality follows from Jensen’s inequality and (58).

Taking expectation on both sides of (55) and applying (61) yields

3LR
Eflldl) — di ) < B(E [|dmdgat|]+{<ga+lﬂ>)

ﬁ(\FM+\F(20+3 ) < VRMB(1 4+ 1/ty)
5)) <

t
1+ 1/t 1
t '(1+1/to)2)

-1 1 DY
SVRMGG ) T (62

B

M(

Therefore, we have proved that E[||dmt ng)tH] < /nM/tfort e {1,...,T+1}, which is the desired result. [

A.9 Proof of Theorem 2
Proof. Combining Lemma 3, Lemma 6 and Lemma 7 and taking expectation leads to

LR2+ LRD +Q+MD
2T2 ' T2(1—fB) Tt Tt

E[F(a") ~ F(2)] < (1~ DE[F(@") ~ F@®)] +

(63)
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Applying the aboe inequality recursively yields

T -
1 LR? LRD oD+ MD
*\ _ (T < (1 — =©\T - 1)
E[F(2") - F@ )] < (1 - 7)"E[F(2") - F(z §1j (577 + a5t T )
1 ) LR*>  LRD (0D + MD)(logT +1)
<= - F(z™ .
< e(F(w )—F(z'Y))+ o T Ta=5) T (64)
Finally, recall that 3351) =04 for 7 € [n] and F(04) > 0, we arrive at
_ 1 1 LR?>  LRD (6D + MD)(logT + 1)
T+ > (1 — = * - _ _ _
BP0 > (1= DF(@) + (F(00) ~ G - s 2
1 LR? LRD (6D + MD)(logT +1)
> (1— =)F(z*) — - - ,
> (1= DF6) - 5~ 7y ) (65)
Combining (65) and (12), we obtain
) -
ey o g Lo LE*  LRD (oD +MD)(ogT +1)  JAGR

To ensure that E[F'(z(T1)] or each E[F(:BETH))] is greater than (1 —1/e)F(x*) — ¢, the number of iterations T
should be T'= O(2). Since at each iteration ¢, DeSGTFW requires one communication round and t? stochastic

gradient evaluations, we conclude that the communication and stochastic gradient evaluation complexities of
DeSGTFW are O(1) and O(%), respectively. O



