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Abstract

In this paper, we focus on the continuous DR-
submodular maximization over a network.
By using the gradient tracking technique, two
decentralized algorithms are proposed for de-
terministic and stochastic settings, respec-
tively. The proposed methods attain the ✏-
accuracy tight approximation ratio for mono-
tone continuous DR-submodular functions in
only O(1/✏) and Õ(1/✏) rounds of communi-
cation, respectively, which are superior to the
state-of-the-art. Our numerical results show
that the proposed methods outperform ex-
isting decentralized methods in terms of both
computation and communication complexity.

1 Introduction

The algorithms explored in this paper aim to find an
approximate solution to a continuous DR-submodular
maximization problem in a decentralized and consen-
sus setting, where each node merely has access to a
subset of data and are allowed to exchange informa-
tion with their neighboring nodes only. Specifically,
the problem of interest can be phrased as

max
x2C

F (x) = max
x1=···=xn

xi2C

n 1

n

nX

i=1

Fi(xi)
o
, (1)

where Fi is a local monotone continuous DR-
submodular function, and C is a compact convex set.

In such a regime, we say that an algorithm achieves
a �-approximation ratio (� 2 (0, 1]) if it finds a so-
lution x̂ such that F (x̂) � �F (x⇤), where x

⇤ denote
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the global maximizer of F . Throughout this paper, we
use tight approximation ratio to refer to the (1� 1/e)
approximation ratio and the ✏-accuracy tight approxi-
mation ratio to refer to the (1�1/e�✏) approximation
ratio unless otherwise specified1.

Research on problem (1) has received an enormous
impetus from the maturity of the research on con-
tinuous DR-submodular functions, a broad subclass
of nonconvex functions with diminishing returns (DR)
property. Various applications, including the design
of online experiments (Chen et al., 2018), budget and
resource allocations (Eghbali and Fazel, 2016; Staib
and Jegelka, 2017), and learning assignments (Golovin
et al., 2014) are captured in this regime. However,
most existing work su↵ers from centralized computing
(single-machine setting) in that large-scale submodu-
lar maximization involves many information gather-
ing, data summarization, and non-parametric learning
problems. This necessitates the development of dis-
tributed methods for submodular maximization. Be-
sides, problem (1) also arises in tasks such as sensor
networks (Golovin et al., 2010) and multirobot sys-
tems (Singh et al., 2007) where either e�ciently cen-
tralizing data or globally aggregating intermediate re-
sults is unfeasible.

An alternative distributed setting for continuous DR-
submodular maximization relies on a control (master)
node that exchanges information with all the other
computing agents (workers). Usually, such setting is
not robust to machine failures or network topological
changes. Moreover, when the network is large-scale
and sparse, master-worker distributed methods usu-
ally have high communication time (Mokhtari et al.,
2018b). In contrast, the decentralized distributed set-
ting only relies on local communication between neigh-
boring nodes, and thus have advantages of robustness
to machine and link failures, scalability to network
sizes, and privacy preservation.

1
It is proved that the approximation guarantee can be

tightened to (1 � 1/e) by using Frank-Wolfe(Bian et al.,

2017), or stochastic Frank-Wolfe(Mokhtari et al., 2018a)
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Recently, Mokhtari et al. (2018b) propose two de-
centralized Frank-Wolfe variants named DeCG and
DeSCG2for maximizing monotone continuous DR-
submodular functions, where DeCG is deterministic
as it requires full local gradient evaluations at each
node while DeSCG is stochastic in that only an unbi-
ased gradient estimator is calculated for each node. In
these two methods, each node maintains a surrogate
for the global gradient estimated from both local and
neighboring gradient information.

The first of their kind, DeCG and DeSCG have two
shortcomings. The first is that the computation com-
plexity of DeCG mismatches O(1/✏), the best compu-
tation complexity of deterministic Frank-Wolfe type
methods (Bian et al., 2017). Specifically, DeCG con-
structs a surrogate for the global gradient at each
node by aggregating the local gradient and neigh-
boring gradient information without e↵ectively using
historical local gradient information. Such surrogate
does not provide good approximation of the global
gradient by design, which results in O(1/✏2) itera-
tion/computation complexity of the algorithm. The
second shortcoming is the high communication over-
head. Although both methods achieve the tight ap-
proximation ratio, their communication complexities
are rather high because (i) the surrogate adopted by
both methods has high global gradient approxima-
tion error which dominates the convergence rate and
thus results in high iteration complexity or equiva-
lently communication complexity; (ii) DeSCG uses a
fixed mini-batch size in constructing local gradient es-
timators, which leads to low per-iteration computa-
tion cost but sacrifices the accuracy of the estimators
and increases the overall communication complexity
to reach convergence. They overlooked such practical
issue, which restrains their applications.

To bridge these gaps, we adopt the gradient tracking
technique (Di Lorenzo and Scutari, 2016; Wai et al.,
2017; Pu and Nedić, 2018) to construct decentral-
ized Frank-Wolfe variants, DeGTFW and DESGTFW,
for deterministic and stochastic settings, respectively.
Both algorithms can be used to e�ciently maximize
monotone continuous DR-submodular functions sub-
ject to any compact convex set. Our main contribu-
tions are listed as follows.

1. We prove that DeGTFW achieves the tight
approximation ratio for maximizing monotone,
continuous-DR submodular functions subject to
any compact convex set. Both the communi-

2
The second method in their paper is in fact a discrete

variant of DeCG, which is essentially a stochastic variant

of DeCG with an additional rounding step. We refer to the

stochastic variant without the rounding step as DeSCG for

ease of statement.

cation and gradient evaluation complexities of
DeGTFW are O(1/✏) to achieve an ✏-accuracy
tight (1�1/e�✏) approximation ratio, while these
complexities of DeCG are both O(1/✏2).

2. Compared to O(1/✏3) communication and gra-
dient evaluation complexities of DeSCG, DeS-
GTFW requires Õ(1/✏) communication complex-
ity3and Õ(1/✏3) stochastic gradient evaluation
complexity to achieve an ✏-accuracy tight approx-
imation ratio in expectation.

We conduct numerical experiments on Non-convex /
non-concave Quadratic Programming (NQP) and mul-
tilinear extension. The empirical results show that the
proposed methods outperform existing decentralized
methods in terms of both computation complexity and
communication complexity.

2 Related Work

Submodularity, a structural property of functions in
both discrete and continuous domains, captures a wide
range of real-world applications including document
summarization (Lin and Bilmes, 2010), recommender
systems (El-Arini et al., 2009; Yue and Guestrin,
2011), active learning (Golovin and Krause, 2011), etc.
For many of these applications, one important task is
to find the global maximum of a submodular function.
Although exact maximization of submodular functions
is NP-hard (Feige, 1998; Bian et al., 2017), they can be
approximately maximized in polynomial time (Krause
and Golovin, 2014). Existing literature of submodu-
lar maximization can be divided to two regimes: the
submodular set function maximization (discrete do-
main) and the continuous submodular maximization.
We also review the existing work for distributed sub-
modular maximization.

Submodular Set Function Maximization. The
celebrated work of (Nemhauser et al., 1978) proposes
a discrete greedy algorithm that achieves the tight ap-
proximation ratio for maximizing a monotone submod-
ular set function subject to a cardinality constraint.
Following this line of work, various greedy algorithms
have been proposed for more complex constraints such
as knapsack constraints (Wolsey, 1982; Sviridenko,
2004), linear packing constraints (Azar and Gamzu,
2012), and matroid constraints (Krause et al., 2009;
Stan et al., 2017).

Continuous Submodular Maximization. The
continuous submodular maximization problem arises
in many applications, such as submodular NQP, gen-
eralized facility location, optimal budget allocation,

3
where Õ() suppresses a poly-logarithmic factor.
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text summarization, to name a few (see (Bian et al.,
2017)). Another important collection of continuous
submodular functions originates from the multilinear
extension of discrete submodular set functions. In
the seminal work of (Vondrák, 2008), the authors in-
troduce the multilinear extension technique for lift-
ing a monotone submodular set function with a ma-
troid constraint to continuous domains. A continuous-
time algorithm with the tight approximation ratio,
named Continuous Greedy (CG), is proposed to solve
the corresponding continuous DR-submodular maxi-
mization problem. The authors also show that by us-
ing the pipage rounding technique (Ageev and Sviri-
denko, 2004), the fractional solution obtained by con-
tinuous DR-submodular maximization can be rounded
to a feasible discrete solution without loss in objective
value, which achieves the tight approximation ratio for
the original discrete problem.

Recently, Bian et al. (2017) propose a generalized ver-
sion of CG which attains an ✏-accuracy tight approxi-
mation ratio for continuous monotone DR-submodular
maximization under down-closed bounded convex con-
straints with O(1/✏) gradient evaluation complexity.
However, when applied to the stochastic setting, their
algorithm can produce solutions that are arbitrarily
bad. To tackle this problem, Hassani et al. (2017) pro-
pose a Stochastic Projected Gradient (SPG) method
that attains a (1/2�✏) approximation ratio for stochas-
tic continuous monotone DR-submodular maximiza-
tion under general convex constraints with O(1/✏2)
stochastic gradient evaluation complexity. The au-
thors also show that 1/2 is the best approximation
ratio one can obtain for projected gradient methods,
indicating a gap to the tight approximation ratio.
In order to close this gap in the stochastic setting,
Mokhtari et al. (2018a) propose a stochastic method
named Stochastic Continuous Greedy (SCG) which
achieves an ✏-accuracy tight approximation ratio with
a stochastic gradient evaluation complexity ofO(1/✏3).

Distributed submodular maximization. Unlike
methods in the single-machine setting, distributed
methods focus on solving a global problem distributed
over a set of computing agents connected by a network.
Existing algorithms for distributed submodular maxi-
mization include master-worker algorithms and decen-
tralized algorithms.

Several master-worker algorithms for discrete submod-
ular maximization have been proposed (Golovin et al.,
2010; Mirzasoleiman et al., 2013; Barbosa et al., 2015;
Kumar et al., 2015). In these algorithms, each ma-
chine finds a local solution using its local data and then
sends the solution to a master node which computes
the global solution by aggregating all local solutions.

Decentralized methods only require local communi-
cation between neighboring nodes in the network.
Gharesifard and Smith (2016) propose a decentral-
ized algorithm for a special discrete submodular max-
imization problem subject to a partition matroid con-
straint. In their method, the nodes take actions
in a predefined sequential order based on informa-
tion of preceding nodes in the neighborhood. How-
ever, the approximation ratio of such algorithm is
not tight and the computation over the network can-
not be parallelized. Mokhtari et al. (2018b) are
the first to consider decentralized continuous DR-
submodular maximization. They propose a deter-
ministic method named DeCG that achieves an ✏-
accuracy tight approximation ratio for monotone con-
tinuous DR-submodular maximization problems sub-
ject to any down-closed bounded convex set. The gra-
dient evaluation and communication complexities of
DeCG are both O(1/✏2). For the stochastic setting,
the authors further present a variant called DeSCG
which achieves an ✏-accuracy tight approximation ratio
in expectation with O(1/✏3) stochastic gradient evalu-
ation and communication complexities. We summarize
all related algorithms in Table 1.

3 Notations and Preliminaries

We use bold lowercase symbols to denote vectors and
bold uppercase symbols to denote matrices. The i-
th row of matrix W is represented by Wi⇤. For two
vectors x,y 2 Rd, the notation x < y means that x is
component-wise less than y. Throughout this paper,
we let kxk denote the Euclidean norm of a vector x

and kW k denote the spectral norm of a matrix W .
The kronecker product of matrices is denoted by ⌦.
The notation [d] stands for the set {1, . . . , d}. We let
ej denote a basis vector in Rd where the j-th entry is
1, and all the others are 0. We use 1d 2 Rd to denote
a vector with all d components being 1 and 0d 2 Rd

to denote a vector with all d components being 0. The
identity matrix in Rd⇥d is represented by Id.

In what follows, we present definitions of submodu-
larity, DR-submodularity, and monotonicity, respec-
tively, and describe our network model precisely.

Submodularity. Consider a continuous function Fi :
X ! R+, where X = X1⇥ . . .⇥Xd 2 Rd

+ and Xj ⇢ R+

be a closed sub-interval for each j 2 [d], Fi is called
submodular if for any (x,y) 2 X ⇥ X ,

Fi(x) + Fi(y) � Fi(x _ y) + Fi(x ^ y), (2)

where _ and ^ are component-wise maximum and
minimum, respectively.

DR-submodularity. A di↵erentiable function Fi is
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Table 1: Summary of CG, SG, SCG, DeCG, DeSCG, DeGTFW, and DeSGTFW.

Algorithm CG SPG SCG DeCG DeSCG DeGTFW DeSGTFW
setting det. stoch. stoch. det. stoch. det. stoch.

constraint cvx-down convex convex cvx-down cvx-down convex convex
approx. ratio 1� 1/e� ✏ 1/2� ✏ 1� 1/e� ✏ 1� 1/e� ✏ 1� 1/e� ✏ 1� 1/e� ✏ 1� 1/e� ✏
computation O(1/✏) O(1/✏2) O(1/✏3) O(1/✏2) O(1/✏3) O(1/✏) Õ(1/✏3)

communication \ \ \ O(1/✏2) O(1/✏3) O(1/✏) Õ(1/✏)

called DR-submodular if it exhibits diminishing re-
turns, i.e., for any x,y 2 X and x  y,

rFi(x) � rFi(y). (3)

Monotonicity. A function Fi is called monotone if

Fi(x)  Fi(y), 8 x,y 2 X and x  y. (4)

Without loss of generality, we assume that X =
{x|0d  x  u}. This is because for any mono-
tone continuous DR-submodular function Fi with a
domain X = {x|`  x  u}, one can define a new
domain X

0 = {x|0d  x  u � `} and transform Fi

to F 0
i (x) = Fi(x+ `). Besides, the monotonicity of Fi

implies that rFi(x) � 0d for any x 2 X . Therefore,
for any x 2 X ,

0d  rF (x)  rFi(0d). (5)

Network Model. The network model we consider in
this paper is represented by an undirected connected
graph G = (V,E) with n nodes. Each node i 2 [n]
represents a computing agent and is associated with
a local objective function Fi. We denote the set of
neighbors of node i by N (i) = {j|(i, j) 2 E}.

4 DeGTFW and DeSGTFW
Algorithms

In this section, we propose two decentralized methods
for solving problem (1). The first method is a deter-
ministic method named Decentralized Gradient Track-
ing Frank-Wolfe (DeGTFW) that requires evaluation
of full local gradients rFi. The second method is a
stochastic one named Decentralized Stochastic Gradi-
ent Tracking Frank-Wolfe (DeSGTFW) which utilizes
an unbiased estimator of full local gradients.

In both methods, an auxiliary weight matrixW is con-
structed to aggregate received information from neigh-
bors, where Wij denotes the weight node i assigns to
node j. The weight matrix W depends on the net-
work topology and should be chosen properly to en-
sure that the local solutions found by individual nodes
reach consensus. Specifically, W 2 Rn⇥n

+ should sat-
isfy the following assumption (Yuan et al., 2016).

Assumption 1. Each entry of the weight matrix
Wij > 0 if j 2 N (i) [ {i}, and Wij = 0 otherwise.
Besides, W is symmetric and doubly stochastic (i.e.,
W1n = W

>
1n = 1n). Further, its second largest (in

magnitude) eigenvalue is strictly smaller than 1, i.e.,

� := max(|�2(W )|, |�n(W )|) < 1, (6)

where �i(W ) denotes the i-th largest eigenvalue of W ,
i.e., 1 = �1(W ) > �2(W ) � . . . � �n(W ).

4.1 Decentralized Gradient Tracking

Frank-Wolfe

Now we present the DeGTFW algorithm, which is
summarized in Algorithm 1. In this algorithm, each

node maintains a local variable x
(t)
i , a local gradi-

ent substitute g
(t)
i and a global gradient surrogate

d
(t)
i , where the superscript (t) denotes the iteration

index and the subscript i denotes the node index. At

each iteration, each node i obtains x
(t)
j and g

(t)
j from

all its neighbors and then computes the global gradi-

ent surrogate d
(t)
i as the weighted average of g(t)

j for
j 2 N (i) [ {i}. Then an ascent direction is found by

solving the linear program v
(t)
i = argmaxv2Chv,d

(t)
i i.

After that, the local variable x(t)
i is updated by aggre-

gating the received x
(t)
j from neighbors and taking a

small step towards the ascent direction v
(t)
i ,

x
(t+1)
i =

X

j2N (i)[{i}

Wij · x
(t)
j +

1

T
v
(t)
i . (7)

Finally, the local gradient substitute g(t)
i is updated as

g
(t+1)
i = d

(t)
i +rFi(x

(t+1)
i )�rFi(x

(t)
i ), (8)

where rFi(x
(t)
i ) is the old local gradient evaluated at

the last iteration.

The substitute (8) is analogous to that used in the
variance reduced stochastic gradient method SAGA
(Defazio et al., 2014) which leverages history stochas-
tic gradient information to approximate full gradi-
ents. Actually this gradient tracking technique has
been adopted by decentralized methods for convex and
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Algorithm 1: Decentralized Gradient Tracking
Frank-Wolfe for node i

Input : weight matrix W 2 Rn⇥n
+ , constraint set

C ⇢ Rn
+, number of iterations T

Initialize x
(1)
i = 0, g(1)

i = rFi(x
(1)
i )

for t = 1, 2, . . . , T do

Obtain g
(t)
j and x

(t)
j from neighbors j 2 N (i);

d
(t)
i =

P
j2N (i)[{i} Wij · g

(t)
j ;

v
(t)
i = argmaxv2C hv,d(t)

i i;

x
(t+1)
i =

P
j2N (i)[{i} Wij · x

(t)
j + 1

T v
(t)
i ;

g
(t+1)
i = d

(t)
i +rFi(x

(t+1)
i )�rFi(x

(t)
i )

end

Return: x
(T+1)
i

general non-convex optimization problems (Di Lorenzo
and Scutari, 2016; Wai et al., 2017; Qu and Li, 2017;
Pu and Nedić, 2018). Although continuous submodu-
lar functions are a subclass of non-convex/non-concave
functions, most existing decentralized methods for
general non-convex problems only guarantee to find
a stationary point which, unfortunately, does not pro-
vide the tight approximation ratio for continuous DR-
submodular maximization (Hassani et al., 2017). On
the contrary, Algorithm 1 is guaranteed to achieve an
✏-accuracy tight approximation ratio with an itera-
tion/communication complexity of O(1/✏). In com-
parison to the global gradient surrogate we use in
DeGTFW, Mokhtari et al. (2018b) propose to use an-
other surrogate

d
(t)
i = (1�↵)

X

j2N (i)[{i}

Wijd
(t�1)
i +↵rFi(x

(t)
i ), (9)

which leads to a worse iteration/communication com-
plexity of O(1/✏2).

4.2 Decentralized Stochastic Gradient

Tracking Frank-Wolfe

The DeGTFW algorithm requires to evaluate full local
gradients at each iteration. However, for some appli-
cations, the evaluation of full gradients is prohibitive.
One notable example is the multilinear extension of a
submodular set function. For general multilinear ex-
tensions, it takes exponential time to evaluate the full
local gradient rFi(x). Nevertheless, one can evalu-
ate a cheap unbiased estimate r̃Fi(x) in time O(d)
(see, e.g., (Mokhtari et al., 2018b, Section 9.7)). For
this situation, we propose a stochastic variant of Al-
gorithm 1 named Decentralized Stochastic Gradient
Tracking Frank-Wolfe (DeSGTFW), which is summa-
rized in Algorithm 2.

Algorithm 2: Decentralized Stochastic Gradient
Tracking Frank-Wolfe for node i

Input : matrix W 2 Rn⇥n
+ , constraint C ⇢ Rn

+,
number of itertions T

Initialize x
(1)
i = 0, g(1)

i = r̃
(1)
i = r̃Fi(x

(1)
i )

for t = 1, 2, . . . , T do

Obtain g
(t)
j and x

(t)
j from neighbors j 2 N (i);

d
(t)
i =

P
j2N (i)[{i} Wij · g

(t)
j ;

v
(t)
i = argmaxv2C hv,d(t)

i i;

x
(t+1)
i =

P
j2N (i)[{i} Wij · x

(t)
j + 1

T v
(t)
i ;

Compute r̃
(t+1)
i , the average of (t+ 1)2 i.i.d.

samples of r̃Fi(x
(t+1)
i );

g
(t+1)
i = d

(t)
i + r̃

(t+1)
i � r̃

(t)
i

end

Return: x
(T+1)
i

The DeSGTFW method requires to evaluate a mini-
batch (of size t2) stochastic local gradient to construct
an unbiased estimator at each node. Such increasing
mini-batch size technique has been studied by Hazan
and Luo (2016) and Reddi et al. (2016). In com-
parison, the stochastic algorithm DeSCG proposed by
Mokhtari et al. (2018b) adopts another local gradient

estimator: r̃
(t)
i = (1 � �)r̃(t�1)

i + �r̃Fi(x
(t)
i ), where

� 2 (0, 1) is a parameter. Such estimator requires only
a fixed mini-batch of size 1.

5 Convergence Analysis

In this section, we give theoretical analyses for the
proposed methods DeGTFW and DeSGTFW. We first
present some lemmas that hold for both methods and
then analyze their communication and gradient evalu-
ation complexities, respectively. All the proofs in this
section are deferred to Appendix due to the limit of
space. We note that the proofs of Lemma 1, 2, and
3 are borrowed from (Mokhtari et al., 2018b) and we
state them here for completeness.

To begin with, we make the following mild assump-
tions on the constraint set C and local objective func-
tions Fi’s, respectively.

Assumption 2. The compact convex set C ⇢ Rd
+ has

a diameter D = supx,y2Ckx � yk and a radius R =
supx2Ckxk.

Assumption 3. Each of the local gradient rFi

at the origin 0d is bounded by a constant G, i.e.,
krFi(0d)k  G.

The above assumption combined with (5) implies that
krFi(x)k  G for any x 2 X and thus Fi is G-
Lipschitz over X .
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Assumption 4. Each of the local objective functions
Fi(·) is L-smooth over X , i.e., 8x,y 2 X

krFi(x)�rFi(y)k  Lkx� yk. (10)

The following lemma shows that the output x(T+1)
i of

the proposed methods always lie in the feasible set.

Lemma 1. The local variables x
(t)
i generated by Al-

gorithm 1 and Algorithm 2 satisfy x
(t)
i 2 X and

kx
(t)
i k  R for all i 2 [n], t 2 [T + 1]. Moreover,

the output variable x
(T+1)
i lies in the feasible set C.

The next lemma provides an upper bound of the

distance between x
(t)
i and their average x̄

(t) =
1
n

Pn
i=1 x

(t)
i and shows that the di↵erence between

any F (x(t)
i ) and F (x̄(t)) is upper bounded by O(1/T ),

which means that the convergence behavior of x(t)
i is

similar to that of x̄(t).

Lemma 2. Consider the local variables x
(t)
i in Algo-

rithm 1 or Algorithm 2 for any i 2 [n], t 2 [T +1]. Let

x̄
(t) be their average, i.e., x̄(t) = 1

n

Pn
i=1 x

(t)
i , then

vuut
nX

i=1

kx
(t)
i � x̄(t)k2 

p
nR

T (1� �)
. (11)

Furthermore, for any i 2 [n], t 2 [T + 1],

|F (x(t)
i )� F (x̄(t))| 

p
nGR

T (1� �)
. (12)

From now on, we analyze the convergence of x̄(t), from
which we can deduce the results for each individual
x
(t)
i . The following lemma, referred to as the basic as-

cent lemma, indicates that the objective value F (x̄(t))
is ascending as t increases and finally converges to
(1 � 1/e)F (x⇤) as t ! T + 1 and T ! 1 if we can
bound additional terms properly, where x⇤ denotes an
optimal solution of problem (1).

Lemma 3. Suppose that Assumptions 1-4 hold, then,
for both Algorithm 1 and Algorithm 2, the following
inequality holds:

F (x⇤)� F (x̄(t+1))

 (1�
1

T
)(F (x⇤)� F (x̄(t))) +

LR2

2T 2

+
D

T
kd̄

(t)
�rF (x̄(t))k+

D

nT

nX

i=1

kd
(t)
i � d̄

(t)
k, (13)

where d̄
(t) is the average of d(t)

i for all i 2 [n].

In the rest of this section, we will bound the two er-

ror terms kd̄
(t)

� rF (x̄(t))k and
Pn

i=1 kd
(t)
i � d̄

(t)
k

and then derive convergence rates, communication
complexities, and gradient evaluation complexities for
DeGTFW and DeSGTFW, respectively.

5.1 Analysis of DeGTFW

For DeGTFW, the surrogates d
(t)
i and their average

d̄
(t) have the following properties.

Lemma 4. For Algorithm 1, assume that Assump-

tion 1 holds and let d̄
(t) = 1

n

Pn
i=1 d

(t)
i and ḡ

(t) =
1
n

Pn
i=1 g

(t)
i , then for any t 2 {1, . . . , T},

(a) d̄
(t) = ḡ

(t) = 1
n

Pn
i=1 rFi(x

(t)
i );

(b)
Pn

i=1 kd
(t)
i � d̄

(t)
k
2
 �2

Pn
i=1 kg

(t)
i � ḡ

(t)
k
2.

With Lemma 4 at hand, one can easily bound the error
term kd̄

(t)
�rF (x̄(t))k using Lemma 2. For the other

error term
Pn

i=1 kd
(t)
i � d̄

(t)
k, it can be bounded from

above as in the following lemma.

Lemma 5. Consider the surrogates d
(t)
i , i 2 [n] in

Algorithm 1, we have for all t 2 {1, . . . , T},

nX

i=1

kd
(t)
i � d̄

(t)
k  �tnG+

3n�LR

(1� �)2T
. (14)

Now we are ready to present the first main theorem
which shows that Algorithm 1 achieves an ✏-accuracy
tight approximation ratio.

Theorem 1. Consider problem (1) and the DeGTFW
algorithm. Suppose that Assumptions 1-4 hold, then,

F (x̄(T+1)) � (1�
1

e
)F (x⇤)�

1

T

⇣LRD + �GD

1� �

+
3�LRD

(1� �)2
+

LR2

2

⌘
. (15)

Furthermore, all x(T+1)
i for i 2 [n] and x̄

(T+1) attain
objective values larger than (1�1/e)F (x⇤)� ✏ after at
most O( 1✏ ) communication rounds and O( 1✏ ) full local
gradient evaluations.

5.2 Analysis of DeSGTFW

In this subsection, we analyze the convergence rate of
DeSGTFW. First, we make the following assumption
on the variance of the stochastic gradient estimator,
which is common in stochastic settings.

Assumption 5. For any x 2 C, the variance of the
stochastic, unbiased gradient estimator r̃Fi(x) is up-
per bounded by a constant, i.e.,

E[kr̃Fi(x)�rFi(x)k
2]  �2, 8x 2 C, i 2 [n]. (16)

Similar to the analysis of Algorithm 1, we bound

kd̄
(t)

� rF (x̄(t))k and
Pn

i=1 kd
(t)
i � d̄

(t)
k for DeS-

GTFW in the following two lemmas, respectively.
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Lemma 6. For Algorithm 2 , suppose that Assump-
tion 1-5 hold, the error term kd̄

(t)
� rF (x̄(t))k ,

t 2 {1, . . . , T}, satisfies

E
⇥
kd̄

(t)
�rF (x̄(t))k

⇤


LR

T (1� �)
+

�

t
. (17)

Lemma 7. Define M̃ := t0 · max{�(
p
�2 +G2 +

2(�+LR)
1�� ), 2� + 3LR

1�� }, where t0 is the smallest inte-

ger that satisfies � 
1

(1+1/t0)2
. If the conditions in

Lemma 6 hold, then for all t 2 {1, . . . , T},

nX

i=1

E
⇥
kd

(t)
i � d̄

(t)
k
⇤


nM̃

t
. (18)

We conclude in Theorem 2 that DeSGTFW achieves
an ✏-accuracy tight approximation ratio.

Theorem 2. Consider problem (1) and the proposed
DeSGTFW algorithm. Suppose that Assumptions 1-5
hold, then

E[F (x̄(T+1))] � (1�
1

e
)F (x⇤)�

logT + 1

T
(� + M̃)D

�
1

T

⇣LRD

1� �
+

LR2

2

⌘
.

(19)
where M̃ is defined in Lemma 7. Furthermore, all

x
(T+1)
i for i 2 [n] and x̄

(T+1) attain objective values
larger than (1� 1/e)F (x⇤)� ✏ in expectation after at
most Õ( 1✏ ) communication rounds and Õ( 1

✏3 ) stochas-
tic local gradient evaluations.

6 Experiment

In this section, we conduct numerical experiments to
demonstrate the advantages of DeGTFW and DeS-
GTFW over existing decentralized methods DeCG
and DeSCG. We compare the average objective val-

ues 1
n

Pn
i=1 F (x(T+1)

i ) obtained by di↵erent methods
versus the amount of communication or number of
full/stochastic local gradient evaluations. In partic-
ular, we repeat the stochastic methods for multiple
trails and compare their results in average. We fo-
cus on two continuous DR-submodular maximization
problems: a non-convex/non-concave quadratic pro-
gramming problem and the multilinear extension of a
submodular set function maximization problem. For
all decentralized methods in our experiments, the net-
work graph G is an Erdős-Rényi random graph con-
taining n = 50 nodes with average degree 10. The
weight matrix is computed as

Wij =

8
><

>:

1/(1 + max(deg(i), deg(j))), if j 2 N (i),

1�
P

`2N (i) Wi`, if j = i,

0, otherwise
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Figure 1: Comparison of DeGTFW/DeSGTFW v.s.
DeCG/DeSCG on the NQP problem. The left column
compares the the objective value versus the amount
of communication (the total number of DOUBLEs re-
ceived by all nodes until iteration T ). The right col-
umn compares the objective value versus the total
number of full/stochastic local gradient evaluations.

where deg(i) denotes the degree of node i. One can
check that W satisfies Assumption 1. The � value of
such matrix roughly lies in the range [0.43, 0.87] with
a mean value around 0.56.

6.1 Non-convex/non-concave Quadratic

Programming

In the first experiment, we consider a synthetic NQP
problem of the form

max
x2C

F (x) =
1

n

nX

i=1

(
1

2
x
>
Hix+ h

>
i x), (20)

where hi 2 Rd, Hi 2 Rd⇥d, and each pair of (Hi,hi)
is stored on node i. Following the convention of (Chen
et al., 2018), we generate (Hi,hi) and construct the
constraint set as follows. Each entry ofHi is uniformly
sampled from [�100, 0] so that Fi is DR-submodular.
The constraint set C = {0d  x  1d,Ax  1d},
where each entry in A 2 Rm⇥d is uniformly sampled
from [0, 1]. To ensure that Fi is monotone over C, we
set hi = �H

>
i · 1d. We set d = 20 and m = 2.

We consider di↵erent settings for the deterministic
methods and stochastic methods, respectively. In the
comparison of the deterministic methods DeGTFW
and DeCG, we assume that each node i is able to eval-
uate the full local gradient rFi(x) = Hix+hi. As for
the stochastic methods, each node i is only provided
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Figure 2: Results for the movie recommendation prob-
lem. The first row compares the stochastic methods
DeSGTFW and DeSCG. The second row compares the
deterministic methods DeGTFW and DeCG.

with an unbiased estimator r̃Fi(x) = Hix + hi + ⇠,
where ⇠ ⇠ N(0d, 10 · Id), the Gaussian distribution
with mean 0d and covariance 10 · Id.

The results are shown in Figure 1. It can be seen from
Figure 1a and 1b that DeGTFW outperforms DeCG
in terms of both communication and gradient evalu-
ation complexities to reach the same objective value.
Similarly, Figure 1c and 1d show that DeSGTFW out-
performs DeSCG in terms of both communication and
stochastic gradient evaluation complexities.

6.2 Movie Recommendation

The second experiment we consider here is a real-world
movie recommendation application (Stan et al., 2017;
Hassani et al., 2017), which aims to recommend a set
of k = 10 movies to all users. The data set we use is
the “MovieLens1M” data set4, which contains 1 mil-
lion entries of rating ranging from 1 to 5 from 6, 000
users on d = 4, 000 movies. We use r(u,m) to denote
user u’s rating for movie m 2 [d] and set r(u,m) = 0
if movie m is not rated by user u. The whole data
set is split into n = 50 batches {B1, . . . , Bn}, where
each batch Bi contains the ratings of exactly b = 120
users. Then we distribute {B1, . . . , Bn} onto n com-
puting nodes in a network. The goal is to maximize
the multilinear extension F (x) = 1

n

Pn
i=1 Fi(x) of a

4
The data set can be downloaded from https://

grouplens.org/datasets/movielens/.

submodular set function. Specifically, Fi is defined as

Fi(x) =
X

S⇢[d]

fi(S)
Y

j2S

[x]j
Y

`/2S

(1� [x]`), x 2 C. (21)

Here, [x]` denotes the `-th component of x (with a

slight abuse of notation), C = {x 2 [0, 1]d,
Pd

i=1[x]i =
k}, and fi(S) is the facility location function, i.e.,

fi(S) =
1

|Bi|

X

u2Bi

max
m2S

r(u,m), (22)

subject to S ⇢ [d] and |S| = k. It can be verified that
Fi is a monotone DR-submodular function and the
feasible set C is a compact convex set. We can observe
from (21) that both the computations of Fi and rFi

require 2d evaluations of the discrete function fi, which
is prohibitive when d is large. Nevertheless, one can
construct an unbiased gradient estimator r̃Fi(x) as
follows. First, we sample a random set Q ⇢ [d], where
each element ` 2 [d] is included in Q independently
with probability [x]`. Then the j-th component of
r̃Fi is computed as [r̃Fi]j = fi(Q[ {j})� fi(Q\{j})
(see, e.g., (Calinescu et al., 2011, Section 2)).

In Figure 2a and 2b, we compare the stochas-
tic method DeSGTFW with the baseline De-
SCG (Mokhtari et al., 2018b). It can be observed that
given the same amount of communication or the same
number of stochastic gradient evaluations, DeSGTFW
beats DeSCG as it attains a larger objective value.

Actually, for this movie recommendation task, there
is another formulation of (21) such that rFi can be
computed in polynomial time (Iyer et al., 2014). Thus,
we also compare the performance of DeGTFW and
DeCG for this task. The results are shown in Figure 2c
and 2d. We can see that DeGTFW converges faster
than DeCG in terms of both the amount of communi-
cation and the number of full gradient evaluations.

7 Conclusion

In this paper, we propose two decentralized consen-
sus methods, DeGTFW and DeSGTFW, for solv-
ing large-scale monotone, continuous DR-submodular
maximization problems subject to any compact convex
set. We theoretically analyze the proposed methods,
which shows that our methods are superior to existing
methods in terms of communication complexity. The
numerical results also validate the advantages of our
methods over existing ones.
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